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Abstract—We derive Chernoff bounds on pairwise error probabilities
of coherent and noncoherent space–time signaling schemes. First, general
Chernoff bound expressions are derived for a correlated Ricean fading
channel and correlated additive Gaussian noise. Then, we specialize the
obtained results to the cases of space–time-separable noise, white noise,
and uncorrelated fading. We derive approximate Chernoff bounds for
high and low signal-to-noise ratios (SNRs) and propose optimal signaling
schemes. We also compute the optimal number of transmitter antennas for
noncoherent signaling with unitary mutually orthogonal space–time codes.

Index Terms—Chernoff bounds, correlated Ricean fading, multiple an-
tennas, pairwise error probability, space–time modulation, transmitter and
receiver diversity.

I. INTRODUCTION

Chernoff bounds on pairwise error probabilities have been used
to design coded modulation schemes for fading channels [1]–[6]
and, more recently, to design space–time codes and analyze the
performance of multiple-input–multiple-output (MIMO) wireless
communication systems, see [7]–[11]. Assuming uncorrelated Ricean-
and Rayleigh-fading channels and white noise, exact and approximate
expressions for pairwise error probabilities of coherent space–time
signaling schemes were derived in [12] and [13] (see also references
therein). (For comprehensive treatment of methods for computing
pairwise error probabilities in fading channels, see [14].) Recently,
exact and asymptotic pairwise error probabilities have been computed
for space–time signaling schemes in correlated Rayleigh fading and
white noise, see [15] and [16]. In this correspondence, we derive
Chernoff-bound expressions for coherent and noncoherent signaling
in a correlated flat Ricean-fading channel and correlated additive
Gaussian noise, generalizing the corresponding results in [7] and [8].
Approximate Chernoff bounds are derived for high and low scattering
signal-to-noise ratios (SNRs) and optimal signaling schemes are
proposed.

First, we introduce measurement and fading models. ThenR � 1
vector signal received by the receiver array at timet is modeled as

yyy(t) = HHH���(t) + eee(t); t = 1; . . . ; N (1.1)

whereHHH is thenR � nT channel response matrix,���(t) is thenT � 1
vector of symbols transmitted bynT transmitter antennas and received
by the receiver array at timet, andeee(t) is additive noise. Stacking allN
samples into a single vector, the above set of equations may be written
as

yyy = (�T 
 IIInR)hhh+ eee (1.2)
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where

yyy = [yyy(1)T ; yyy(2)T ; . . . ; yyy(N)T ]T

hhh = vecfHHHg

eee = [eee(1)T ; eee(2)T ; . . . ; eee(N)T ]T

and

� = [���(1) ���(2) � � ����(N)]

is the matrix of symbols received in the coherent intervalt =
1; 2; . . . ; N . Here, thevec operator stacks the columns of a matrix
one below another into a single column vector,IIIn denotes the identity
matrix of sizen, and “T ” and 
 denote transpose and Kronecker
product, respectively. Furthermore, we assume that the noiseeee is a
zero-mean complex Gaussian vector with positive-definite covariance
matrix E[eeeeeeH ] = RRR, and that the vector of fading coefficientshhh is
complex Gaussian with meanE[hhh] and positive-definite covariance
E[(hhh � E[hhh])(hhh � E[hhh])H ], denoted as

E[hhh] = ���
h
; E[(hhh� ���

h
)(hhh� ���

h
)H ] = 	h (1.3)

where “H” denotes Hermitian (conjugate) transpose. We will examine
the following model for the mean���

h
of the fading coefficient vector

(see also [17]):

���
h
= x � aaaT 
 aaaR (1.4)

whereaaaT andaaaR are line-of-sighttransmitter and receiver array re-
sponses, andx is the complex amplitude of the line-of-sight signal.

In Section II, we derive Chernoff bound expressions for coherent
signaling. We specialize these expressions to the space–time separable
noise scenario (Section II-A) and examine optimal signaling schemes.
White noise and uncorrelated fading models are considered in Sec-
tion II-A1. In Section III, we derive Chernoff bounds for noncoherent
signaling. Based on approximate expressions for high and low scat-
tering SNRs, we propose optimal code design criteria for noncoherent
signaling (Sections III-A and III-B). Finally, in Section III-C we
examine equal-energy orthogonal signaling and compute the optimal
number of transmitter antennas for this scenario.

II. COHERENTSIGNALING

We compute Chernoff bounds forcoherentsignaling (i.e., assuming
that the channel is known to the receiver) by obtaining the Chernoff
bound expression for a given channel realization, and averaging it over
all possible channel realizations under a correlated flat Ricean-fading
model.

