1122

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 6, JUNE 2001

Crameér—Rao Bounds for Estimating Range, Velocity,
and Direction with an Active Array

Aleksandar Dogariic, Student Member, IEEEBNd Arye NehoraiFellow, IEEE

Abstract—We derive Cramér—Rao bound (CRB) expressions for 1§
the range (time delay), velocity (Doppler shift), and direction of a 73,

point target using an active radar or sonar array. First, general

Tcrr

CRB expressions are derived for a narrowband signal and array
model and a space-time separable noise model that allows both spa-

tial and temporal correlation. We discuss the relationship between h(t)
the CRB and ambiguity function for this model. Then, we spe- V;
cialize our CRB results to the case of temporally white noise and the
practically important signal shape of a linear frequency modulated
(chirp) pulse sequence. We compute the CRB for a three-dimen-

sional (3-D) array with isotropic sensors in spatially white noise
and show that it is a function of the array geometry only through A([

the “moments of inertia” of the array. The volume of the confi-
dence region for the target's location is proposed as a measure of } .
accuracy. For this measure, we show that the highest (and lowest)

target location accuracy is achieved if the target lies along one of

0", v"1". [, vE]")

Duration of a single pulse.

Pulse repetition interval.

Duration of the coherent processing
interval.

Heaviside step function.

Volume of confidence ellipsoid for
the target'’s location.

Complex amplitude of the received
signal.

DOA-range-velocity ambiguity
function.

Carrier wavelength and angular car-
rier frequency in continuous time.

the principal axes of inertia of the array. Finally, we compare the 4 Vector of DOA_ p.arameters.
location accuracies of several array geometries. v,n Vectors containing time delay and
Index Terms—Cramér—Rao bound, radar array processing, Doppler shift in sampled and con-
sonar array processing. tinuous time;v = [wp,n. %, n =
[QD, T]T.
(,a Vector of target location parameters
NOTATION in Cartesian and spherical coordi-
CPI Coherent processing interval. nates.
CRB Cramér—Rao bound. ¢, 1 Target's azimuth and elevation.
DOA Direction of arrival. ny, Ny Power spectral density of the noise
SNR, SNR Signal-to-noise ratio and SNR for a (scalar and matrix).
single pulse. wp, p Doppler shift in sampled and contin-
a(@) Array response vector. uous time.
¢ Speed of propagation. Py Ur Target's range and radial component
dmax Maximum distance between array el- of velocity.
ements. by Spatial noise covariance.
/B Bandwidth of the chirp signal. C Temporal noise covariance.
m Number of antennas in the array.
n, t, At Samp!e in_dex, continuous time, and | INTRODUCTION
sampling interval{ = nAt).
Nry T Time delay in sampled and contin- | N active radar and sonar, a known waveform is transmitted,
uous time. and the signal reflected from the target of interest is used to
P Number of pulses. estimate its parameters. Typically, the received signal is mod-
Quzr Quyy Quz, Spatial sensor distribution parame-eled as a scaled, delayed, and Doppler-shifted version of the

Quys Qu= ters, defining the “moment of in- transmitted signal; see, e.g., [1]. Estimation of the time delay
ertia” tensor. and Doppler shift provides information about the range and ra-

dial velocity of the target. For a single antenna, Cramér—Rao
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compute CRB expressions for active sensor arrays. Some werl2 andv, = Qpec/(2€.), wherec is the wave propagation
in this direction has already been done in [7] and [8], whespeed; see e.g., [1, ch. 9.1]. We define a samplgof a con-
CRB expressions for the direction and Doppler shift were déauous-time signak(t) as s[n] = s(nAt), where At is the
rived for a radar array model in which conversion to basebasdmpling interval, and = nAt. We define the time delay and
and matched filtering (i.e., pulse compression) had been pBmppler shift in the sampled signal domain/gs= /At and
formed at each antenna. wp = Qp - At, respectively.
In this paper (see also [9]), we consider a narrowband signalAfter converting to baseband and sampling, the signal re-
and array model prior to matched filtering, i.e., only after theeived by the array at timeA¢ becomes
conversion to baseband. In [10], we presented maximum like-
lihood (ML) methods for this model and for unknown spatially .
correlated and temporally white noise. Unlike [7] and [8], our y[n] = a(@) - = - exp(jwpn)s(n — n,| +e[n] (2.1)
signal model allows estimation of the time delafpue to the
narrowband array assumption, the received signal is “space-tifﬂ@” =L-N, where_ i
separable,” as defined in [11]. We assume a space-time sepa: complex amplitude of the signal;
rable noise model as well (following [11]), which is relatively @(f) m x 1 vector of the array response to a plane wave
general and allows both spatial and temporal noise correlation. reflected from the target;
Under these signal and noise models, we compute the CRB exe[n]  additive noise.
pressions for the time delay, direction, and Doppler shift. Owingere, 8 is the vector of the direction-of-arrival (DOA) param-
to the more general signal and noise structure, our CRB resw@tsrs (and may contain additional parameters, such as polar-
for direction parameters and Doppler shift generalize thoseiifation coefficients; see [12]). We assume that the snapshots
[7]. Furthermore, our CRB expressions for the time delay angken atn = 1,---, N cover the whole of a coherent pro-
Doppler shift extend the classical radar CRB results in [1, cbessing interval (CPI). Therefore, the time duration of the CPI
10.2] and [3] and to a sensor array. is Tecpr = NAt. We model the complex amplitude as an
Signal and noise models are explained in detail in Section ilnknown deterministic constant during the CPI; see also [7]
In Section Ill, CRB expressions for these models are presentggdd [8]. (In reality,|z| is inversely proportional to the square
We show that the CRB for the direction parameters is indepesf-rangep, but we ignore this dependence throughout; see also
dent of whether or not the time delay and Doppler shift agection IV-A). Moreover, the target’s direction, range, and ra-
known, and vice versa; see Section IlI-A. This independenggal component of velocity are also modeled as unknown deter-
is a consequence of the space-time separable structure offigistic constants within the CPI.
adopted signal and noise models. We discuss the relationship beNote that although is chosen to be an integer due to sam-
tween the ambiguity function and CRB in Section I1I-B. Therpﬁng, n,. andn — n. are not necessar"y integers_ Therefore,
we examine in more detail the case of temporally white noi%?n — n.] is a function of a real argument— n.., evaluated for
(see Section 11I-C) and a linear frequency modulated (chirpteger values of..
pulse sequence (see Section I1I-C2. In Section IV, we com-For the model in (2.1) to be valid, several assumptions need
pute and analyze the CRB for the target’s location in spatialfy be satisfied. To model the Doppler effect by a frequency shift,
white noise when the array consists of identical isotropic seftre radial component of the target's velocity needs to be much
sors. Using the volume of the confidence region for the targetgaller than the propagation speed (¢ < 1), and the
location as an accuracy measure and assuming both spatififfye-bandwidth product of the complex envelee) should be
and temporally white noise, we show that the highest accuragyich smaller than/(2v); see also [1, ch. 9, egs. (19) and (23)].
is achieved for targets lying along one of the principal axes 9fe refer to the above assumptions asrthgowband signal as-
inertia of the array; an analogous result holds for the lowest agimptionsin addition, it is assumed that the propagation time
curacy. Finally, we compare the location accuracies of sevegdlthe signal across the array is much smaller than the recip-

three-dimensional (3-D) array geometries. rocal of the signal bandwidth, which is the standard narrow-
band assumption in array processingarrowband array as-
[I. SIGNAL AND NOISE MODELS sumption. It is important to observe that the narrowband array

We present the signal and noise models used in this papeﬁgggmption implies that the range estimation accuracy cannot
e better than the array size along the direction to the target.

well as the underlying assumptions needed for their validity. : R ?
Suppose am-element antenna array receives a scaled, timlt-r,\]- othe.r yvords, the CRB for the time-delay estlmat[on IS valid
nly if it is larger than the (square of the) propagation time of

delayed, and Doppler-shifted echo of a known complex bant ianal th
pass signak(t) exp(j2.t), wheres2. is the angular carrier fre- eES|gnt§1 ac;ois € arr?y. h dar t ¢ model in 1. ch
quency. Knowing the time delay and Doppler shift2, (and quation (2.1) generalizes the radar target model in [1, ch.

