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Cramér–Rao Bounds for Estimating Range, Velocity,
and Direction with an Active Array
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Abstract—We derive Cramér–Rao bound (CRB) expressions for
the range (time delay), velocity (Doppler shift), and direction of a
point target using an active radar or sonar array. First, general
CRB expressions are derived for a narrowband signal and array
model and a space-time separable noise model that allows both spa-
tial and temporal correlation. We discuss the relationship between
the CRB and ambiguity function for this model. Then, we spe-
cialize our CRB results to the case of temporally white noise and the
practically important signal shape of a linear frequency modulated
(chirp) pulse sequence. We compute the CRB for a three-dimen-
sional (3-D) array with isotropic sensors in spatially white noise
and show that it is a function of the array geometry only through
the “moments of inertia” of the array. The volume of the confi-
dence region for the target’s location is proposed as a measure of
accuracy. For this measure, we show that the highest (and lowest)
target location accuracy is achieved if the target lies along one of
the principal axes of inertia of the array. Finally, we compare the
location accuracies of several array geometries.

Index Terms—Cramér–Rao bound, radar array processing,
sonar array processing.

NOTATION

CPI Coherent processing interval.
CRB Cramér–Rao bound.
DOA Direction of arrival.
SNR, SNR Signal-to-noise ratio and SNR for a

single pulse.
Array response vector.
Speed of propagation.
Maximum distance between array el-
ements.
Bandwidth of the chirp signal.
Number of antennas in the array.

, , Sample index, continuous time, and
sampling interval ( ).

, Time delay in sampled and contin-
uous time.
Number of pulses.

, , ,
,

Spatial sensor distribution parame-
ters, defining the “moment of in-
ertia” tensor.
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Duration of a single pulse.
Pulse repetition interval.
Duration of the coherent processing
interval.
Heaviside step function.
Volume of confidence ellipsoid for
the target’s location.
Complex amplitude of the received
signal.
DOA-range-velocity ambiguity
function.
Carrier wavelength and angular car-
rier frequency in continuous time.
Vector of DOA parameters.
Vectors containing time delay and
Doppler shift in sampled and con-
tinuous time; ,

.
Vector of target location parameters
in Cartesian and spherical coordi-
nates.

, Target’s azimuth and elevation.
, Power spectral density of the noise

(scalar and matrix).
, Doppler shift in sampled and contin-

uous time.
, Target’s range and radial component

of velocity.
Spatial noise covariance.
Temporal noise covariance.

I. INTRODUCTION

I N active radar and sonar, a known waveform is transmitted,
and the signal reflected from the target of interest is used to

estimate its parameters. Typically, the received signal is mod-
eled as a scaled, delayed, and Doppler-shifted version of the
transmitted signal; see, e.g., [1]. Estimation of the time delay
and Doppler shift provides information about the range and ra-
dial velocity of the target. For a single antenna, Cramér–Rao
bound (CRB) expressions for the range (i.e., time delay) and ve-
locity (i.e., Doppler shift) have been extensively studied in the
radar literature [1, ch. 10.2], [2], [3]. However, recent advances
in radar signal processing are associated with the use of antenna
arrays [4]–[7].

Compared with a single sensor, a sensor array guarantees
more accurate range and velocity estimation. Furthermore, it al-
lows estimation of the target’s direction. Thus, it is of interest to
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compute CRB expressions for active sensor arrays. Some work
in this direction has already been done in [7] and [8], where
CRB expressions for the direction and Doppler shift were de-
rived for a radar array model in which conversion to baseband
and matched filtering (i.e., pulse compression) had been per-
formed at each antenna.

In this paper (see also [9]), we consider a narrowband signal
and array model prior to matched filtering, i.e., only after the
conversion to baseband. In [10], we presented maximum like-
lihood (ML) methods for this model and for unknown spatially
correlated and temporally white noise. Unlike [7] and [8], our
signal model allows estimation of the time delay.1 Due to the
narrowband array assumption, the received signal is “space-time
separable,” as defined in [11]. We assume a space-time sepa-
rable noise model as well (following [11]), which is relatively
general and allows both spatial and temporal noise correlation.
Under these signal and noise models, we compute the CRB ex-
pressions for the time delay, direction, and Doppler shift. Owing
to the more general signal and noise structure, our CRB results
for direction parameters and Doppler shift generalize those in
[7]. Furthermore, our CRB expressions for the time delay and
Doppler shift extend the classical radar CRB results in [1, ch.
10.2] and [3] and to a sensor array.

Signal and noise models are explained in detail in Section II.
In Section III, CRB expressions for these models are presented.
We show that the CRB for the direction parameters is indepen-
dent of whether or not the time delay and Doppler shift are
known, and vice versa; see Section III-A. This independence
is a consequence of the space-time separable structure of the
adopted signal and noise models. We discuss the relationship be-
tween the ambiguity function and CRB in Section III-B. Then,
we examine in more detail the case of temporally white noise
(see Section III-C) and a linear frequency modulated (chirp)
pulse sequence (see Section III-C2. In Section IV, we com-
pute and analyze the CRB for the target’s location in spatially
white noise when the array consists of identical isotropic sen-
sors. Using the volume of the confidence region for the target’s
location as an accuracy measure and assuming both spatially
and temporally white noise, we show that the highest accuracy
is achieved for targets lying along one of the principal axes of
inertia of the array; an analogous result holds for the lowest ac-
curacy. Finally, we compare the location accuracies of several
three-dimensional (3-D) array geometries.

II. SIGNAL AND NOISE MODELS

We present the signal and noise models used in this paper as
well as the underlying assumptions needed for their validity.