Consider the measurement and fading models in Section I, where the
channelhhh and noise covarianceRRR are known to the receiver. Assume
that we wish to decide between two space–time codes�1 and�0, i.e.,
to test the hypothesisH1: �1 transmitted versus the alternativeH0: �0

transmitted. Assume also that�1 and�0 are equiprobable. UnderH1,
the received measurement vectoryyy is a complex multivariate normal
with meanZZZ1hhh and covarianceRRR, whereas underH0 it is a com-
plex multivariate normal with meanZZZ0hhh and covarianceRRR. Denote the
probability density function (pdf) ofyyy underHi aspi(yyyjhhh); i = 0; 1,
and define

ZZZ1 = �
T

1 
 IIInR ; ZZZ0 = �
T

0 
 IIInR : (2.1)
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Givenhhh, the Chernoff bound on pairwise error probability for deciding
betweenH1 andH0 is

PCB(hhh; �) =
1

2
exp[�(�jhhh)]; 0 � � � 1 (2.2)

where

�(�jhhh) = lnEfexp[� ln p0(yyyjhhh)� � ln p1(yyyjhhh)]jH1g (2.3)

see [18, Ch. 2.7], [19, Ch. 3.4], and [8, Appendix B]. Here, (2.3) be-
comes

�(�jhhh) = ln
1

�1

� � �
1

�1

1

j�RRRj
� exp[�� (yyy�ZZZ0hhh)

HRRR�1(yyy�ZZZ0hhh)

�(1��) (yyy�ZZZ1hhh)
HRRR�1(yyy�ZZZ1hhh)] dyyy (2.4)

wheredyyy = d(Reyyy)d(Imfyyyg). Let us denote complex conjugation by
“�.” To compute (2.4), we use the following lemma.1

Lemma 1: Let BBB represent ann � n positive-definite Hermitian
matrix andAAA ann � n Hermitian matrix; letaaa andbbb representn �
1 vectors of complex constants; and leta0 andb0 represent complex
scalars. Then

1

�1

� � �
1

�1

1

2
[xxxHAAAxxx+ xxxHaaa+ aaaHxxx+ a0 + a�0]

� exp[� 1

2
(xxxHBBBxxx+ xxxHbbb+ bbbHxxx + b0 + b�0)] dxxx

= 1

2
�nj 1

2
BBBj�1 � 2tr(AAABBB�1)� bbbHBBB�1aaa� aaaHBBB�1bbb

+ bbbHBBB�1AAABBB�1bbb+ 2Refa0g

� exp[ 1
2
bbbHBBB�1bbb� Refb0g]: (2.5)

Proof: See the Appendix.

Let us define

QQQ = (ZZZ1 �ZZZ0)
HRRR�1(ZZZ1 �ZZZ0): (2.6)

Then, applying Lemma 1 to (2.4), withxxx = yyy � ZZZ1hhh, BBB = 2RRR�1,
AAA = 0, aaa = 0, bbb = 2� � RRR�1(ZZZ1 � ZZZ0)hhh, a0 = 1=j�RRRj, and
b0 = �hhhHQQQhhh, we get

�(�jhhh) = (�2 � �) � hhhHQQQhhh (2.7)

which is minimized for� = 1=2, yielding the optimal Chernoff bound
for the case of ideal channel state information

PCB(hhh) =
1

2
exp(� 1

4
hhhHQQQhhh): (2.8)

Now, following the Ricean-fading model for the channel coefficients
in (1.3), we average (2.8) overhhh

PCB =
1

�1

� � �
1

�1

PCB(hhh)
1

j�	hj

� expf�(hhh� ���
h
)H	�1

h
(hhh� ���

h
)g dhhh (2.9)

which can be computed by applying Lemma 1 withxxx = hhh, BBB =
2	�1

h
+ 1

2
QQQ, AAA = 0, aaa = 0, bbb = �2	�1

h
���
h
, a0 = 1=(2j�	hj),

andb0 = ���H
h
	
�1

h
���
h
, yielding

PCB =
1

2
�

1

jIIIn n + 1

4
QQQ	hj

� exp[� 1

4
���H
h

IIIn n + 1

4
QQQ	h

�1
QQQ���

h
]: (2.10)

1The integral in Lemma 1 has a fairly general form. Throughout this corre-
spondence, we will use its special case withAAA = 0 andaaa = 0.

Interestingly, the exact minimum pairwise error probability for
coherent detection (averaged over channel realizations) can be readily
computed using (2.10) and [14, Ch. 12.1.2.1 and eq. (4.2)]

PEP(�0; �1) =
1

�
�

�=2

0

1

jIIInTnR + 1
4 sin �

�QQQ	hj

� exp �
1

4 sin2 �
� ���Hh IIInTnR+

1

4 sin2 �
�QQQ	h

�1

QQQ���h d�

(2.11)

see also [12], where a similar expression was derived for uncorrelated
fading and white noise.

Let us now introduce some terminology and notation. A positive-
semidefinite Hermitian matrix is “large” if its nonzero eigenvalues are
significantly larger than1. Similarly, a positive-semidefinite Hermitian
matrix is “small” if its eigenvalues are significantly smaller than1.
Also, we will denote by	1=2 a Hermitian square root of a Hermitian
matrix	; then	�1=2 = (	1=2)�1.