assuming a target with constant radial velocity), the targetzssatlirrfa%ig]nton(\j\(/::\?enrt x; r;susfﬂﬂi fﬁgtst?]rjct:rzz Iizi\?‘lr;rp])?i:u?d(()e/_\
range and radial component of velocity are determine ) . - .

g P Y Ay is deterministic (as in [7] and [8]), whereas in [1, ch. 9 and 10],
o _ 2 was modeled as a zero-mean Gaussian random variable. Since
INote that the model “after matched filtering” in [7] and [8] is based on asye consider the measurements collected in one CPI 0n|y1 we do
sumptions that the time delay is known, noise is temporally white withinapulseb d k . . he distributi f
and the waveform ambiguity function is insensitive to the Doppler shift; see [@, t need to make any assumption concerning the distribution o

pp. 14 and 15]. Here, we do not need these assumptions. z from one CPI to another.
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Define the vector of unknown target parameteys =
[Re{z},Imag{z}, 0" ,vT]%, where v [wp,n-]*. De-
fine also the noise-free signal vector at théh sample as
uln,v] = a(@) - x - exp(jwpn)s[n — n.|. Stacking allN
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Section IlI-A and Section 11I-B are valid for a general class
of separable signal and noise models, described by (2.2) and
(2.4). In Section 1lI-B, we establish the relationship between
the ambiguity function and the CRB. Then, in Section IlI-C,

samples into a single vector, (2.1) can be rewritten as we simplify the CRB to a special case of narrowband array

and signal model in (2.1) and temporally white noise. Finally,

y=p(y)te=z -dv)®a(d) +e (2.2) in Section IlI-C2, we further specialize these results to the
practically important signal shape of a rectangular chirp pulse
where® denotes the Kronecker product, and sequence in continuous time.
y=[y[1]", y[2]" - - y[N]H]T (2.3a) A. CRB Expressions for Spatially and Temporally Correlated
p(r) = (L), w2 u(N ] (2.3p) Noise
¢(v) = [s[1 — n.]exp(jwpl), s[2 — n.] exp(jwp2) In Appendix A, we derive the CRB matrix expressions flor

andwv under the signal and noise models (2.2) and (2.4), respec-

-, 8[N — n]exp(jupN)]* (2.3c) ©
tively. The results are

e=[e[1]F,e[2]" ---e[N]H]Y. (2.3d) :
T 2022 $(v) O Lh(v)

. {Re{%z—m’njw, 2)2—1/288“7(2)”_1

The additive noise termmmodels interference due to clutter, re-CRB“

ceiver noise, and jamming. When dominated by clutter or jam-
ming, the noise: is usually both temporally and spatially cor-
related. We assume thais zero-mean Gaussian, spatially and

temporally correlated with spatio-temporal covariance (3.1a)
CRB,y =0 (3.1b)
Elee' ] =C® X% (2.4) CRB,,., CRB,_ .,
CRBuy = {CRB”,_MD CRBn,_,,J
where 1
C andX. noise temporal and spatial covariance matices; = 222 - a(0)*=a(0)
E[-] expectation;

e

conjugate transpose.

These matrices are assumed to be positive definite and indepen- dv ™

[rel e 2H¢L<v70>0—1/2%“)}r

dent of the target parameteys thus, the signal and noise pa- (3.1c)
rameters are disjoint. This is a relatively general model for the

noise covariance, which includes as special cases the jamm re

and receiver noise models developed in [6, ch. 2]. The above (0,%) = I, — 1

model can successfully model clutter if the scatterers move with AT q(0)* N 1a(6)

a ponstaqt_ radial velocity; see [11, sec. VI] (in practlcgl cases, _E—l/2a(0)a(a)*2—l/2 (3.22)
this condition usually holds if scatterers are not moving, i.e., 1

their radial velocity is zero; see also the discussion in [11, sec. H,i(v7 O)=1In— W

VI]). Interestingly, it has also been recently proposed to model 172 . —1/2

noise and interference in wireless communication systems [13]. ¢ PH(v)p(v)*C . (3.2b)

Note that the signal and noise models in (2.2) and (2.4) s
isfy the space-time separability conditions in [11, egs. (10) a
(11)]. The signal model is separable with respect to the “spac
(DOA) parameter@ and “time” parameters since the received
signal is modeled as the product of a functio ahd a function

of v (which is a consequence of the narrowband array assunq 10)] and therefore decoupled, i.e., GRBemains the same

tion; see also [11, sec. 1V]). Similarly, the noise model is sepgl- ether or nOﬂ. is known, and S|m|la_rly, CR:B9 IS the_ same
Wgether or nowr is known; see Appendix A. This resultis some-

rable since the noise covariance is the product of a “spatial” a . : ) . .

a “temporal” covariance. In passive systems, space-time sep at unexpected since the F|sher. mform{:ltlon matrix (FIM) for
bility has been considered in [14, sec. IV]. A separable model e target parametelyss not t')loc.k diagonal; see (A.2) and (A.3)
fers significant computational savings since the estimation pljg_AppendmA. The decoupling is a consequence of the assumed

cedure can be decoupled [7], [11], [14]. In the following sectior?,lo"j‘ceft'me separability of 3'9'?5" and noise models and t_he as-
mption of the complex amplitudeas an unknown determin-

he CRB h iguity function for th
\évr? dp;iie\;\?:rt] aft(r:w ey ;rzdst es aari:é:ggglstywtéﬂctlon orthese mOd% Ic constant. [For example, for known the CRB forf andv

would not be block-diagonal, and CRBand CRB¢ would not

be decoupled.] In addition, since the signal and additive noise

parameters are disjoint, the above CRB expressions hold regard-
We present the CRB results for signal and noise modeééss of whether the spatio-temporal noise covariarice X is

in Section Il. The CRB and ambiguity results derived i&known or unknown.

ere,Iy denotes the identity matrix of siz€, $1/2 denotes a

grmitian square root of a Hermitian matiix andx~*/?
1/2)=1; we will use this notation throughout the paper.
Observe that the CRB fo# andwv is block-diagonal [see

I1l. GENERAL CRB RESULTS
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If the temporal noise covariane@ is known and the spatial TARGET
noise covarianck is unknown, the above CRBs will be reachec
asymptotically in time (i.e., a — oc) by the ML estimation
procedure; see e.g., [15, sec. 7.5]. For unknown temporal ¢
varianceC, it is important to carefully choose its structure sc
that the number of parameters characterizing it will not depet .
on time (otherwise, if the number of parameters increases wi V%i“%%%y
N, estimation algorithms may not be able to attain the CRB ¢ ‘

N — o0). Such a model fo€” may be obtained, for example, if v

the noise is stationary [i.e., thie1, no ))th entry ofC', denoted by VEAI%YTY T ARRAY
w0\

Ch,.ny, depends only on; — ns] and the correlation between
the snapshots decreases to zero for a sufficiently large time ¢
ference (i.e.C,, », = 0 for |ny — ny| greater than a certain
threshold). Fig. 1. Moving array.
Due to the symmetry in the signal representation [with respect
to $(v) anda(a).; see (2.2)] and hoise pargmetnzatlon [with ret- rget’s direction is small. Then, CRB.., is a good measure
specttoC andX:; see (2.4)], there is a duality between (3.1a) an . _ Db . .
; : . 0f the achievable accuracy for estimating the target’s radial ve-
(3.1c). One expression can be obtained from the other by thr—. .
. ) . ocity. Note that CRB ..., < CRB.,;wpr» I-€., CRB, .., Can
changing the spatial covariance matiixarray response vectorbe viewed as a IowerDbgun don CDT b D&D
a(), and its derivativeda(@)/06" with the temporal covari- BRwor-
ance matrixC, temporal steering vect@r(v), and its derivative - .
d¢(v)/duT, respectively. B. CRB and Ambiguity Function
1) CRB on the Target's Radial Velocity for a Moving We now establish the relationship between the ambiguity
Array: We consider the practically important case of a movin@gnction and the CRB. Unlike the CRB, which is a local
array and compute the CRB on the target's radial velocitjpeasure of estimation accuracy, the ambiguity function is used
We show that this CRB depends on the CRB for directioi® assess the global resolution and large error properties of the
parameters; thus, the decoupling result from previous sectio@fimates [1], [16]. For the following discussion, it is useful to
invalid in this case. define the signal-to-noise ratio (SNR) as
Let us assume that the array moves with constant velocity.
Then, the Doppler shift due to the radial component of the ~ SNR= |z|? - ¢(v)*C 1 ¢(v) - a(0)* S a(). (3.5)
target’s velocity (in the sampled-signal domain) is
Assume that we have two targets with paramefiers andé,
wpt = 2Q:At/c - vy = wp + wpa cos(p(8)] (3:3)  wy, respectively. TheDOA-range-velocity ambiguity function
can be easily derived using [16, def. 2]