Suppose an -element antenna array receives a scaled, time-
delayed, and Doppler-shifted echo of a known complex band-
pass signal , where is the angular carrier fre-
quency. Knowing the time delay and Doppler shift (and
assuming a target with constant radial velocity), the target’s
range and radial component of velocity are determined by

1Note that the model “after matched filtering” in [7] and [8] is based on as-
sumptions that the time delay is known, noise is temporally white within a pulse,
and the waveform ambiguity function is insensitive to the Doppler shift; see [8,
pp. 14 and 15]. Here, we do not need these assumptions.

and , where is the wave propagation
speed; see e.g., [1, ch. 9.1]. We define a sampleof a con-
tinuous-time signal as , where is the
sampling interval, and . We define the time delay and
Doppler shift in the sampled signal domain as and

, respectively.
After converting to baseband and sampling, the signal re-

ceived by the array at time becomes

(2.1)

for , where
complex amplitude of the signal;

vector of the array response to a plane wave
reflected from the target;

additive noise.

Here, is the vector of the direction-of-arrival (DOA) param-
eters (and may contain additional parameters, such as polar-
ization coefficients; see [12]). We assume that the snapshots
taken at cover the whole of a coherent pro-
cessing interval (CPI). Therefore, the time duration of the CPI
is . We model the complex amplitude as an
unknown deterministic constant during the CPI; see also [7]
and [8]. (In reality, is inversely proportional to the square
of range , but we ignore this dependence throughout; see also
Section IV-A). Moreover, the target’s direction, range, and ra-
dial component of velocity are also modeled as unknown deter-
ministic constants within the CPI.

Note that although is chosen to be an integer due to sam-
pling, and are not necessarily integers. Therefore,

is a function of a real argument , evaluated for
integer values of .

For the model in (2.1) to be valid, several assumptions need
to be satisfied. To model the Doppler effect by a frequency shift,
the radial component of the target’s velocity needs to be much
smaller than the propagation speed (i.e., ), and the
time-bandwidth product of the complex envelope should be
much smaller than ; see also [1, ch. 9, eqs. (19) and (23)].
We refer to the above assumptions as thenarrowband signal as-
sumptions. In addition, it is assumed that the propagation time
of the signal across the array is much smaller than the recip-
rocal of the signal bandwidth, which is the standard narrow-
band assumption in array processing (ornarrowband array as-
sumption). It is important to observe that the narrowband array
assumption implies that the range estimation accuracy cannot
be better than the array size along the direction to the target.
In other words, the CRB for the time-delay estimation is valid
only if it is larger than the (square of the) propagation time of
the signal across the array.

Equation (2.1) generalizes the radar target model in [1, ch.
9 and 10] to account for multiple sensors, thus enabling DOA
estimation. However, we assume that the complex amplitude
is deterministic (as in [7] and [8]), whereas in [1, ch. 9 and 10],

was modeled as a zero-mean Gaussian random variable. Since
we consider the measurements collected in one CPI only, we do
not need to make any assumption concerning the distribution of

from one CPI to another.
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Define the vector of unknown target parameters
Re Imag , where . De-
fine also the noise-free signal vector at theth sample as

. Stacking all
samples into a single vector, (2.1) can be rewritten as

(2.2)

where denotes the Kronecker product, and

(2.3a)

(2.3b)

(2.3c)

(2.3d)

The additive noise termmodels interference due to clutter, re-
ceiver noise, and jamming. When dominated by clutter or jam-
ming, the noise is usually both temporally and spatially cor-
related. We assume thatis zero-mean Gaussian, spatially and
temporally correlated with spatio-temporal covariance

E (2.4)

where
and noise temporal and spatial covariance matices;

E expectation;
“ ” conjugate transpose.

These matrices are assumed to be positive definite and indepen-
dent of the target parameters; thus, the signal and noise pa-
rameters are disjoint. This is a relatively general model for the
noise covariance, which includes as special cases the jamming
and receiver noise models developed in [6, ch. 2]. The above
model can successfully model clutter if the scatterers move with
a constant radial velocity; see [11, sec. VI] (in practical cases,
this condition usually holds if scatterers are not moving, i.e.,
their radial velocity is zero; see also the discussion in [11, sec.
VI]). Interestingly, it has also been recently proposed to model
noise and interference in wireless communication systems [13].

Note that the signal and noise models in (2.2) and (2.4) sat-
isfy the space-time separability conditions in [11, eqs. (10) and
(11)]. The signal model is separable with respect to the “space”
(DOA) parameters and “time” parameters since the received
signal is modeled as the product of a function ofand a function
of (which is a consequence of the narrowband array assump-
tion; see also [11, sec. IV]). Similarly, the noise model is sepa-
rable since the noise covariance is the product of a “spatial” and
a “temporal” covariance. In passive systems, space-time separa-
bility has been considered in [14, sec. IV]. A separable model of-
fers significant computational savings since the estimation pro-
cedure can be decoupled [7], [11], [14]. In the following section,
we present the CRB and the ambiguity function for these models
and show that they are separable as well.

III. GENERAL CRB RESULTS

We present the CRB results for signal and noise models
in Section II. The CRB and ambiguity results derived in

Section III-A and Section III-B are valid for a general class
of separable signal and noise models, described by (2.2) and
(2.4). In Section III-B, we establish the relationship between
the ambiguity function and the CRB. Then, in Section III-C,
we simplify the CRB to a special case of narrowband array
and signal model in (2.1) and temporally white noise. Finally,
in Section III-C2, we further specialize these results to the
practically important signal shape of a rectangular chirp pulse
sequence in continuous time.