Large 1
4
	

1=2
h QQQ	

1=2
h : If the matrix 1

4
	

1=2
h QQQ	

1=2
h is “large” then

we can approximate (2.10) as

PCB �
1

2
�

1

1
4
	

1=2
h QQQ	

1=2
h

rank(QQQ)

� exp[����Hh 	
�1=2
h ��(	

1=2
h QQQ	

1=2
h ) �	

�1=2
h ���h] (2.12)

where�(XXX) denotes the projection matrix2 onto the column space
of XXX, andjAAAjr denotes the product of ther largest eigenvalues of a
Hermitian matrixAAA. Note also thatrank(QQQ) = nR � rank(�1��0).
If �1 � �0 has full ranknT (which is therank criterion in [7]), the
above expression simplifies to

PCB full rank �
1

2
�

1

1
4
	

1=2
h QQQ	

1=2
h

exp(����Hh 	
�1
h ���h): (2.13)

To achieve the full ranknT of �1 ��0, the number of time samples
needs to be equal to or larger than the number of transmitter antennas,
i.e.,N � nT. From (2.13), it follows that the optimal codes should
maximize

jQQQj = j[(��1 ��
�

0)
 IIInR ] �RRR
�1 � [(�T1 ��T0 )
 IIInR ]j (2.14)

which is an extension of thedeterminant criterionin [7] to this sce-
nario.

Small 1
4
	
1=2
h QQQ	

1=2
h : If the matrix 1

4
	
1=2
h QQQ	

1=2
h is “small,” then

we can approximate (2.10) as

PCB � 1

2
� expf� 1

4
tr[QQQ(���h���

H
h +	h)]g

= 1

2
� expf� 1

4
E(hhhHQQQhhh)g: (2.15)

Clearly, the optimal codes need to maximize

tr[QQQ(���h���
H
h +	h)] = tr [(��1 ��

�

0)
 IIIn ] �RRR�1

� [(�T1 ��T0 )
 IIIn ] � (���h���
H
h +	h) (2.16)

which can be viewed as a measure of the SNR. We can define the
RiceanK-factor as the ratio between the line-of-sight and scattering
SNR components

K =
���Hh QQQ���h
tr(QQQ	h)

(2.17)

generalizing the single-input single-output (SISO) definition in, e.g.,
[21, Ch. 1.2.2]. If the line-of-sight SNR component is dominant

2For the definition of a projection matrix, see, e.g., [20, Ch. 12.3].
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(i.e., largeK), then the optimal code design criterion for small
1

4
	
1=2
h QQQ	

1=2
h reduces to maximizing���Hh QQQ���h with respect to

�1 � �0.
In the following, we specialize the above results to the case of

space–time-separable additive noise.

A. Space–Time-Separable Noise

In certain practical applications, it is reasonable to assume that ad-
ditive noise is separable with respect to space and time, i.e., its spatial
covariance is constant in time and its temporal covariance is the same
at all sensors (see, for example, [22] and [23]). Therefore, the covari-
ance matrix of the space–time noise snapshoteee can be written as

RRR = CCCT 
� (2.18)

whereCCC and� are the noise temporal and spatial covariance matrices.
Then, (2.6) simplifies to

QQQ = UUU� 
��1 (2.19)

where

UUU = (�1 ��0)CCC
�1(�1 ��0)

H : (2.20)

For large1
4
	
1=2
h QQQ	

1=2
h = 1

4
	
1=2
h (UUU� 
��1)	

1=2
h and�1 ��0

having full ranknT, an approximate Chernoff bound follows easily
from (2.13)

PCB full rank �
1

2
�

j�jnT

j 1
4
	hj � jUUU jnR

� exp(����Hh 	
�1

h ���h) (2.21)

and the determinant criterion simplifies to maximizing

jUUU j = j(�1 ��0)CCC
�1(�1 ��0)

H j (2.22)

with respect to�1 � �0.
Consider now the case where1

4
	
1=2
h (UUU� 
��1)	

1=2
h is “small”

and the mean of the fading coefficient vectorhhh follows (1.4). Then, an
approximate Chernoff bound follows by substituting (2.19) and (1.4)
into (2.15)

PCB � 1

2
� exp � 1

4
jxj2 � aaaHTUUU

�aaaT � aaaHR�
�1aaaR

� 1

4
tr[(UUU� 
��1)	h] : (2.23)

Assuming that the line-of-sight SNR component is dominant, the
noise is temporally white (i.e.,CCC = IIIN ), and signaling is antipodal
(i.e.,�1 = ��0), the optimal codes need to maximizeaaaHT�

�

1�
T
1 aaaT.

Under the power constrainttr(�1�
H
1 ) = 1, aaaHT�

�

1�
T
1 aaaT is max-

imized for

�
�

1�
T
1 = 1 aaaH

T
aaaT � aaaTaaa

H
T (2.24)

implying that the optimal�1 is a rank-one matrix with the following
structure:

�1 = ��0

=
1

aaaH
T
aaaT �

N

t=1

js(t)j2

� aaa�T [s(1); s(2); . . . ; s(N)] (2.25)

which corresponds tobeamforming, i.e., “spatial matching” to the
line-of-sight transmitter array response. This can be easily seen
by rewriting (1.4) asE(HHH) = x � aaaRaaa

T
T, and by observing that

aaa�T = (aaaTT)
H . Note also thataaaHT aaaT = nT if the transmitter array

consists of isotropic omnidirectional antennas. In the following

discussion, we assume thatboth the receiver and transmitter arrays
consist of isotropic omnidirectional antennas, implying that

aaaHT aaaT = nT and aaaHRaaaR = nR: (2.26)