where
relative) Doppler shift measured by the
“r ;rray' ) PP Y ’A([oTv 'UT]Tv [ogv 'U(z; T) = .A(‘U, UO) : 'A(ov 00) (36)
wp. cos[p(@)] Doppler shift due to the array movement and
wpa = 2Q:.At/c - va; where
Uy radial component of target’s velocity; vl 5
U4 magnitude of the vector of array velocity; A(v,v9) = |¢(1U°) C4(v)] -
@ = o(0) angle between the array velocity vector and $(v0)*C~ (o) - p(v)*C~(v)
the vector of direction to the target. (3.72)
See Fig. 1. Note thatpr is a function of both® andwr,, but la(00)* S a(0)]2
- . . S i _ 7
we omit these dependencies for notational simplicity. In Ap A(6,60) a(00)7> La(0;) - a(0)" S La(0) (3.7b)

pendix A1, we derive the CRB faspr as

.9 see Appendix B. An analogous expression for the ambiguity
CRB.prens = CRBupur, +why - sin*[p(6)] function for the continuous signal model has been derived in
Ap(8) CRB, Ap(8) [11, egs. (43)—(_50)]. ' . o
"ot " 50 The ambiguity function (3.6) has properties similar to
the CRB. It decouples into a product of thange-velocity
= CRB,wp, + wh 4 - sin’[¢(6)] - CRB,.,, ambiguity function4(wv, v,) and theDOA ambiguity function
(3.4) ‘A(0,6,) (due to the space-time separability of signal and noise
models), and there is a duality between the two ambiguity
where CRB,, denotes the CRB for estimatigg andCRB, ..., functions, like that between (3.1a) and (3.1c) in the CRB results
is the CRB for estimatingp; see (3.1c). The second term in(due to the symmetry in the signal and noise models).
(3.4) can be neglected if the array velocity is small (theyy It is easy to show that the CRB expressions in (3.1a) and
is small) or the angle:(#) between the array velocity and the(3.1c) are related to the DOA-range-velocity ambiguity function
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A([0" V7T, 65 ,vE]F) as where f denotes the frequency in the continuous-time domain.
(Then, the corresponding angular frequenc is- 2« f.) After
CRBselg—p, vewv, Nyquist filtering and sampling, the noisgn] is temporally

white with spatial covarianc& = Ny/A¢. We define the
vector of Doppler shift and time delay in the continuous-time

1 [aM([oT,UT]T, R T)] -

~ SNR 9606" oo o domain asy = [Qp,7]Y = [wp/At,n, - At]T. Denote by
B 0’(%_;;) S(§2) the Fourier transform o$(¢). Then, under Assumption
CRB, | ' A, the CRB expressions fd@ and# easily follow from (A.11)
6=0,,v=v, in Appendix A2:
R AR el O N-a®) [ (oult)
J— . ) ) ) a * — a a * _
SNR vouT CRByy = =~ [Re{ TR Y210, Nx)
0=0,,v=vg
(3.80) _1/20a(0)1] "
CNGY o7 (3.10a)
It also holds thafd.A(8, 8,)/90" ]|¢=s, = 0 and[d.A(v,vo)/
0" |y=v, =0, and thus CRB,, = CRBo,q, CRBq,
v 7~ | CRB,g, CRB.,
AT, v, 08 vE]T) e [ 5 Imag{g}} -
bl 2 2 — 0 39 — - . 310b
[ P o (3.9 2. SNR | Imagl¢el  p (3.10b)

which is equivalent to (3.1b). Therefore, the CRBéandvin  Where
(3.1) is proportional to the inverse of the second derivative ma- /-oo
£ =

trix of A([8",vT]7, (05, vE]T) with respect td8” , vT |7 eval- |s(t —7)|* dt = / |S(Q)]* df (3.11a)
uated af@?, vI]7. This is a well-known relationship between = - )
CRB and ambiguity function, which has been used in the anal- ¢ _ / £2|s(t — )| dt — 1 U ts(t — )2 dt}
ysis of both active and passive radar and sonar systems (see, e.g., —oo 3 —o0

[1, ch. 10, egs. (96)—(98)] and [3, eq. (13)] for active radar sys- (3.11b)
tems and [14], [17, sec. V], and [18, sec. V] for passive arrays). ¢ = /°° Fs(t — 1) ds(t —7)* 1

— o0 — o0

The CRB expressions (3.1) and (3.8) are heavily dependent dt dt — -

on the temporal and spatial noise covariance matri¢esnd 00 ) oo ds(t —7)*
¥, which (in the general case) precludes further interpretations / tls(t — )" dt - / s(t—) 7 dit

and simplifications. Therefore, we will consider cases where I =

the noise is temporally white (simplifying CRB; see the fol- - 5 (3.11c)

lowing section) and spatially white (simplifying CRB see 5= / ds(t —7)|" .

Section 1V). —oo dt

fo%) * 2

C. CRB for Temporally White Noise — é / s(t — T)Wdt (3.11d)
We now specialize the results of Section IlI-A to temporally 00 = 1 00 2

white noise, i.e.(’ = Iy (which is also the noise model used in = / QS|P df — = - ‘/ QIS df

[71and [10]). Then, the expressions in (3.1a) and (3.1c) simplify —o0 € /oo

to (A.11a) and (A.11b) in Appendix A2; see also [10]. (3.11e)
The following assumption is useful to establish an analogygng — |22 - /Oo Is(t — 1) dt - a(o)*/\/gla(o)

between the discrete-time (see above) and continuous-time pro- —oo

cessing of radar and sonar signals, the latter being widely used = |z|?.¢ - a(a)*/\/gla(g) (3.11f)

in the literature [1]-[3], [19]. Continuous-time results are often

easier to interpret, at the cost of neglecting finite sampling efhich follow from (A.10) and (A.12). Heres, 6/=, and 3/«
fects. They also allow for time—frequency interpretations of tHeecome proportional to the signal energy, square of the root
CRB. mean square (rms) duration, and the square of rms bandwidth

Assumption A:The coherent processing interval of the reef s(¢), respectively [10] (see also [20, Sec. 1.2 and 1.3], where
ceived signajz[n, ] is completely covered by the observationthe signal energy is normalized, i.e.= 1). It is easy to show
n =1,2,---, N and the sampling is dense (i.&\¢{ — 0). that the expressions in (3.11) are invariant to translation in time

In the following, we derive the continuous CRB expressiorand therefore do not depend on the time delay; see also [10]. As
for temporally white noise, i.e., noise having a flat power spee-result, the expressions in (3.11) remain valid if we replace
tral density. with 0.

1) Continuous-time CRB with Flat Noise Power Spectral To find the time—frequency interpretation gf we need
Density: Suppose Assumption A holds and that the powdo use the following representation of the complex enve-
spectral density matriyvs; of the continuous-time noise(¢) lope: s(t) = u(t)exp[jw(¢)], wherew(t) and w(t) are the
is constant in the frequency barfde (—1/(2At),1/(2At)), magnitude and phase, respectively. Define the instantaneous
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frequency of the complex envelope@g¢) = dw(¢)/dt. Then, wherelx, is the pulse repetition interval, and a single chirp pulse
ds(t)/dt =du(t)/dt - exp[jw(t)]+iu(t)Qi(t) exp[jw(t)], (see,e.q., [21, sec.V]and [22, ch. 6.6]) is

and
. B 1,\*
so(t) = exp I t— §T0 -[h(t) = h(t —Tp)] (3.15)
) =) 0
HOu(E)u(t)? dt / fu(#)? dt
_ Imagi¢} = /*00 — Jeo " where
€ / w(t)? dt w(t)? dt To  single pulse duration;
oo 00 /B bandwidth of the chirp pulse (in the continuous do-
/ Qu(t)ul(t)? di main); .
. h(t) Heaviside step function.