A. CRB Expressions for Spatially and Temporally Correlated
Noise

In Appendix A, we derive the CRB matrix expressions for
and under the signal and noise models (2.2) and (2.4), respec-
tively. The results are

CRB

Re

(3.1a)

CRB (3.1b)

CRB
CRB CRB
CRB CRB

Re

(3.1c)

where

(3.2a)

(3.2b)

Here, denotes the identity matrix of size, denotes a
Hermitian square root of a Hermitian matrix, and

; we will use this notation throughout the paper.
Observe that the CRB for and is block-diagonal [see

(3.1b)] and therefore decoupled, i.e., CRBremains the same
whether or not is known, and similarly, CRB is the same
whether or not is known; see Appendix A. This result is some-
what unexpected since the Fisher information matrix (FIM) for
the target parametersis not block diagonal; see (A.2) and (A.3)
in Appendix A. The decoupling is a consequence of the assumed
space-time separability of signal and noise models and the as-
sumption of the complex amplitudeas an unknown determin-
istic constant. [For example, for known, the CRB for and
would not be block-diagonal, and CRBand CRB would not
be decoupled.] In addition, since the signal and additive noise
parameters are disjoint, the above CRB expressions hold regard-
less of whether the spatio-temporal noise covariance is
known or unknown.
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If the temporal noise covariance is known and the spatial
noise covariance is unknown, the above CRBs will be reached
asymptotically in time (i.e., as ) by the ML estimation
procedure; see e.g., [15, sec. 7.5]. For unknown temporal co-
variance , it is important to carefully choose its structure so
that the number of parameters characterizing it will not depend
on time (otherwise, if the number of parameters increases with

, estimation algorithms may not be able to attain the CRB as
). Such a model for may be obtained, for example, if

the noise is stationary [i.e., the th entry of , denoted by
, depends only on ] and the correlation between

the snapshots decreases to zero for a sufficiently large time dif-
ference (i.e., for greater than a certain
threshold).

Due to the symmetry in the signal representation [with respect
to and ; see (2.2)] and noise parametrization [with re-
spect to and ; see (2.4)], there is a duality between (3.1a) and
(3.1c). One expression can be obtained from the other by inter-
changing the spatial covariance matrix, array response vector

, and its derivative with the temporal covari-
ance matrix , temporal steering vector , and its derivative

, respectively.
1) CRB on the Target’s Radial Velocity for a Moving

Array: We consider the practically important case of a moving
array and compute the CRB on the target’s radial velocity.
We show that this CRB depends on the CRB for direction
parameters; thus, the decoupling result from previous section is
invalid in this case.

Let us assume that the array moves with constant velocity.
Then, the Doppler shift due to the radial component of the
target’s velocity (in the sampled-signal domain) is

(3.3)

where
(relative) Doppler shift measured by the
array;
Doppler shift due to the array movement and

;
radial component of target’s velocity;
magnitude of the vector of array velocity;
angle between the array velocity vector and
the vector of direction to the target.

See Fig. 1. Note that is a function of both and , but
we omit these dependencies for notational simplicity. In Ap-
pendix A1, we derive the CRB for as

CRB CRB

CRB

CRB CRB

(3.4)

where CRB denotes the CRB for estimating, andCRB
is the CRB for estimating ; see (3.1c). The second term in
(3.4) can be neglected if the array velocity is small (then
is small) or the angle between the array velocity and the

Fig. 1. Moving array.

target’s direction is small. Then, CRB is a good measure
of the achievable accuracy for estimating the target’s radial ve-
locity. Note that CRB CRB , i.e., CRB can
be viewed as a lower bound on CRB .

B. CRB and Ambiguity Function

We now establish the relationship between the ambiguity
function and the CRB. Unlike the CRB, which is a local
measure of estimation accuracy, the ambiguity function is used
to assess the global resolution and large error properties of the
estimates [1], [16]. For the following discussion, it is useful to
define the signal-to-noise ratio (SNR) as

SNR (3.5)

Assume that we have two targets with parameters, , and ,
, respectively. TheDOA-range-velocity ambiguity function

can be easily derived using [16, def. 2]

(3.6)

where

(3.7a)

(3.7b)

see Appendix B. An analogous expression for the ambiguity
function for the continuous signal model has been derived in
[11, eqs. (48)–(50)].

The ambiguity function (3.6) has properties similar to
the CRB. It decouples into a product of therange-velocity
ambiguity function and theDOA ambiguity function

(due to the space-time separability of signal and noise
models), and there is a duality between the two ambiguity
functions, like that between (3.1a) and (3.1c) in the CRB results
(due to the symmetry in the signal and noise models).

It is easy to show that the CRB expressions in (3.1a) and
(3.1c) are related to the DOA-range-velocity ambiguity function
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as

CRB

SNR

(3.8a)

CRB

SNR

(3.8b)

It also holds that and
, and thus

(3.9)

which is equivalent to (3.1b). Therefore, the CRB forand in
(3.1) is proportional to the inverse of the second derivative ma-
trix of with respect to eval-
uated at . This is a well-known relationship between
CRB and ambiguity function, which has been used in the anal-
ysis of both active and passive radar and sonar systems (see, e.g.,
[1, ch. 10, eqs. (96)–(98)] and [3, eq. (13)] for active radar sys-
tems and [14], [17, sec. V], and [18, sec. V] for passive arrays).

The CRB expressions (3.1) and (3.8) are heavily dependent
on the temporal and spatial noise covariance matricesand

, which (in the general case) precludes further interpretations
and simplifications. Therefore, we will consider cases where
the noise is temporally white (simplifying CRB; see the fol-
lowing section) and spatially white (simplifying CRB; see
Section IV).

C. CRB for Temporally White Noise

We now specialize the results of Section III-A to temporally
white noise, i.e., (which is also the noise model used in
[7] and [10]). Then, the expressions in (3.1a) and (3.1c) simplify
to (A.11a) and (A.11b) in Appendix A2; see also [10].