1) White Noise and Uncorrelated Fading:Assuming that the addi-
tive noise is both spatially and temporally white (i.e.,RRR = �2IIIn N ),
the fading coefficients are uncorrelated with equal variances 2h (i.e.,
	h =  2hIIIn nR

), and the mean of the fading coefficients follows
(1.4), (2.10) simplifies to

PCB =
1

2
�

1

jIIIn +  2h=(4�
2) � UUU j

nR

� exp �
nRjxj

2

4�2
� aaaHT IIIn +

 2h
4�2

UUU�
�1

UUU�aaaT (2.27)

where

UUU = (�1 ��0)(�1 ��0)
H : (2.28)

Here we have used the fact thataaaHRaaaR = nR, which holds if antennas
at the receiver are isotropic (see also (2.26)).

For full-rankUUU and large 2h=(4�
2) � UUU , (2.27) is approximated as

PCB full rank �
1

2
�

1

j 2h=(4�
2) � UUU j

nR
� exp �

nT � nR � jxj2

 2h
(2.29)

where we have used the fact thataaaHT aaaT = nT, which holds if the
transmitter array consists of isotropic antennas (see also (2.26)). Equa-
tion (2.29) can be obtained by substituting� = �2IIIn , CCC = IIIN ,
	h =  2hIIIn nR

, (1.4), and (2.26) into (2.21).
For small 2h=(4�

2) � UUU , (2.27) approximately equals

PCB �
1

2
� exp �

nRjxj
2

4�2
� aaaHTUUU

�aaaT �
nR 

2

h

4�2
� tr(UUU) : (2.30)

It is interesting to examine optimal signaling schemes under the two
scenarios above. For simplicity, let us concentrate on antipodal sig-
naling

�1 = ��0 (2.31)

implying thatUUU = 4�1�
H
1 . We define normalized3 line-of-sightand

scatteringSNRs as

SNRLOS =
jxj2

�2
; SNRSC =

 2h
�2
: (2.32)

We also impose a power constraint on the transmitted symbols

tr(�1�
H
1 ) = tr(�0�

H
0 ) = 1: (2.33)

Large, Full-Rank SNRSC � �1�
H
1 : For large, full-rank SNRSC �

�1�
H
1 , the optimal antipodal codes (which minimize (2.29)) are con-

structed by maximizing

jSNRSC ��1�
H
1 j (2.34)

subject to (2.33). Clearly, the optimal�1�
H
1 has all eigenvalues equal

to 1=nT; hence,

jSNRSC ��1�
H
1 jMAX =

SNRSC
nT

nT

(2.35)

3The SNRs defined in (2.32) are normalized so that they do not depend on
the numbers of receiver and transmitter antennas.
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Fig. 1. The approximate single-input–single-output gain as a function of line-of-sight and scattering SNRs.

see also [24] and [25]. In addition, the condition that SNRSC ��1�
H
1

is large simplifies to the requirement that SNRSC=nT is large. For ex-
ample, orthogonal designs, satisfying

�1�
H
1 = (1=nT) � IIIn (2.36)

are optimal. Substituting (2.35) into (2.29), we obtain an approximate
Chernoff bound for optimal antipodal signaling

PCB; opt
large SNRSC=nT

�
1

2
�

SNRSC
nT

�nTnR

� exp �
nT � nR � jxj2

 2h

=
1

2
�

1

nT
� �(SNRSC; SNRLOS)

�nTnR

(2.37)

where

�(SNRSC; SNRLOS) = SNRSC � exp
SNRLOS
SNRSC

: (2.38)

In a SISO system, (2.37) simplifies to1
2
� 1=�(SNRSC; SNRLOS).

Therefore, we refer to�(SNRSC; SNRLOS) as an approximate “gain”
of a SISO system. In Fig. 1, we show�(SNRSC; SNRLOS) in decibels
as a function of scattering and line-of-sight SNRs, also in decibels. To
meet the large SNRSC=nT requirement, we consider only the values
of scattering SNRSC larger than20 (13 dB). For fixed line-of-sight
SNRLOS and for SNRLOS < SNRSC, �(SNRSC; SNRLOS) grows
linearly with SNRSC. For fixed SNRSC and SNRSC < SNRLOS,
�(SNRSC; SNRLOS) grows exponentially with SNRLOS. Also, note
that the minimum value of�(SNRSC; SNRLOS) in Fig. 1 is20, which
corresponds to the Chernoff bound of0:025 in a SISO system.