= e (3.12) Properties of a rectangular chirp signal and its spectrum have
/oo u(t)? dt been studied extensively in radar and sonar literature [1, p. 292],
[2, ch. 6.3],[19, ch. 6.3 and 7], [21, sec. V], [22, ch. 6.6].
which can be viewed as the “covariance” of a signal, i.e.. th Assume that the time-bandwidth product of a pulse is large,
A o P i.%.,TofB > 1. Then, an approximate CRB fayis (see Ap-
measure of how time is correlated with instantaneous frequenﬁghdix Q)
Indeed, for normalized signal energy, it equals the signal covari-

ance expression in [20, eq. (1.124)]. CRB,,
For flat noise power spectral density and under Assumption 1
A, the range-velocity ambiguity function in (3.7a) simplifiesto = 2.P-SNR;
—1

1 1 (To)? - |1+ <TR>2(P2 1)] Lt
To\t0) - - — =7 JjBd0
A(n,mg) = Aln —no) = = |12 To 6
‘/ (D) dt —éWfBTo %WQJ%
oo 7 \* - 2 (3.16)
. ‘/—oo ’ <t - 5) ’ <t " 5) plJint) di where
(3.13) 3

SNR; = |z|* - Tp - a(6)" N a(6) (3.17)

where? = 7 — 75 andQp = Qp — Qpy. Herep = [Qp, 7|7 isthe SNR for asingle pulse. The large time-bandwidth assump-
andn, = [Qpo,70]* are the vectors of Doppler shifts andion allows us to approximate the spectrum of a chirp pulse by
time delays in the continuous domain for the two targets. Nogerectangular distribution, which is needed to compute the rms
that the ambiguity function in (3.13) is equal to the (normabkandwidth term in (3.16); see Appendix C. The expression for
ized) Woodward’s ambiguity function for a single antenna ifGRByg is the same as in (3.10a), where SNR is replaced with
for example, [1, p. 279]. It follows from (3.6) and (3.8b) that’ - SNR;.
the CRB,, for = #, is proportional to the inverse of the For only one pulse (i.e> = 1), the CRB in (3.16) goes
second derivative matrix of this ambiguity function with respedo infinity since the model is not identifiable. The identifia-
ton —ny, = [Qp, 7|7 evaluated af2p = 0, 7 = 0. bility problem appears because the time delay and Doppler shift
Observe that the CRB results in (3.10) do not depend on t&nnot be uniquely estimated, which can be explained by con-
sampling intervalAt because, under the above noise model, ti§édering a single pulse received by one sensor. The signal re-
noise level increases ast decreases (sincg = Ny, /At), can-  ceived by the sensor is proportional to
celling out the linear decrease of the CRB due to the oversam-

pling. so(t — 7) exp(§Qpt)
In the following section, we apply equations (3.10) and (3.11) B . fB 1 2 i
to compute the approximate CRB expressions for the time delay R ST t—7—5T) +s8pt
7, Doppler shif}p, and directiord for the practically important )
case vyhere(t) is a sequence of rectangular chirp pulses with = exp [jwf—BtQ} exp j7rf—B <T + 1T0>
large time-bandwidth product. To Ty 2
2) Continuous-time CRB for Rectangular Chirp Pulses in 9 fn 1
Temporally White Noisein this section, we assume that As- - exp < |:QD D <T + QTOH t)
sumption A holds, the noise has flat power spectral density (as in 0<t—v<Tp (3.18)

Section l1I-C.1), and(t) consists off rectangular chirp pulses

The first factor in (3.18) is independent gf and the second

P_1 term, which does not depend éycan be absorbed into the un-

s(t) = Z so(t — pIR) (3.14) known complex amplitude. Therefore, only the third term can
=0 be used to estimatg. However,~ and {2, are coupled in the
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Fig. 2. CRB on (left) time delay and (right) Doppler shiff), for a sequence of rectangular chirp pulses with bandwfdth= 10 MHz, repetition period
Tx = 1 ms, and pulse duratidfi, = 250 s as a function of the number of pulsBs(a) SNR = —10 dB. (b) SNR = —20 dB. (c) SNR = —30 dB, where
SNR; is the SNR for one pulse.

third term and cannot be uniquely estimated (only their linear 3) Radar Numerical Exampleln Fig. 2, we plot the CRBs

combinationQp — 27 fg7/T; can be estimated). for time delayr and Doppler shiff2p in (3.19a) and (3.19b)
Inverting CRB,, in (3.16) yields the following CRB expres-as a function of the number of pulsésand SNR (i.e., the
sions for{lp andr: SNR for one pulse). We have chosen the following chirp signal
parameters:
. I =1 .
CRB. — 3 1 carrier frequencyf. 0 GHz;

272 f2 - SNR Nz bandwidthfs = 10 MHz;
1 T2 * repetition period/y = 1 ms;
S <T_O> (3.19a) * pulse duratiorfy = Tr /4 = 250 ps.
B R For these parameters, the approximate expressions in (3.19) are
CRBa.0, = 6 - 1 (3.19p) Valid since the time-bandwidth product of the pulse is large:
SNR, - 13 P(P?-1) Tofs = 2500 3> 1. Note that for SNR= P-SNR, = 1 (i.e., 0
dB), we have CRB, = 15.2 - 1071¢ s?, and the corresponding
If the repetition period}; and single pulse duratichy are fixed, CRB for the range is then (5.85 f{since the rangg = 7¢/2).
then CRB,, q,, decreases with the third power &f for large For SNR = 0.01 (i.e., =20 dB) and?” = 100 (thus SNR
P. However, the number of pulses is limited by the duration ef P - SNR, = 1 = 0 dB), we have CRB,.., = 600 (rad/s¥,
the coherence intervdlcpr. If the coherence time and relativeand the corresponding CRB for velocity is then (5.85 cfn/s)
single pulse duration with respect to the repetition period atgincev = Qpc/(2€), and€). = 27 f).
fixed (i.e., Tcpr = PTr = const andlp/Tr = const), then
CRBy,, o, Will be independent of for large P [observe that
SNR; is proportional tdly; see (3.17)].

If the bandwidthfg and single pulse duratidfy are fixed,
then CRB-- decreases linearly with the number of puléetor In this section, we derive CRB expressions for an array of
large P. If the coherence time and relative single pulse duratiadentical isotropic sensors and spatially white noise. We also
with respect to the repetition period are again fixed (in additiafiscuss the case when the noise is both spatially and temporally
to bandwidth), CRB,. will be independent of’ for large P. white. In Section IV-A, we compute the volume of the confi-

Finally, for fixed Tg andZj, CRB,, in (3.16) decouples as dence region for the target’s location, which we propose as a
Pincreases, i.e., CRB o, becomes approximately the samemeasure of estimation accuracy for the target’s location.
regardless of whether or netis known, and similarly, CRB- A sensor array consisting of identical isotropic sensors has
becomes the same, regardless of whether ofqpts known. an array response vector of the fout®) = [exp(jQ2.71(8)),

This result follows from the fact that- 8 — Imag{¢}? ~ &§-8 -, exp(jQe7m(0))]*, where 7 (8),k = 1,---,m are the

for largeP [since, for largeP, § - 3 becomes proportional t8*,  differential time delays between the sensors. A spatially white
whereas Imafg}? is proportional toP?; see (C.1b) and (C.2) noise assumption implies that= o2 - ,,,. Based on the above
in Appendix C]. assumptions:(8)*>"1a(@) = m/o?, and the SNR in (3.5)

1+

IV. CRB FORARRAYS OFIDENTICAL |SOTROPICSENSORS IN
SPATIALLY WHITE NOISE
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simplifies to SNR=|z|? - ¢(v)*C~1¢(v) - m/a?, whereas and the elements d¥ () are
CRByg in (3.1a) becomes