The following assumption is useful to establish an analogy
between the discrete-time (see above) and continuous-time pro-
cessing of radar and sonar signals, the latter being widely used
in the literature [1]–[3], [19]. Continuous-time results are often
easier to interpret, at the cost of neglecting finite sampling ef-
fects. They also allow for time–frequency interpretations of the
CRB.

Assumption A:The coherent processing interval of the re-
ceived signal is completely covered by the observations

and the sampling is dense (i.e., ).
In the following, we derive the continuous CRB expressions

for temporally white noise, i.e., noise having a flat power spec-
tral density.

1) Continuous-time CRB with Flat Noise Power Spectral
Density: Suppose Assumption A holds and that the power
spectral density matrix of the continuous-time noise
is constant in the frequency band ,

where denotes the frequency in the continuous-time domain.
(Then, the corresponding angular frequency is .) After
Nyquist filtering and sampling, the noise is temporally
white with spatial covariance . We define the
vector of Doppler shift and time delay in the continuous-time
domain as . Denote by

the Fourier transform of . Then, under Assumption
A, the CRB expressions for and easily follow from (A.11)
in Appendix A2:

CRB
SNR

Re

(3.10a)

CRB
CRB CRB
CRB CRB

SNR
Imag

Imag
(3.10b)

where

(3.11a)

(3.11b)

(3.11c)

(3.11d)

(3.11e)

SNR

(3.11f)

which follow from (A.10) and (A.12). Here,, , and
become proportional to the signal energy, square of the root
mean square (rms) duration, and the square of rms bandwidth
of , respectively [10] (see also [20, Sec. 1.2 and 1.3], where
the signal energy is normalized, i.e., ). It is easy to show
that the expressions in (3.11) are invariant to translation in time
and therefore do not depend on the time delay; see also [10]. As
a result, the expressions in (3.11) remain valid if we replace
with 0.

To find the time–frequency interpretation of, we need
to use the following representation of the complex enve-
lope: , where and are the
magnitude and phase, respectively. Define the instantaneous
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frequency of the complex envelope as . Then,
,

and

Imag

(3.12)

which can be viewed as the “covariance” of a signal, i.e., the
measure of how time is correlated with instantaneous frequency.
Indeed, for normalized signal energy, it equals the signal covari-
ance expression in [20, eq. (1.124)].

For flat noise power spectral density and under Assumption
A, the range-velocity ambiguity function in (3.7a) simplifies to

(3.13)

where and . Here,
and are the vectors of Doppler shifts and
time delays in the continuous domain for the two targets. Note
that the ambiguity function in (3.13) is equal to the (normal-
ized) Woodward’s ambiguity function for a single antenna in,
for example, [1, p. 279]. It follows from (3.6) and (3.8b) that
the CRB for is proportional to the inverse of the
second derivative matrix of this ambiguity function with respect
to evaluated at , .

Observe that the CRB results in (3.10) do not depend on the
sampling interval because, under the above noise model, the
noise level increases as decreases (since ), can-
celling out the linear decrease of the CRB due to the oversam-
pling.

In the following section, we apply equations (3.10) and (3.11)
to compute the approximate CRB expressions for the time delay

, Doppler shift , and direction for the practically important
case where is a sequence of rectangular chirp pulses with
large time-bandwidth product.

2) Continuous-time CRB for Rectangular Chirp Pulses in
Temporally White Noise:In this section, we assume that As-
sumption A holds, the noise has flat power spectral density (as in
Section III-C.1), and consists of rectangular chirp pulses

(3.14)

where is the pulse repetition interval, and a single chirp pulse
(see, e.g., [21, sec. V] and [22, ch. 6.6]) is

(3.15)

where
single pulse duration;
bandwidth of the chirp pulse (in the continuous do-
main);
Heaviside step function.

Properties of a rectangular chirp signal and its spectrum have
been studied extensively in radar and sonar literature [1, p. 292],
[2, ch. 6.3], [19, ch. 6.3 and 7], [21, sec. V], [22, ch. 6.6].

Assume that the time-bandwidth product of a pulse is large,
i.e., . Then, an approximate CRB for is (see Ap-
pendix C)

CRB

SNR

(3.16)

where

SNR (3.17)

is the SNR for a single pulse. The large time-bandwidth assump-
tion allows us to approximate the spectrum of a chirp pulse by
a rectangular distribution, which is needed to compute the rms
bandwidth term in (3.16); see Appendix C. The expression for
CRB is the same as in (3.10a), where SNR is replaced with

SNR .
For only one pulse (i.e., ), the CRB in (3.16) goes

to infinity since the model is not identifiable. The identifia-
bility problem appears because the time delay and Doppler shift
cannot be uniquely estimated, which can be explained by con-
sidering a single pulse received by one sensor. The signal re-
ceived by the sensor is proportional to

(3.18)

The first factor in (3.18) is independent of, and the second
term, which does not depend on, can be absorbed into the un-
known complex amplitude. Therefore, only the third term can
be used to estimate. However, and are coupled in the
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Fig. 2. CRB on (left) time delay� and (right) Doppler shift
 for a sequence of rectangular chirp pulses with bandwidthf = 10 MHz, repetition period
T = 1 ms, and pulse durationT = 250 �s as a function of the number of pulsesP . (a) SNR = �10 dB. (b) SNR = �20 dB. (c) SNR = �30 dB, where
SNR is the SNR for one pulse.

third term and cannot be uniquely estimated (only their linear
combination can be estimated).