Small SNRSC � �1�
H
1 : For small SNRSC � �1�

H
1 and nonzero

SNRLOS, the optimal antipodal codes (which minimize (2.30)) are con-
structed by maximizing SNRLOS �aaaHT�

�

1�
T
1 aaaT+SNRSC �tr(�1�

H
1 ),

subject to (2.33), and are given in (2.25). Then,��1�
T
1 = (1=nT) �

aaaTaaa
H
T and the condition that SNRSC ��1�

H
1 is small simplifies to the

requirement that SNRSC is small. Substituting these results into (2.30),

we obtain an approximate Chernoff bound for optimal antipodal sig-
naling

PCB; opt
small SNRSC

�
1

2
� exp [�nTnR � SNRLOS � nR � SNRSC]

=
1

2
� exp SNRLOS +

1

nT
SNRSC

�nTnR

: (2.39)

Chernoff Bound for Antipodal Orthogonal Designs: We compute
the Chernoff bound for antipodal orthogonal designs by substituting
(2.31) and (2.36) into (2.27)

PCB
�1 = ��0

�1�
H
1 = (1=n ) � IIIn

=
1

2
� 1 +

SNRSC
nT

exp

SNRLOS
nT

1 +
SNRSC
nT

�nTnR

: (2.40)

Interestingly, the RiceanK-factor in (2.17) simplifies to

K =
SNRLOS
SNRSC

: (2.41)

Observe that (2.40) decreases exponentially as the number of receiver
antennasnR grows. Increasing the number of transmitter antennasnT
results in two opposite effects. Clearly, the diversity gain (equal to
nTnR) increases withnT thereby reducing error probability. However,
due to the power constraint (2.33), the signal power per transmitter an-
tenna decreases, which results in larger error probability per diversity
branch. These two effects can also be seen by observing (2.40), which
decreases exponentially withnT, but the argument of the exponent (in
square brackets) also decreases withnT. In this case, the first effect is
dominant: (2.40) decreases asnT grows for all possible SNRLOS and
SNRSC. Consequently, the corresponding pairwise error probability
decreases withnT as well, see (2.11). Hence, for the fading, signal, and
noise models considered here, it is desirable (in terms of minimizing
the pairwise error probability) to use as many transmitter antennas as
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possible.4 This is not true for noncoherent signaling, see Section III-C.
Information-theoretic criteria have also been used to determine the op-
timal number of transmitter antennas. For example, maximizing noner-
godic Shannon capacity for coherent low-rank channels was proposed
in [26] and [27], resulting in optimalnT that is equal to the channel
rank.

III. N ONCOHERENTSIGNALING

We compute Chernoff bounds fornoncoherentsignaling, i.e., as-
suming that the channel is not known to the receiver. Consider the mea-
surement model (1.2) with known noise covarianceRRR and unknown
channel coefficient vectorhhh, described by known mean���h and known
covariance	h, see (1.3). (Efficient methods for estimating statistical
properties of MIMO Ricean-fading channels have been recently pro-
posed in [28] and [29].) As before, we consider testing the hypothesis
H1: �1 transmitted versus the alternativeH0: �0 transmitted and as-
sume that�1 and�0 are equiprobable. In this scenario, the received
measurement vectoryyy underH1 is a complex multivariate normal with
meanZZZ1���h and covarianceRRRy; 1 = ZZZ1	hZZZ

H
1 + RRR, whereas under

H0 it is a complex multivariate normal with meanZZZ0���h and covariance
RRRy; 0 = ZZZ0	hZZZ

H
0 +RRR. Note that the above likelihood functions are

marginal likelihoods, where the unknown channel vectorhhh has been in-
tegrated out with respect to its prior distribution. (It is also possible to
construct concentrated-likelihood detectors that do not require knowl-
edge of���h; 	h, or RRR at the receiver. In these detectors, the likeli-
hood function is concentrated with respect to the unknown channel and
noise parameters [15], [30], [31] or statistical channel parameters [31]
in a manner similar to that used to derive deterministic and stochastic
maximum-likelihood methods for sensor array processing [32]. Per-
formance analysis of concentrated-likelihood detectors is beyond the
scope of this correspondence.)

As before, denote the pdf ofyyy underHi aspi(yyy); i = 0; 1. Then,
following [18, Ch. 2.7], [19, Ch. 3.4], and [8, Appendix B], the Cher-
noff bound on pairwise error probability for deciding betweenH1 and
H0 is

PCB(�) =
1

2
exp[�(�)]; 0 � � � 1 (3.1)

where

�(�) = lnEfexp[� ln p0(yyy)� � ln p1(yyy)] jH1g: (3.2)

Here, (3.2) becomes

�(�) = ln
1

�1

� � �
1

�1

1

j�RRRy; 0j
� � j�RRRy; 1j

1��

� exp ��(yyy�ZZZ0���h)
HRRR�1y; 0(yyy�ZZZ0���h)

� (1��) (yyy�ZZZ1���h)
HRRR�1y; 1(yyy�ZZZ1���h) dyyy (3.3)

which can be computed by applying Lemma 1 withxxx = yyy � ZZZ1���h,
BBB = 2 � [�RRR�1y; 0 + (1 � �)RRR�1y; 1], AAA = 0, aaa = 0, bbb = 2� � RRR�1y; 0 �

(ZZZ1�ZZZ0)���h, a0 = 1=(j�RRRy; 0j
� �j�RRRy; 1j

1��), andb0 = ����Hh (ZZZ1�
ZZZ0)

H � RRR�1y; 0 � (ZZZ1 � ZZZ0)���h:

�(�) = � ln[j�RRR�1y; 0+(1��)RRR�1y; 1j � jRRRy; 0j
� � jRRRy; 1j

1��]