. 2 m
CREBy = e [Re{a“a(z) Wi = =5 ? kzzl[—m = T)sin ¢ + (y — 7) cos ¢]”
* -1 2
. |:Im - Zgz;f((”?;)} . aga(g) }:| - %Qw(Qmm Sin2 d) + ny COSQ d) - Qacy sin 2(7))
= m . W(a)—l (4.1) (4.5a)
202 . SNR ™
¢ Wia = COCS;/} . Z[—(xk —Z)sing + (yx, — ) cos ¢
where b= . .
- [~ (2 — T) cos psingy — (yx — Y)sin g
O [ dn(9) d?(ﬁ)) <di 0) dr(8) )T ~sinep + (2 — ) cos ]
wWi(e) = — . _
(0) kz::l < de do de dé — %S;/} . { B(Qm — Qyy)sin 2¢ — Qs cos 2(4
o Wll W12 (4 2a)
(Wi Wa ' -sint) + (Q,. cos ¢ — Q. sin ) cos z/)} (4.5b)
o L m
7(0) = - ;Tk(o) (4.2b) Wy = ciQ Z[_(xk —Z) cospsiny — (yp — 7))
k=1
Here,7(8) is the average differential time delay for the whole ~singsing + (21 — 2) cos ¢

array, and¥ (0) is the array spreading matrix of the derivatives ~ _ 1 {(Qua cO82 ¢ + Qyy sin? ¢) sin? ¢

of the differential delays with respect to the DOA paramefiers c? o v

The entriedVy;, W1,, andW, of W (8) are functions o#, but + Q. c08% ¢ + Quy sin 2¢sin” ¢

we have omitted this dependence for notational simplicity. — (Qr2c08¢ + Q. sin @) sin 29 } (4.5¢)
If, in addition, the noise is temporally white (i.&, = Iy), 1 1 1

the expression CRB in (4.1) holds, with the SNR simplifying == — Z T, Y= — Z Yk, Z= — Z 2z (4.5d)

to SNR= |z[2 - 2N |s[n — n.]|? - m/o?; see Section III-C . iy M= mi=

If Assumption A holds and the noise is both spatially and tem- i o i o
porally white, i.e.. Ny, = ny - I,,, (See also Section IlI-C1), Qv = Z(“‘ —T)%, Qu = Z(yk -7
the SNR further becomes SNR|xz|? - [~ |s(t)|? dt - m/ns. et b
Then, from (3.10b), it follows that the accuracies of the Doppler, _ )2 o SV — T
shift and time delay estimation do not depend on the array co(r?—“ ;(Zk 27 Quy ’;(m Dl =7)
figuration. In addition, CRE, is proportional tol /m; thus, it m m
can be achieve_d asymptotically by merely averaging the singlg;,. = Z(“‘ ~T) (2 —2), Q.= Z(yk =Pz — 7).
sensor ML estimates af over all sensors. k=1 k=1
For spatially white noise, the DOA ambiguity function in (4.5e)

(3.7b) simplifies to

m 2 In (4.5d) and (4.5e), we have introducedy, andz describing
A0,00) = LQ . Zexp{jQC[Tk(g) — (0]} . (4.3) thecenter of gravit)_/orph_ase centerof the array [25, p. 113]]
meoi and the array configuration parametés,, Quy, Q= Qyy.
Qy-, and Q. ., describing thenoment-of-inertia tensaof the
It follows from (3.6) and (3.8a) that CRB for # = 8, is pro- array; see [26, ch. 6]. Here, we assume that each sensor is asso-
portional to the inverse of the second derivative matrix of trgiated with a unit “mass.”
above ambiguity function with respectéoevaluated of. Therefore, for an array of isotropic sensors receiving a re-
Consider now a simple case of isotropic sensors distributgécted plane wave corrupted by spatially white noise, GRB
in 3-D to measure an incoming plane wave characterized by #€pends on the array geometry only through the above mo-
vector of DOA parameter@ = [¢,¢]", where¢ and+ are ment-of-inertia parameters, whereas GRBs independent of
azimuth and elevation, respectively. Thth sensor is located the array geometry [which easily follows from (3.1c) and the
at(wn, yw, zi) for k = 1,2, ---,m. Then,7,(6) = (zx cos ¢  fact thata()*%'a(d) = m/o?].
cos 1+yx sin ¢ cos P+ 2 sin ¢)/c; see, for instance, [23] and  For a large number of sensors (i&:,— o) uniformly dis-
[24]. Further tributed over a certain volumi, the summations in the above
expressions can be replaced by integrals a¥ewhich sim-
plifies the computation. This case is of practical interest since
modern radar arrays contain hundreds of antennas; see, for ex-
-sin ) — yg sin psin + 2, cos Y] (4.4) ample, [27]. Assume, without loss of generality, that the center

de*

1
= —[(—axpsin ¢ + yx cos ¢) - cos P, —xy, cos ¢
c



1130 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 6, JUNE 2001

of the coordinate system is located at the phase center, i.e., at
T =75 =2%=0.Then

Quo = — - / o dz dy dz (4.6a)
Vv %
m
Quy = = - / xy dr dy dz (4.6b) . .
Vo o] g y
V= /da: dy dz (4.6¢) ¢ N
v
and the expressions fap,,, @.., Q.., and Q,. follow by z

analogy.
Fig. 3. Target coordinates in a spherical coordinate system.
A. Volume of the Confidence Region for the Target's Location

We compute the volume of the (linearized) confidence réarget's location [which follows frona(6)* Ay 'a(8) = m/ny
gion for the target’s location expressed in Cartesian coordinaté310b) and the fact that the expressions in (3.11) do not
This volume is a measure of location performance that can @epend onr]. At first, this result may seem unrealistic since,
achieved using given array geometry and signal waveform. Siifituitively, we expect CRB, to increase with the range of
ilar performance measures have been used in [18, sec. V] 4h@ target. However, it holds for the model that we adopted in
[28]. We assume that Assumption A holds and that the noiseSéction Il, where the complex amplitudds assumed to be an
both spatially and temporally white, i.e\s; = ny, - I,,. We unknown deterministic constant. In reality,is a function of
show that this volume is minimized and maximized for target@ngep (i.e., |z| is approximately related to the target's range as
lying along the principal axes of inertia of the array. We willz| ~ p~% ~ 772), as well as a variety of other target-specific
find conditions for this volume to be independent of the azimugpgrameters (e.g., target's shape, orientation, material; see [22,
¢. For this azimuth-invariant case, we will then show the d€h. 3]). [Note that incorporating the dependerieg ~ o2
pendence of the confidence volume on the array configuratitih (3.10b) yields CRB, ~ p* ~ 7%, which is intuitively
(through the moment-of-inertia parameters) and target’s ele@ppealing.] In addition, from (4.8) and (4.1), we have
tion angley. Finally, we will compare these volumes for several a¢
3-D array configurations that are azimuth invariant. 9ol
Define the vector of target location parameters in the Carte-
sian coordinate syste@y = [z, yr,2r]? and in the spher- m 2 1
ical coordinate system = [r, ¢, %]”. Then, the transformation |CRBys| = <2Q2 -SNR) (4.10b)

Wi Wag — Wia2
from spherical to Cartesian coordinates (see Fig. 3) is . . trree 12_ .
which, together with (3.10b) and (3.11f), implies that the

3,2
= CTT cos 1) (4.10a)

TT = %CT cos ¢pcos (4.7a) volume of the confidence ellipsoid for the target location vector
yr = %CT sin ¢ cos 1 (4.7b) ¢ depends on the target’s location as follows:
yielding 70 = yersing (4.70) Vi ~ ig T eosy] . (4.11)
a¢ [P W Wy — Wp?
Jal Observe that; depends on the direction parameté@rsnly
%CCOS¢COS¢ —Lersin g cosep _%CT cos ¢sin ¢ through the elements.of the array spread_ing matrixd) in
= | lesingcosyy  Lercospeosyp  —Llersingsing | . (4._5_) gnd .aiosz/) lfacf[or in the numerator, which cancels out t.he
Lesing 0 Lercosep artificial singularity in the denominator inherent to the spherical

(4.8) coordinate system. This singularity appears because the azimuth
¢ is not identifiable if|y)| = = /2. For || = 7 /2, the volume
Let V¢ be the volume of the linearized confidence region (whichf the confidence ellipsoid for the target location veaio(in
is an ellipsoid) for the target’s locatiah Then,V;:? is propor- spherical coordinates) would go to infinity; however, it is finite
tional to|CRB¢| (where] - | denotes the determinant), as showfor ¢ (i.e., the target’s location in Cartesian coordinates).