Inverting CRB in (3.16) yields the following CRB expres-
sions for and :

CRB
SNR

(3.19a)

CRB
SNR

(3.19b)

If the repetition period and single pulse duration are fixed,
then CRB decreases with the third power of for large

. However, the number of pulses is limited by the duration of
the coherence interval . If the coherence time and relative
single pulse duration with respect to the repetition period are
fixed (i.e., const and const), then
CRB will be independent of for large [observe that
SNR is proportional to ; see (3.17)].

If the bandwidth and single pulse duration are fixed,
then CRB decreases linearly with the number of pulsesfor
large . If the coherence time and relative single pulse duration
with respect to the repetition period are again fixed (in addition
to bandwidth), CRB will be independent of for large .

Finally, for fixed and , CRB in (3.16) decouples as
increases, i.e., CRB becomes approximately the same,

regardless of whether or notis known, and similarly, CRB
becomes the same, regardless of whether or notis known.
This result follows from the fact that Imag
for large [since, for large , becomes proportional to ,
whereas Imag is proportional to ; see (C.1b) and (C.2)
in Appendix C].

3) Radar Numerical Example:In Fig. 2, we plot the CRBs
for time delay and Doppler shift in (3.19a) and (3.19b)
as a function of the number of pulses and SNR (i.e., the
SNR for one pulse). We have chosen the following chirp signal
parameters:

• carrier frequency GHz;
• bandwidth MHz;
• repetition period ms;
• pulse duration s.

For these parameters, the approximate expressions in (3.19) are
valid since the time-bandwidth product of the pulse is large:

. Note that for SNR SNR (i.e., 0
dB), we have CRB s , and the corresponding
CRB for the range is then (5.85 m)(since the range ).
For SNR (i.e., 20 dB) and 100 (thus SNR

SNR dB), we have CRB (rad/s) ,
and the corresponding CRB for velocity is then (5.85 cm/s)
(since , and ).

IV. CRB FOR ARRAYS OFIDENTICAL ISOTROPICSENSORS IN

SPATIALLY WHITE NOISE

In this section, we derive CRB expressions for an array of
identical isotropic sensors and spatially white noise. We also
discuss the case when the noise is both spatially and temporally
white. In Section IV-A, we compute the volume of the confi-
dence region for the target’s location, which we propose as a
measure of estimation accuracy for the target’s location.

A sensor array consisting of identical isotropic sensors has
an array response vector of the form

, where , are the
differential time delays between the sensors. A spatially white
noise assumption implies that . Based on the above
assumptions , and the SNR in (3.5)
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simplifies to SNR , whereas
CRB in (3.1a) becomes

CRB
SNR

Re

SNR
(4.1)

where

(4.2a)

(4.2b)

Here, is the average differential time delay for the whole
array, and is the array spreading matrix of the derivatives
of the differential delays with respect to the DOA parameters.
The entries , , and of are functions of , but
we have omitted this dependence for notational simplicity.

If, in addition, the noise is temporally white (i.e., ),
the expression CRB in (4.1) holds, with the SNR simplifying
to SNR ; see Section III-C .
If Assumption A holds and the noise is both spatially and tem-
porally white, i.e., (see also Section III-C1),
the SNR further becomes SNR .
Then, from (3.10b), it follows that the accuracies of the Doppler
shift and time delay estimation do not depend on the array con-
figuration. In addition, CRB is proportional to ; thus, it
can be achieved asymptotically by merely averaging the single-
sensor ML estimates of over all sensors.

For spatially white noise, the DOA ambiguity function in
(3.7b) simplifies to

(4.3)

It follows from (3.6) and (3.8a) that CRB for is pro-
portional to the inverse of the second derivative matrix of the
above ambiguity function with respect to, evaluated at .

Consider now a simple case of isotropic sensors distributed
in 3-D to measure an incoming plane wave characterized by the
vector of DOA parameters , where and are
azimuth and elevation, respectively. Theth sensor is located
at for . Then,

; see, for instance, [23] and
[24]. Further

(4.4)

and the elements of are

(4.5a)

(4.5b)

(4.5c)

(4.5d)

(4.5e)

In (4.5d) and (4.5e), we have introduced, , and describing
thecenter of gravity, or phase center, of the array [25, p. 113]]
and the array configuration parameters , , , ,

, and , describing themoment-of-inertia tensorof the
array; see [26, ch. 6]. Here, we assume that each sensor is asso-
ciated with a unit “mass.”

Therefore, for an array of isotropic sensors receiving a re-
flected plane wave corrupted by spatially white noise, CRB
depends on the array geometry only through the above mo-
ment-of-inertia parameters, whereas CRBis independent of
the array geometry [which easily follows from (3.1c) and the
fact that .

For a large number of sensors (i.e., ) uniformly dis-
tributed over a certain volume, the summations in the above
expressions can be replaced by integrals over, which sim-
plifies the computation. This case is of practical interest since
modern radar arrays contain hundreds of antennas; see, for ex-
ample, [27]. Assume, without loss of generality, that the center
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of the coordinate system is located at the phase center, i.e., at
. Then

(4.6a)

(4.6b)

(4.6c)

and the expressions for , , , and follow by
analogy.

A. Volume of the Confidence Region for the Target’s Location

We compute the volume of the (linearized) confidence re-
gion for the target’s location expressed in Cartesian coordinates.
This volume is a measure of location performance that can be
achieved using given array geometry and signal waveform. Sim-
ilar performance measures have been used in [18, sec. V] and
[28]. We assume that Assumption A holds and that the noise is
both spatially and temporally white, i.e., . We
show that this volume is minimized and maximized for targets
lying along the principal axes of inertia of the array. We will
find conditions for this volume to be independent of the azimuth

. For this azimuth-invariant case, we will then show the de-
pendence of the confidence volume on the array configuration
(through the moment-of-inertia parameters) and target’s eleva-
tion angle . Finally, we will compare these volumes for several
3-D array configurations that are azimuth invariant.