� ���Hh (ZZZ1�ZZZ0)
H 1

�
RRRy; 0+

1

1��
RRRy; 1

�1

(ZZZ1�ZZZ0)���h

(3.4a)

= ln
jRRRy;1j

� � jRRRy;0j
1��

j�RRRy;1+(1��)RRRy;0j
��(1��) � ���Hh (ZZZ1�ZZZ0)

H

� [�RRRy; 1+(1��)RRRy; 0]
�1 (ZZZ1�ZZZ0)���h (3.4b)

4Note, however, thatP in (2.40) converges to(1=2)�exp[�n �(SNR +
SNR )] asn ! 1.

where, to compute (3.4a), we have used the identity

�
1

�
RRRy; 0 +

1

1� �
RRRy; 1

�1

= �
2
RRR
�1

y; 0 � [�RRR
�1

y; 0 + (1� �)RRR�1y; 1]
�1 �RRR�1y; 0 � �RRR

�1

y; 0 (3.5)

which follows from the matrix inversion lemma in [20, eq. (2.22), p.
424]. Then, the Chernoff bound for a given� is

PCB(�) =
1

2
�

jRRRy;1j
� � jRRRy; 0j

1��

j�RRRy;1 + (1� �)RRRy;0j

� exp ��(1� �) � ���Hh (ZZZ1 �ZZZ0)
H

� [�RRRy; 1+(1��)RRRy;0]
�1 (ZZZ1�ZZZ0)���h

=
1

2
�
jRRRy; 1j

� � jRRRy;0j
1��

jRRR+ZZZ	̂h(�)ZZZ
H j

� exp � �(1� �) � ���Hh (ZZZ1 �ZZZ0)
H

� RRR+ZZZ	̂h(�)ZZZ
H
�1

(ZZZ1�ZZZ0)���h (3.6)

where0 � � � 1, and

ZZZ = [ZZZ1; ZZZ0] (3.7a)

	̂h(�) =
�	h 0

0 (1� �)	h

: (3.7b)

Observe that

ZZZ
H [RRR+ZZZ	̂h(�)ZZZ

H ]�1ZZZ

= ZZZ
H
RRR
�1

ZZZ �ZZZ
H
RRR
�1

ZZZ

� 	̂h(�)
�1 +ZZZ

H
RRR
�1

ZZZ
�1

� ZZZH
RRR
�1

ZZZ (3.8a)

= ZZZ
H
RRR
�1

ZZZ �ZZZ
H
RRR
�1

ZZZ	̂h(�)

� [III2nTnR +ZZZ
H
RRR
�1

ZZZ	̂h(�)]
�1 � ZZZH

RRR
�1

ZZZ (3.8b)

= [III2nTnR +ZZZ
H
RRR
�1

ZZZ	̂h(�)�ZZZ
H
RRR
�1

ZZZ	̂h(�)]

� [III2nTnR +ZZZ
H
RRR
�1

ZZZ	̂h(�)]
�1 � ZZZH

RRR
�1

ZZZ (3.8c)

= [III2nTnR +ZZZ
H
RRR
�1

ZZZ	̂h(�)]
�1 � ZZZH

RRR
�1

ZZZ: (3.8d)

Here, the right-hand side of (3.8a) follows by using the matrix inversion
lemma in [20, eq. (2.22), p. 424]. Also,

jRRRy;1j
� � jRRRy;0j

1��

j�RRRy;1 + (1� �)RRRy;0j

=
jRRR+ZZZ1	hZZZ

H
1 j

� � jRRR+ZZZ0	hZZZ
H
0 j

1��

jRRR+ZZZ	̂h(�)ZZZ
H j

(3.9a)

=
jRRRj�j	hj�j	

�1

h +ZZZ
H
1 RRR

�1
ZZZ1j

� �j	�1h +ZZZ
H
0 RRR

�1
ZZZ0j

1��

jRRRj�j	̂h(�)j�j	̂h(�)�1+ZZZ
H
RRR
�1

ZZZj

(3.9b)

= jIIIn nR
+	

1=2
h ZZZ

H
1 RRR

�1
ZZZ1	

1=2
h j�

� jIIIn nR
+	

1=2
h ZZZ

H
0 RRR

�1
ZZZ0	

1=2
h j1��

� jIII2nTnR + 	̂h(�)
1=2

ZZZ
H
RRR
�1

ZZZ	̂h(�)
1=2j�1 (3.9c)

where (3.9b) follows by repeatedly applying the determinant formula in
[20, Theorem 18.1.1, p. 416] to the numerator and denominator terms
in (3.9a). Using (3.8) and (3.9), we rewrite (3.6) as (3.10), shown at the
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bottom of the page. (Observe also that (3.11) holds.) Equation (3.10) is
the first closed-form Chernoff bound expression for noncoherent sig-
naling in a MIMO Ricean-fading channel. A special case for orthog-
onal signaling in a SISO channel with independent and identically dis-
tributed (i.i.d.) fading and white noise was derived in [33, eq. (12)]. For
unitary space–time codes in an i.i.d. Rayleigh-fading channel and spa-
tially and temporally white noise, a Chernoff bound was computed in
[8], see also [10].