in Appendix D, and Without loss of generality, we choose they, andz axes of
ac ¢t the Cartesian coordinate system to coincide withghecipal
V<2 ~ |CRB¢¢| = | 2= CRBaa —— axes of inertia[26, ch. 6] of the array, implying tha®., =
da 0 Q.- = @Q,. = 0. In addition, we choose the center of the
o 2 coordinate system to coincide with the phase center,i.e-,
= 15g7 | |CRBadl 7 = z = 0. Then, we show in Appendix E that we have
€ | Ve
= |57| ~CRBrr|CRBus|. (4.9) (2t 202

The last equality follows from CRg = 0, and therefore, |22 - \/Q22Quz - Y7 + QuyQasz - 27 + QuaQyy - 27
CRB,¢ = 0. Observe that CRB- does not depend on the (4.12)
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which is minimized (under a fixed range constraint, i® .+~ 16 ' ' ' ' ' i

cr/2 = (2% + y3& + 22)Y/% = const) if the target lies on one
of the principal axes of inertia. Assume, without loss of gene
ality, that this axis is the-axis; then, it holds tha®),,.Q,,, =
max{ Q. Qyy, Quy Q.. Q..Qx } See Appendix E. This result
means that the most desirable DOA in terms of the volume of t
target location confidence ellipsoid is along thaxis or, equiv-
alently, for the elevatiofw| = #/2. In addition, note that the 4,
least desirable DOA in terms of target location accuracy wouy-
then be along the or i axes (or both); see Appendix E. There 1.1}
fore, for an array of identical isotropic sensors in both spatial
and temporally white noise, it follows that the most and the leg 1
desirable DOAs (in terms of the volume of the confidence €
lipsoid) are always perpendicular to each other. For examp 0.9} q =2 ]
for a planar array lying in the z-y plane, the most desirable
DOA, which defines the: axis, is perpendicular to the array. 98

131

This easily follows from the fact tha.. = 0. The expres- . . . . . ‘ ' .

sion (4.12) goes to infinity for targets lying in they plane %07 o8 08 1 11 12 13 14 15 16
(i.e., whenzp = 0), which defines the set of the least desirabl _ Iyl (rad)

DOAs.

. . . . Fig. 4. Normalized volume:. of the confidence ellipsoid for the target's
Itis of practical interest to consider the case where the Confization¢ as a function of the elevation angle’s magnitUdé and various

dence volumé’: does not depend on the azimythFrom (4.12) values of normalized moment-of-inertia parameter forfeisg. ..
and (E.2a) in Appendix E, it follows that this condition is sat-

isfied if Q.. = Qyy = Q. The conditionszy = Q- = on the distribution of the sensors along this axis. In Fig. 4, we
Qyz = 0 andQ,. = @y, were shown in [23] to be necessaryshow plots of. as a function ofty| € [x/4,7/2] andg.. €

and sufficient for CRBj to be block-diagonal; see, in addition,{g 0.5, 1,2} [note thatv, = ve(—¢) = ve(3h) = ve(|])].
[24]. In our case(l., = Q.. = Q. = 0 follows due to the performance independentois achieved for.. = 1. The case
choice of the principal axes of inertia to be they, and> axes, ¢-- = 0 corresponds to a planar array lying in the; plane.
whereas).. = Qy, is needed to ensure an azimuth-invarianthe figure illustrates the performance improvements in terms
performance of the array. Under both of the above conditionss, the volume of the confidence ellipsoid that can be achieved

the expressions in (4.5) simplify to by using a 3-D array, compared with a planar array (of course,
cos? 1 for || = 7 /2, there can be no improvement since, in that case,
Wi =—35-0Q (4.13a) the confidence volume does not depend;or).
_a € In Table I, we compare several 3-D arrays that satisfy the
Wia=0 (4.13b) ) : . "
1 i ) above azimuth-invariance conditions. The shapes of these ar-
Way = C—Q[Q sin” ¢ + Q. cos™ 1] (4.13c) rays are shown in Fig. 5, and we assume that the sensors are
_ _ _ uniformly distributed over a given volume. To avoid coupling,
which, also using (4.1) and (4.11), yields we do not allow the sensors to be closer tha@, where) is
me2 the wavelength. This goal can be approximately achieved by al-
CRBy = 557 cub locating a cube with minimum volumg\/2)? for each sensor.
202 - SNR . : ;
1 Then, the maximum number of sensors in the array is
—_— 0
cos?(4p 8V
@ 0 (z/) 1 MMAX = F (4-15)
) 2
Qsin” () + Q2 cos*(9) whereV is the volume covered by the array; see also (4.6¢). In
(4.14a) : :
5 the table, expressions faty 4 x are presented as a function of
Vi ~ ﬁ . T (4.14b) array geometry parameters for various configurations; see Ap-
x

Q/sin’ () 4 ¢... - cos2(¥)) pendix F for the derivation. Table | also sho@sand .. as
functions of the array geometry parameters.

wheregq,. = @Q../Q is the moment-of-inertia parameter for the To make a fair comparison between the different array con-

z axis, normalized by the moment-of-inertia paramepefor  figurations, we fix the number of sensersand the maximum

the x andy axes. distance between the array elements, which is denotégi iy .

We define the volume; = V;/(Ve|y=r/2) = (sin®9+q..- In Appendix F, we first derive the exact expressions for the
cos? 1) ~1/2 of the confidence ellipsoid for the target’s locatiorvolumes of the target location confidence ellipsoids. Then, to
¢, normalized by the corresponding volume for a target lyingchieve the best possible performance of each array configura-
along thez-axis ¢/ = = /2). In addition, note that;|,—.,» tion (as well as for simplicity), we assume that the arrays are
is independent of). ., i.e., if the plane wave arrives along thethin, i.e., the depth and thicknessy are much smaller than
z-axis, the volume of the confidence ellipsoid does not deperg ,x (but larger than /2 to avoid coupling; see above). Under
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TABLE |
MAXIMUM ARRAY SIZE myax, MOMENT-OFINERTIA PARAMETERS (2 AND (). ., AND APPROXIMATE (FOR THIN ARRAYS) VOLUMES OF THETARGET LOCATION
CONFIDENCEELLIPSOID (NORMALIZED WITH RESPECT TO THESPHERICAL ARRAY) FOR THEARRAY SHAPES INFIG. 5

Ve

Array shape Maiax Q Q:: O evwrerpw—

2_32 . 2_p2
Square plate 4l(de\§ ! m(dMé\f = "11—; ]'sx;zx—w[

2_52 . 2_p2
Circular plate Qﬂl(de‘ax £ = (dMﬁ? ul "f——f 3 s?m/;

. dnfdmax®—(dmax—20)3] | m  (dmax/25—(dmax/2—w)®
Spherical layer 53 B (dnmax /2 (dmarx/2—w) 1
mu?(dmax,w,l) m 2 2
Cylindrical 87r~l-w~( /dMsz—l"’-w) 16 12 3|siny
. a3
ring
2
u2(dMAXawvl)=dMAx2 -2+ (V duax’ — 12— 27-”)
z imum number of sensoray 4 x that can be placed on these ar-
y rays is significantly reduced, which influences the circular array
in particular.