Define the vector of target location parameters in the Carte-
sian coordinate system and in the spher-
ical coordinate system . Then, the transformation
from spherical to Cartesian coordinates (see Fig. 3) is

(4.7a)

(4.7b)

(4.7c)
yielding

(4.8)

Let be the volume of the linearized confidence region (which
is an ellipsoid) for the target’s location. Then, is propor-
tional to CRB (where denotes the determinant), as shown
in Appendix D, and

CRB CRB

CRB

CRB CRB (4.9)

The last equality follows from CRB , and therefore,
CRB . Observe that CRB does not depend on the

Fig. 3. Target coordinates in a spherical coordinate system.

target’s location [which follows from
(3.10b) and the fact that the expressions in (3.11) do not
depend on ]. At first, this result may seem unrealistic since,
intuitively, we expect CRB to increase with the range of
the target. However, it holds for the model that we adopted in
Section II, where the complex amplitudeis assumed to be an
unknown deterministic constant. In reality,is a function of
range (i.e., is approximately related to the target’s range as

), as well as a variety of other target-specific
parameters (e.g., target’s shape, orientation, material; see [22,
ch. 3]). [Note that incorporating the dependence
in (3.10b) yields CRB , which is intuitively
appealing.] In addition, from (4.8) and (4.1), we have

(4.10a)

CRB
SNR

(4.10b)

which, together with (3.10b) and (3.11f), implies that the
volume of the confidence ellipsoid for the target location vector

depends on the target’s location as follows:

(4.11)

Observe that depends on the direction parametersonly
through the elements of the array spreading matrix in
(4.5) and a factor in the numerator, which cancels out the
artificial singularity in the denominator inherent to the spherical
coordinate system. This singularity appears because the azimuth

is not identifiable if . For , the volume
of the confidence ellipsoid for the target location vector(in
spherical coordinates) would go to infinity; however, it is finite
for (i.e., the target’s location in Cartesian coordinates).

Without loss of generality, we choose the, , and axes of
the Cartesian coordinate system to coincide with theprincipal
axes of inertia[26, ch. 6] of the array, implying that

. In addition, we choose the center of the
coordinate system to coincide with the phase center, i.e.,

. Then, we show in Appendix E that we have

(4.12)
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which is minimized (under a fixed range constraint, i.e.,
const) if the target lies on one

of the principal axes of inertia. Assume, without loss of gener-
ality, that this axis is the-axis; then, it holds that

; see Appendix E. This result
means that the most desirable DOA in terms of the volume of the
target location confidence ellipsoid is along theaxis or, equiv-
alently, for the elevation . In addition, note that the
least desirable DOA in terms of target location accuracy would
then be along the or axes (or both); see Appendix E. There-
fore, for an array of identical isotropic sensors in both spatially
and temporally white noise, it follows that the most and the least
desirable DOAs (in terms of the volume of the confidence el-
lipsoid) are always perpendicular to each other. For example,
for a planar array lying in the - plane, the most desirable
DOA, which defines the axis, is perpendicular to the array.
This easily follows from the fact that . The expres-
sion (4.12) goes to infinity for targets lying in the- plane
(i.e., when ), which defines the set of the least desirable
DOAs.

It is of practical interest to consider the case where the confi-
dence volume does not depend on the azimuth. From (4.12)
and (E.2a) in Appendix E, it follows that this condition is sat-
isfied if . The conditions

and were shown in [23] to be necessary
and sufficient for CRB to be block-diagonal; see, in addition,
[24]. In our case, follows due to the
choice of the principal axes of inertia to be the, , and axes,
whereas is needed to ensure an azimuth-invariant
performance of the array. Under both of the above conditions,
the expressions in (4.5) simplify to

(4.13a)

(4.13b)

(4.13c)

which, also using (4.1) and (4.11), yields

CRB
SNR

(4.14a)

(4.14b)

where is the moment-of-inertia parameter for the
axis, normalized by the moment-of-inertia parameterfor

the and axes.
We define the volume

of the confidence ellipsoid for the target’s location
, normalized by the corresponding volume for a target lying

along the -axis ( ). In addition, note that
is independent of , i.e., if the plane wave arrives along the
-axis, the volume of the confidence ellipsoid does not depend

Fig. 4. Normalized volumev of the confidence ellipsoid for the target’s
location��� as a function of the elevation angle’s magnitudej j and various
values of normalized moment-of-inertia parameter for thez axisq .

on the distribution of the sensors along this axis. In Fig. 4, we
show plots of as a function of and

[note that ].
Performance independent ofis achieved for . The case

corresponds to a planar array lying in the- plane.
The figure illustrates the performance improvements in terms
of the volume of the confidence ellipsoid that can be achieved
by using a 3-D array, compared with a planar array (of course,
for , there can be no improvement since, in that case,
the confidence volume does not depend on).

In Table I, we compare several 3-D arrays that satisfy the
above azimuth-invariance conditions. The shapes of these ar-
rays are shown in Fig. 5, and we assume that the sensors are
uniformly distributed over a given volume. To avoid coupling,
we do not allow the sensors to be closer than, where is
the wavelength. This goal can be approximately achieved by al-
locating a cube with minimum volume for each sensor.
Then, the maximum number of sensors in the array is

(4.15)

where is the volume covered by the array; see also (4.6c). In
the table, expressions for are presented as a function of
array geometry parameters for various configurations; see Ap-
pendix F for the derivation. Table I also showsand as
functions of the array geometry parameters.