A. Large	1=2
h ZZZH1 RRR

�1ZZZ1	
1=2
h ,	1=2

h ZZZH0 RRR
�1ZZZ0	

1=2
h , and

	̂h(�)
1=2ZZZHRRR�1ZZZ	̂h(�)

1=2

If the matrices	1=2
h ZZZH1 RRR

�1ZZZ1	
1=2
h ,	1=2

h ZZZH0 RRR
�1ZZZ0	

1=2
h , and

	̂h(�)
1=2ZZZHRRR�1ZZZ	̂h(�)

1=2 are “large” then (3.10) can be approx-
imated using (3.12), shown at the bottom of the page. Note that

rank(ZZZi) = nR � rank(�i); i 2 f0; 1g

and

rank(ZZZ) = nR � rank([�T
1 ; �

T
0 ]):

Equal Energy Signaling: Consider the case where

WWW = ZZZH1 RRR
�1ZZZ1 = ZZZH0 RRR

�1ZZZ0 (3.13)

which may be viewed as a multivariate extension of theequal energy
condition (and is closely related to unitary space–time codes in [8]; see
also Section III-C). For full-rank antipodal signaling (i.e.,�1 = ��0

has full ranknT), (3.12) simplifies to

PCB(�)j� =�� � 1
2
� exp �4�(1� �) � ���Hh 	

�1
h ���h (3.14)

which is minimized for� = 1=2. As expected, antipodal signaling per-
forms poorly in this scenario: there is no diversity gain and, additionally,
this scheme breaks down if the channel coefficients have zero mean.

If, in addition to the “equal energy” condition (3.13), we assume that
[�T

1 ; �
T
0 ] has full rank equal to2nT (or, equivalently,ZZZ has full rank

equal to2nTnR), then (3.12) becomes

PCB(�) WWW = ZZZH1 RRR
�1ZZZ1 = ZZZH0 RRR

�1ZZZ0

rank (ZZZ) = 2nTnR

�
jWWW j

j�(1� �) �	hj � jZZZ
HRRR�1ZZZj

exp ����Hh 	
�1
h ���h (3.15)

which is minimized for� = 1=2. To achieve the full rank2nT of
[�T

1 ; �
T
0 ], the number of time samples must be equal to or larger than

twice the number of transmitter antennas, i.e.,N � 2nT. Based on

(3.15), we formulate a determinant code optimization criterion for this
scenario: maximize

dist(�1; �0) =
1

jWWW j
�

WWW ZZZH1 RRR
�1ZZZ0

ZZZH0 RRR
�1ZZZ1 WWW

(3.16a)

= jWWW�ZZZH0 RRR
�1ZZZ1WWW

�1ZZZH1 RRR
�1ZZZ0j (3.16b)

= jWWW�ZZZH1 RRR
�1ZZZ0WWW

�1ZZZH0 RRR
�1ZZZ1j (3.16c)

where (3.16b) and (3.16c) follow by using [20, Theorem 13.3.8,
p. 188]. It is clearly desirable that

ZZZH1 RRR
�1ZZZ0 = 0 (3.17)

which can be viewed as a condition fororthogonalitybetween codes
�1 and�0. Then, (3.16) simplifies to

dist(�1; �0)jZZZ RRR ZZZ =0 = jWWW j: (3.18)

For space–time separable noise (i.e.,RRR satisfies (2.18)), the equal en-
ergy condition (3.13) simplifies to

VVV = �1CCC
�1
�
H
1 = �0CCC

�1
�
H
0 (3.19)

and the noncoherent determinant criterion in (3.16) becomes

dist(�1; �0) =
VVV ��0CCC

�1
�
H
1 VVV

�1
�1CCC

�1
�
H
0

nR

j�jnT

=
VVV ��1CCC

�1
�
H
0 VVV

�1
�0CCC

�1
�
H
1

nR

j�jnT
: (3.20)

If the orthogonality condition�1CCC
�1
�
H
0 = 0 holds (which follows

by simplifying (3.17)), the noncoherent determinant criterion reduces
to maximizingjVVV j = j�1CCC

�1
�
H
1 j.

B. Small	1=2
h ZZZH1 RRR

�1ZZZ1	
1=2
h , 	1=2

h ZZZH0 RRR
�1ZZZ0	

1=2
h , and

	̂h(�)
1=2ZZZHRRR�1ZZZ	̂h(�)

1=2

If the matrices	1=2
h ZZZH1 RRR

�1ZZZ1	
1=2
h ,	1=2

h ZZZH0 RRR
�1ZZZ0	

1=2
h , and

	̂h(�)
1=2ZZZHRRR�1ZZZ	̂h(�)

1=2 are “small” then we may approximate
(3.10) as

PCB(�) �
1
2
� exp ��(1� �) � ���Hh QQQ���h

+ 1
2
tr[(ZZZ1	hZZZ

H
1 RRR

�1 �ZZZ0	hZZZ
H
0 RRR

�1)2] (3.21)

whereQQQ was defined in (2.6). To derive (3.21), we have used the fol-
lowing approximation:

ln jIIIn +AAAj � tr(AAA)� 1
2
tr(AAA2) (3.22)