. q’ V. CONCLUDING REMARKS
I \__/ We derived Cramér—Rao bound expressions for the range, ve-

locity, and direction of a point target using an active radar or

sonar array. First, general CRB expressions were derived for a
w narrowband signal and array model and a space-time separable

noise model that allows both spatial and temporal correlation.

v ————— Under these noise and signal models, we showed that the CRB
W ] l for the direction parameters is independent of whether or not the
time delay and Doppler shift are known, and vice versa. Then,

we specialized the CRB results to the case of temporally white
noise and a rectangular chirp pulse sequence. We also computed
the CRB expressions for a 3-D array with identical isotropic sen-
Fig. 5. Array geometries considered in Table I. sors in spatially white noise. Under these conditions, we showed
that these expressions are functions of the sensor placements

this assumption, we compute the approximate volume of tR8ly through “moment of inertia” parameters of the array. We
target location confidence ellipsoid, normalized with respeBfoposed the volume of the confidence region for the target's
to the corresponding confidence volume for a spherical arrlgfation as a measure of accuracy and showed that if the noise
(Vi /Ve|sphere); S€€ Table | and Appendix F (where we comiS bpth spatially and tgmporally white, the hlghgst accuracy is
pute the expressions fonyax, @, andQ.. as well). It fol- achieved for targets lying along one of the principal axes of in-
lows that among the arrays in Fig. 5, only a thin cylindrical rin§'tia of the array. Finally, we compared the location accuracies
array can outperform the thin spherical array in the range of &f several 3-D array geometries. _
evation angle®.73 < |¢| < 7/2 (i.e., elevations satisfying Further research will include extending the CRB results to
2/3 < |sine| < 1). Both cylindrical and spherical radar ar-account for multiple targets (following [35]) or the wideband
rays have been built and analyzed [27], [29]-[32]. In additiogignal model (or both) and developing efficient estimation algo-
a spherical surface array was used for 3-D radio channel mg8gms that exploit space-time factorability to reduce computa-
surements [33], and a cylindrical array design was proposed ftahal load.
a mobile communications base station in [34].
As expected, the expressions for the above approximate nor- A
: PPENDIX A
malized volumes become exact for w = 0; then, the square
. . CRB DERIVATION
plate, circular plate, and spherical layer degenerate to corre-
sponding surface arrays, whereas the cylindrical ring degenerdo derive the CRB fof andwv, we start from a well-known
ates to a circular array. Note, however, that in this case, the maxpression for the Fisher information matrix in, for example [15,

square plate circular plate

sphere cylinder
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p. 525], which, under the signal and noise model in Section Where 7 = [Z} ,ZL ]*. Using

O “vz
simplifies to
JI 3T = L
T=2Re{D(y)*(C~'@X"Y)D(y)} (A.la) o 2 p(v)*C~1(v) - a(0)*E"'a(0)
Re{FPy.P;,} Re{Fp. P}
a . 9z b A.6
Dy =2~ (D). Do) Dufy)] - (A1) Re(PouFy,) RelPubi)| A9
au(y) auly) it easily follows that
D0 = | GRefat Timagiz] . 1
— [L.7]® ¢(v) @ a(8) (A.1c) Y2 $(v)*C1g(v) - a(8) T a(6)
‘Re{Py, Py} =0 (A.7)
a Oa(0 0z
Do(v) = £, (;’) =z $(7)® (T) (Ald) ' |
o0 o6 i.e., CRB,y = 0; see also (3.1b). Thus CRRBy,, is block-diag-
_ duly)  9¢(v) onal, implying that
D,(y) = 50T =% HuT ® a(@) (A.1e) ) 1
. CRB(-)(-} = I(-)(-) 1
whereZ is the FIM for target parametess The above FIM can U 2 p(u)*C1gp(v) - a(@)* X 1a(0)
be written as -1
-Re{PomP;m}} (A.83)
7 Fm ?Tx %] (A2) i 1
O i vo ' CRBU’U = Ivv -
Zor Tvo ZLow I 2- $(v)*C1p(v) - a(0)* L a(0)
—1
where -Re{vaij}} (A.8b)
Lye =2-$(v)* C7 p(v) - a(0)*S " a(f) - I» (A-38)  and the expressions in (3.1a) and (3.1c) follow directly.
Zoo = Re{[1, 4] © Foa} (A.3b)
Too = 2|z|? - p(v)* O~ p(w) A. CRB on the Target’s Radial Velocity for a Moving Array
da(0)* _,_,0a(0) We derive the CRB for the Doppler shift due to the radial
‘R { 90 % 96~ } (A.30) component of target’s velocity (denoted hypt) for the
= Re{[L, 5] ® Py} (A.3d) case when the array moves with constant velocity; see Sec-
I"’” RelP v A fion lII-AL
vo = Re{ o} (A.3€) Using (3.1) andwupt = wp + wn.acos[p()] from Sec-
Zow = Re{ Py} (A.3f)  tion 11I-A1, we compute
and _ | 9wpr dwnr | | CRBge 0
CRBwDTwDT - |: 80T aCUD :| |: 0 CRBu.Du,D
* y—1 * aa’(o)* —1 dw
Po, =2 dp(v)* C  p(v) - 2™ - Y a(0 (A.4a) DT
a6 ' 90 (A.9)
N w1 dP(v)* 4 dwpT .
P,y =22 -a(0)">""a(d) - B—C o(v) (A.4b) b

I¢(v)

‘P1/'9:2|$|2'a— 1¢( ) ()E 1a (0)

- (A.4c) and (3.4) easily follows by usingwpr/98” = wp 4 sin[p(6)]-
00

dp(9)/d6" anddwpr/dwn = 1.

7]
Py =2|z|* - a(0)*> " a(0) - ¢8(Z) ct ;ig;l) (A.4d) B. CRB for Temporally White Noise

We specialize the general CRB expression (3.1c) to tempo-

Now, since the signal and additive noise parameters are d|SJopa1uy white noise (i.e.C = I) and signal model in (2.1). Let

the CRB for signal vectoy is computed simply as CRB Z71. d[n] = ds[n]/dn = At - ds(t)/dt|;—na:, and define
We will use the same block partitioning of the CRB asZan
(A.2). N
We now compute the CRB for the DOA, Doppler shift, and € = At Y _ [s[n — n.]|? (A.10a)
time delay =
N 1
CRBH _ CRBQQ CRBEH 6= (At)g . Z 7’L2 . |8[7’L — 717-]|2 - g
,0u — CRBI,Q CRBU" n=1 )

N

-1

= { [%99 %TH} _ jzmle} (A.5) lAan? - Z n - |sfn — n]|? (A.10b)
(M VU n=1
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‘ . 1 d(«y,v,) = 0if and only ify = «,. Minimizing the distance in
§= At Z n - sln = ndn —n.]" = (At)? - - (B.1) with respect to the nuisance parametsields
n=1
o (167017, 165, 08 17)
S nlsln = el 3 sln — noldln — n 2 s 015 a6
n=1 e = [wo|” - ¢(vo)*C ¢(1U0) 'C;( 0) a( 10) )
(200 BT OO a0 a0 g
L1 P(v)*C1é(v) - a(0)* X a(0)

p= At 2_:1 |d[n —n]|” — - Now, according to [16, Def. 2], the generalized ambiguity func-

5 tion is computed as

N
. Z s[n —n.])dn — n.|* (A.10d) A([6", 0117, 65, vET)
n=1 T oIT T 17T
(T D gy
Then, the expressions in (3.1a) and (3.1c) simplify to (see also [y ([65 081t
1 N
(10D where[d,., ([0 , 13 ]%)]us is the upper bound on the distance in
1 da(0)* (B.2). Since the signal is of finite duration, for sufficiently large
CRByy = ~ {Re{ 20 time delay difference — 7, we have
2 _ 2 ~
20el?)_lstn = nr]| o (107 8 Tt = [z0f? - b(aso)*C (o)
~1 -a(00)* X" a(By). (B.4)
'E—I/QHL(G 2)2—1/2 aa’(o) }:|
o 00" The ambiguity function in (3.6) follows by substituting (B.2)
_a(0)*X'a(8) Re da(0)* and (B.4) into (B.3).
~  2-SNR o0
da(8) -1 APPENDIX C
21211k g, E)z%hﬁ H (A.l1a) CRB DERIVATION FOR A CHIRP SEQUENCE
1 We derive the CRB for time delay and Doppler shift for a
CRByy = 22 - al8)" 5 a(0) sequence of chirp pulses in temporally white noise, as shown
5 1 in (3.16). Using the signal shape in (3.14), (3.11a), and (3.11b),
. (1/At)° -6 (1/A¢) - Imag{¢} we obtain
(1/At) - Imag{¢} At-p -
T 2.SNR| Imag{¢} (AH)?-3 ' >
P—1 pTr+Tp pITr+To
and the SNR in (3.5) simplifies to b= ZO/pT £ dt — p—TO Z/ tat
p= R
N _ T3P T\, .,
SNR=[z[2- 3" [s[n — n.]12 - a(8)" S "a(8).  (A.12) =1 |1t <?0> (P7=1)|- (C.1b)

Note that using the time translation invariance property of ex-
pressions (3.11), we computedndé in (C.1), assuming = 0.