To make a fair comparison between the different array con-
figurations, we fix the number of sensorsand the maximum
distance between the array elements, which is denoted by .
In Appendix F, we first derive the exact expressions for the
volumes of the target location confidence ellipsoids. Then, to
achieve the best possible performance of each array configura-
tion (as well as for simplicity), we assume that the arrays are
thin, i.e., the depth and thickness are much smaller than

(but larger than to avoid coupling; see above). Under
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TABLE I
MAXIMUM ARRAY SIZEm , MOMENT-OF-INERTIA PARAMETERSQ AND Q , AND APPROXIMATE(FORTHIN ARRAYS) VOLUMES OF THETARGET LOCATION

CONFIDENCEELLIPSOID (NORMALIZED WITH RESPECT TO THESPHERICAL ARRAY) FOR THEARRAY SHAPES IN FIG. 5

Fig. 5. Array geometries considered in Table I.

this assumption, we compute the approximate volume of the
target location confidence ellipsoid, normalized with respect
to the corresponding confidence volume for a spherical array
( ); see Table I and Appendix F (where we com-
pute the expressions for , , and as well). It fol-
lows that among the arrays in Fig. 5, only a thin cylindrical ring
array can outperform the thin spherical array in the range of el-
evation angles (i.e., elevations satisfying

). Both cylindrical and spherical radar ar-
rays have been built and analyzed [27], [29]–[32]. In addition,
a spherical surface array was used for 3-D radio channel mea-
surements [33], and a cylindrical array design was proposed for
a mobile communications base station in [34].

As expected, the expressions for the above approximate nor-
malized volumes become exact for ; then, the square
plate, circular plate, and spherical layer degenerate to corre-
sponding surface arrays, whereas the cylindrical ring degener-
ates to a circular array. Note, however, that in this case, the max-

imum number of sensors that can be placed on these ar-
rays is significantly reduced, which influences the circular array
in particular.

V. CONCLUDING REMARKS

We derived Cramér–Rao bound expressions for the range, ve-
locity, and direction of a point target using an active radar or
sonar array. First, general CRB expressions were derived for a
narrowband signal and array model and a space-time separable
noise model that allows both spatial and temporal correlation.
Under these noise and signal models, we showed that the CRB
for the direction parameters is independent of whether or not the
time delay and Doppler shift are known, and vice versa. Then,
we specialized the CRB results to the case of temporally white
noise and a rectangular chirp pulse sequence. We also computed
the CRB expressions for a 3-D array with identical isotropic sen-
sors in spatially white noise. Under these conditions, we showed
that these expressions are functions of the sensor placements
only through “moment of inertia” parameters of the array. We
proposed the volume of the confidence region for the target’s
location as a measure of accuracy and showed that if the noise
is both spatially and temporally white, the highest accuracy is
achieved for targets lying along one of the principal axes of in-
ertia of the array. Finally, we compared the location accuracies
of several 3-D array geometries.

Further research will include extending the CRB results to
account for multiple targets (following [35]) or the wideband
signal model (or both) and developing efficient estimation algo-
rithms that exploit space-time factorability to reduce computa-
tional load.

APPENDIX A
CRB DERIVATION

To derive the CRB for and , we start from a well-known
expression for the Fisher information matrix in, for example [15,
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p. 525], which, under the signal and noise model in Section II,
simplifies to

Re (A.1a)

(A.1b)

Re Imag

(A.1c)

(A.1d)

(A.1e)

where is the FIM for target parameters. The above FIM can
be written as

(A.2)

where

(A.3a)

Re (A.3b)

Re (A.3c)

Re (A.3d)

Re (A.3e)

Re (A.3f)

and

(A.4a)

(A.4b)

(A.4c)

(A.4d)

Now, since the signal and additive noise parameters are disjoint,
the CRB for signal vector is computed simply as CRB .
We will use the same block partitioning of the CRB as forin
(A.2).

We now compute the CRB for the DOA, Doppler shift, and
time delay

CRB
CRB CRB
CRB CRB

(A.5)

where . Using

Re Re
Re Re

(A.6)

it easily follows that

Re (A.7)

i.e., CRB ; see also (3.1b). Thus CRB is block-diag-
onal, implying that

CRB

Re (A.8a)

CRB

Re (A.8b)

and the expressions in (3.1a) and (3.1c) follow directly.

A. CRB on the Target’s Radial Velocity for a Moving Array

We derive the CRB for the Doppler shift due to the radial
component of target’s velocity (denoted by ) for the
case when the array moves with constant velocity; see Sec-
tion III-A1.

Using (3.1) and from Sec-
tion III-A1, we compute

CRB
CRB

CRB

(A.9)

and (3.4) easily follows by using
and .

B. CRB for Temporally White Noise

We specialize the general CRB expression (3.1c) to tempo-
rally white noise (i.e., ) and signal model in (2.1). Let

, and define

(A.10a)

(A.10b)
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(A.10c)

(A.10d)

Then, the expressions in (3.1a) and (3.1c) simplify to (see also
[10])

CRB Re

SNR
Re

(A.11a)

CRB

Imag
Imag

SNR
Imag

Imag
(A.11b)

and the SNR in (3.5) simplifies to

SNR (A.12)

APPENDIX B
AMBIGUITY FUNCTION DERIVATION

We derive the ambiguity function for the signal and noise
models in Section II. First, we introduce the following
measure of separation between the probability density func-
tions of the measurements corresponding to two targets
with parameters Re Imag and

Re Imag (assuming fixed noise covari-
ance )

(B.1)

This measure is by definition the square of the Mahalanobis dis-
tance; it is also the Kullback-directed divergence, which is used
in [16]. Additionally, the identifiability by distribution (see [36])
of the target parametersreduces to the following requirement:

if and only if . Minimizing the distance in
(B.1) with respect to the nuisance parameteryields

(B.2)

Now, according to [16, Def. 2], the generalized ambiguity func-
tion is computed as

(B.3)

where is the upper bound on the distance in
(B.2). Since the signal is of finite duration, for sufficiently large
time delay difference , we have

(B.4)

The ambiguity function in (3.6) follows by substituting (B.2)
and (B.4) into (B.3).