APPENDIX B From [7°_s(t — 7) - ds(t — 7)*/dt - dt = 0 and (3.11c) and
AMBIGUITY FUNCTION DERIVATION (3.114d), it foIIows that

We derive the ambiguity function for the signal and noise 0 ds(t)*
models in Section Il. First, we introduce the following —Imag{¢} = —Imag{/ ts(t)— dt}
measure of separation between the probability density func- TQ_OO
tions of the measurements corresponding to two targets =P. /oy (C.2a)
with parametersy, = [Re{xo},Imag{zo},05,vE]% and 0‘2
v = [Re{z}, Imag{z}, 6" ,v"]" (assuming fixed noise covari- B=P- / Q?|So())? df
anceC @ ¥) 27

~p. "lalo (C.2b)
d(7,70) = [(1) —p(70)](C 1 @T Hluly)—nlro)l (B.1) 3

The third expression in (C.2b) holds when the time-bandwidth
This measure is by definition the square of the Mahalanobis digoduct of a pulse is large, i.€ly fg > 1. Then, the spectrum
tance; it is also the Kullback-directed divergence, which is usedla pulse approaches a rectangular distribution [2, p. 139 and p.
in [16]. Additionally, the identifiability by distribution (see [36]) 302], which can be approximated |&& (Q2)|*> = 1o/ fs - [R(f +
of the target parametefsreduces to the following requirement: fz /2) — h(f — fs/2)] (see, e.g., [21, eq. (39)]), yielding the
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approximate expression in (C.2b). Based on (C.1), (C.2), abding the above equality, (4.7), and (4.11), we get (4.12).

(3.10b), CRB, in (3.16) easily follows. Now, it is obvious that for a fixed range (i.ep, = ¢7/2 =
Vi + 33 + 22 = const), the volumé’: of the confidence
APPENDIX D ellipsoid for the target location in (4.12) is minimized for a
WALD TESTS AND VOLUME OF THE LINEARIZED target lying on one of the principal axes. This axis (which
CONFIDENCE REGION defines the most desirable DOA) is the one for which the

oduct of the moment-of-inertia parameters for the other

We show how to construct a linearized confidence region{ﬁl{r/o axes is maximized, i.e., it is the-axis if Oy =
the target location and compute its volume using Wald tests. The o by wEs

linearized confidence region (in the form of an elliposoid) fomxigs’”gfyy’ QuyQs2) @22Qaa} and likewise for the other

testing H: h(y) = 0, wherek is a once continuously-differen- Analogously, the least desirable DOA (i.e., the one with max-
tiable function, is defined as . ) TN L
imum volume of the confidence ellipsoid) is along the principal
axis for which the product of the moment-of-inertia parameters
for the other two axes is minimized. In addition, note that the

whereH(v) = dh(v)/d+", CRB = ! [see also (A.2) and most and the least desirable DOA are always orthogonal since

(A.3) in Appendix A], andy is the threshold computed to satisf)}hey lie along two principal axes.

a desired probability of false alarm [37], [38, ch. 6e.3], [39, ch.

7.3.3]. From (D.1), testing 5l -y = -, yields the confidence el- APPENDIX F

lipsoid of the following form:(y — 4,)TCRB™!(y — 7,) <  CRBys DERIVATION FOR SEVERAL ARRAY CONFIGURATIONS
g. Obviously, the squared volume of this ellipsoid is propor-
tional to |CRB|. Similarly, from (D.1), it follows that testing
Ho: {(e) — ¢(ap) = 0 yields the confidence ellipsoid with
squared volume proportional {6RB¢| = |9¢/Ja’ - CRBy -
¢t /oal, and (4.9) follows.

T?(y) = h(7)*[H(7) - CRB- H(y)"]*h(y) < g (D.1)

We derive the CRB expressions and confidence volumes for
the target location for several 3-D arrays of identical isotropic
sensors (whose shapes are shown in Fig. 5) in spatially white
noise.

We first derive the properties of an array in the form of a
spherical layer and then use the performance of this array as
a reference for comparison with other array configurations. The
comparison is performed assuming the same number of sensors
m and maximum distanaé 1 x between the array elements for

We compute the volume of the confidence ellipsoid for thall arrays.
target’s location as a function of the target’s coordinates in aFor a spherical layer array with radiésand thickness, we
Cartesian coordinate system, whose axes are chosen to behthedyax = 2RandV = 4r/3 - [R® — (R — w)3] =47 /3 -

APPENDIX E
VOLUME OF THE CONFIDENCE ELLIPSOID FOR THETARGET S
LOCATION IN CARTESIAN COORDINATES

principal axes of inertia of the array. [d314x/8 — (dyax/2 — w)?], yielding
The array geometry parametéps., Quy, Quzr Qyy, Qys=s
and@. . define the moment of inertia tensor of the array where Ar[d3;ax — (dvax — 2w)?]
each sensor is assigned a unit mass; see [26, ch. 6]. The tensor of "*MAX = 323
inertia can be reduced to diagonal form by an appropriate choice 8 d2; AW
of axesz, i, andz; these directions are called thencipal axes ~ T (F.1a)
of inertia [26, ch. 6]. In this caseR),, = Q.. = Q4. = 0, Q=Qur = Quy = Q..
which significantly simplifies the expressions in (4.5) m R =/2
, =7 /R 7’4d7’-/ /2cos3¢d¢
Wy, = coz2 1 (Qua sin? ¢+ Quy cos? ¢) (E.1a) m %[Rs —(R- w)o]
Wiy = &Sj’ (Que — Qyy) sin 2¢sin ¢ (E.1b) 3 5l — (R—w)?] )
126 _m. (dvax/2)° — (dyvax/2 — w)®
Way = =2 [(Qux cos® ¢ + Qyy sin® ¢) sin® 5 (dmax/2)® — (dvax/2 —w)3
+ Q- cos” ] (E.1c) ~ % (F.1b)
yielding .
See (4.6) and (4.15). The approximate formulas above hold for
&Err W Wy — W2, a thin spherical layer, i.e., far < dyax.
4 cos2 1 Next, consider two plate arrays with degtra square and a
TN 2 = ) circular plate. For a square plate array withndy coordinates
= (5) [Q:x(Qua Sin” ¢ + Qyy cos”™ ¢) ranging from— R to R andz ranging from—I/2tol/2, we have
0829+ QuaQyy - sin ] dviax = V8R2 + 12 = 2v/2 - RandV = 4R?], yielding
2 2 2
= Qaalu 1+ QuyQuz - &0+ QaaQyy - 21 4l(d§mx - 12) — 4ld§IAX

(E.2a) MMAX = \3 3 (F.2a)
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R ml?
Q= Q= s / x?dx - 2RI Q.. = — (F.4d)
7 . 122
- mR om - (R — ) v < R —— (F.4e)
- 3 - 24 ¢ |spherica1 array 3| 5111 ”(/)|
2
~ % (F.2b) where the approximate formulas hold for a thin ring, i.e., when
i I < dyax andw < dyax.
Qe = T3 (F2c)  Obviously, we needu?(dyiax,w,l) > 3d3;,x to out-
% o perform the spherical array at elevatign = = /2 with the
S > 1 (F.2d) same maximum distance between the sensors and array size

Velsphericatarray - |sin ] m. Note thatu?(dyax,w, ) is a decreasing function of both

! andw. However, these dimensions are necessary to allow a
dyax. From the last equation above, it follows that for ﬁxedarge numberr?f antennas in the array, see.(F.élla); other\lehg, :]or
maximum distancely;ax between the sensors and array siz%: w = 0, this array degenerates to a circular array (whic

m, the thin square array is significantly outperformed by th‘éanﬂot accolmogate ”;aﬂy s;:‘_nsors). di ived i
thin spherical array. Similarly, for a circular plate array of ra- 1ne results derived in this appendix are summarized in

where approximate expressions hold for a thin plate, ii.&;

dius R (and z ranging from—1/2 to 1/2), we havedyax = 20€ !
4R? + 12 =~ 2R andV = wlR?, yielding
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