APPENDIX C
CRB DERIVATION FOR A CHIRP SEQUENCE

We derive the CRB for time delay and Doppler shift for a
sequence of chirp pulses in temporally white noise, as shown
in (3.16). Using the signal shape in (3.14), (3.11a), and (3.11b),
we obtain

(C.1a)

(C.1b)

Note that using the time translation invariance property of ex-
pressions (3.11), we computedand in (C.1), assuming .
From and (3.11c) and
(3.11d), it follows that

Imag Imag

(C.2a)

(C.2b)

The third expression in (C.2b) holds when the time-bandwidth
product of a pulse is large, i.e., . Then, the spectrum
of a pulse approaches a rectangular distribution [2, p. 139 and p.
302], which can be approximated as

(see, e.g., [21, eq. (39)]), yielding the
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approximate expression in (C.2b). Based on (C.1), (C.2), and
(3.10b), CRB in (3.16) easily follows.

APPENDIX D
WALD TESTS AND VOLUME OF THE LINEARIZED

CONFIDENCEREGION

We show how to construct a linearized confidence region for
the target location and compute its volume using Wald tests. The
linearized confidence region (in the form of an elliposoid) for
testing H : , where is a once continuously-differen-
tiable function, is defined as

CRB (D.1)

where , CRB [see also (A.2) and
(A.3) in Appendix A], and is the threshold computed to satisfy
a desired probability of false alarm [37], [38, ch. 6e.3], [39, ch.
7.3.3]. From (D.1), testing H: yields the confidence el-
lipsoid of the following form: CRB
. Obviously, the squared volume of this ellipsoid is propor-

tional to CRB . Similarly, from (D.1), it follows that testing
H : yields the confidence ellipsoid with
squared volume proportional toCRB CRB

, and (4.9) follows.

APPENDIX E
VOLUME OF THE CONFIDENCEELLIPSOID FOR THETARGET’S

LOCATION IN CARTESIAN COORDINATES

We compute the volume of the confidence ellipsoid for the
target’s location as a function of the target’s coordinates in a
Cartesian coordinate system, whose axes are chosen to be the
principal axes of inertia of the array.

The array geometry parameters , , , , ,
and define the moment of inertia tensor of the array where
each sensor is assigned a unit mass; see [26, ch. 6]. The tensor of
inertia can be reduced to diagonal form by an appropriate choice
of axes , , and ; these directions are called theprincipal axes
of inertia [26, ch. 6]. In this case, ,
which significantly simplifies the expressions in (4.5)

(E.1a)

(E.1b)

(E.1c)

yielding

(E.2a)

Using the above equality, (4.7), and (4.11), we get (4.12).
Now, it is obvious that for a fixed range (i.e.,

const), the volume of the confidence
ellipsoid for the target location in (4.12) is minimized for a
target lying on one of the principal axes. This axis (which
defines the most desirable DOA) is the one for which the
product of the moment-of-inertia parameters for the other
two axes is maximized, i.e., it is the-axis if

and likewise for the other
two cases.

Analogously, the least desirable DOA (i.e., the one with max-
imum volume of the confidence ellipsoid) is along the principal
axis for which the product of the moment-of-inertia parameters
for the other two axes is minimized. In addition, note that the
most and the least desirable DOA are always orthogonal since
they lie along two principal axes.

APPENDIX F
CRB DERIVATION FOR SEVERAL ARRAY CONFIGURATIONS

We derive the CRB expressions and confidence volumes for
the target location for several 3-D arrays of identical isotropic
sensors (whose shapes are shown in Fig. 5) in spatially white
noise.

We first derive the properties of an array in the form of a
spherical layer and then use the performance of this array as
a reference for comparison with other array configurations. The
comparison is performed assuming the same number of sensors

and maximum distance between the array elements for
all arrays.

For a spherical layer array with radiusand thickness , we
have and

, yielding

(F.1a)

(F.1b)

See (4.6) and (4.15). The approximate formulas above hold for
a thin spherical layer, i.e., for .

Next, consider two plate arrays with depth: a square and a
circular plate. For a square plate array withand coordinates
ranging from to and ranging from to , we have

and , yielding

(F.2a)
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(F.2b)

(F.2c)

(F.2d)

where approximate expressions hold for a thin plate, i.e.,
. From the last equation above, it follows that for fixed

maximum distance between the sensors and array size
, the thin square array is significantly outperformed by the

thin spherical array. Similarly, for a circular plate array of ra-
dius (and ranging from to ), we have

and , yielding

(F.3a)

(F.3b)

(F.3c)

(F.3d)

Again, the circular plate array is significantly outperformed by
the spherical layer array.

To outperform the spherical layer array in a particular range
of directions, we can use an array of sensors distributed on a
cylindrical ring with radius , thickness , and depth along
the most likely direction to the target. Let the most likely direc-
tion to the target be from elevation (i.e., along the
axis; see Fig. 5), and thus choose the cylinder lying along the

axis. Therefore, we have and
, and

(F.4a)

(F.4b)

(F.4c)

(F.4d)

(F.4e)

where the approximate formulas hold for a thin ring, i.e., when
and .

Obviously, we need to out-
perform the spherical array at elevation with the
same maximum distance between the sensors and array size

. Note that is a decreasing function of both
and . However, these dimensions are necessary to allow a

large number of antennas in the array, see (F.4a); otherwise, for
, this array degenerates to a circular array (which

cannot accomodate many sensors).
The results derived in this appendix are summarized in

Table I.
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