PCB(�) =
1

2
�
jIIIn nR

+	
1=2
h ZZZH1 RRR

�1ZZZ1	
1=2
h j� � jIIIn nR

+	
1=2
h ZZZH0 RRR

�1ZZZ0	
1=2
h j1��

III2nTnR + 	̂h(�)1=2ZZZ
HRRR�1ZZZ	̂h(�)1=2

� exp ��(1� �) � ���Hh ; ����
H
h � III2nTnR +ZZZHRRR�1ZZZ	̂h(�)

�1

ZZZHRRR�1ZZZ �
���h

����h
(3.10)

III2nTnR + 	̂h(�)
1=2ZZZHRRR�1ZZZ	̂h(�)

1=2

=
IIIn nR

+ � �	
1=2
h ZZZH1 RRR

�1ZZZ1	
1=2
h �(1� �) �	

1=2
h ZZZH1 RRR

�1ZZZ0	
1=2
h

�(1� �) �	
1=2
h ZZZH0 RRR

�1ZZZ1	
1=2
h IIIn nR

+ (1� �) �	
1=2
h ZZZH0 RRR

�1ZZZ0	
1=2
h

(3.11)

PCB(�) �
1

2
�

	
1=2
h ZZZH1 RRR

�1ZZZ1	
1=2
h

�

rank(ZZZ )
� 	

1=2
h ZZZH0 RRR

�1ZZZ0	
1=2
h

1��

rank(ZZZ )

	̂h(�)1=2ZZZ
HRRR�1ZZZ	̂h(�)1=2

rank(ZZZ)

� exp ��(1��) � ���Hh ;����
H
h 	̂h(�)

�1=2 �� 	̂h(�)
1=2ZZZHRRR�1ZZZ	̂h(�)

1=2 � 	̂h(�)
�1=2 ���h

����h
: (3.12)
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which holds for a “small”n�n positive-semidefinite Hermitian matrix
AAA. The approximation (3.22) was applied to (logarithms of) the three
determinant terms in (3.10). Note that (3.21) is minimized for� = 1=2.
Clearly, the optimal codes need to maximize

tr[QQQ���h���
H
h + 1

2
(ZZZ1	hZZZ

H
1 RRR

�1 �ZZZ0	hZZZ
H
0 RRR

�1)2] (3.23)

which further simplifies to

���Hh QQQ���h

if the line-of-sight component is dominant in (3.23), i.e.,

���Hh QQQ���h �
1
2
tr[(ZZZ1	hZZZ

H
1 RRR

�1 �ZZZ0	hZZZ
H
0 RRR

�1)2]:

In the following, we simplify (3.21) to the case of white noise and
uncorrelated fading.

1) White Noise and Uncorrelated Fading:Using the optimal
� = 1=2, and assuming that the additive noise is both spatially and
temporally white (i.e.,RRR = �2IIIn N ), the fading coefficients are
uncorrelated with equal variances (i.e.,	h =  2hIIIn nR

), and the
mean of the fading coefficients follows (1.4) (see also (2.26)), then
(3.21) simplifies to

PCB �
1

2
�exp �

nR
4
� SNRLOS � aaa

H
T (�1 ��0)

�(�1 ��0)
TaaaT

+ 1
2

SNR2SC � tr �
H
1 �1 ��

H
0 �0

2

: (3.24)

This approximation is valid if the matrices SNRSC ��1�
H
1 , SNRSC �

�0�
H
0 , and1

2
SNRSC �[�T

1 ; �
T
0 ]
T [�H

1 ; �
H
0 ] are small. If the line-of-

sight component in the exponent of (3.24) is dominant, then the beam-
forming scheme in (2.25) is optimal.

Rayleigh Fading: If SNRLOS = 0 (Rayleigh fading), it follows from
(3.24) that the optimal codes need to maximize

tr[(�H
1 �1 ��

H
0 �0)

2]: (3.25)

(This scenario has been recently investigated in [34], where a cutoff-
rate-based design criterion was proposed.) Since

tr(�H
1 �1�

H
0 �0) = tr[(�1�

H
0 ) � (�1�

H
0 )H ] � 0

orthogonal signaling (i.e.,�1�
H
0 = 0) is clearly optimal in this case.

For orthogonal signaling, the code design criterion (3.25) further sim-
plifies to

tr[(�1�
H
1 )2] + tr[(�0�

H
0 )2]: (3.26)

Subject to the power constraint (2.33), this criterion is maximized for
�1�

H
1 = uuu1uuu

H
1 and�0�

H
0 = uuu0uuu0

H , whereuuuH1 uuu1 = uuu0
Huuu0 = 1

anduuuH1 uuu0 = 0, which we refer to asorthogonal-subspace beam-
forming. Orthogonal-subspace beamforming is an example of a sig-
naling scheme in which the “equal energy” condition (3.13) does not
hold.

To summarize, orthogonal-subspace beamforming is optimal when
SNRSC is small, SNRLOS = 0, and the power constraint (2.33) is
imposed. The approximate Chernoff bound then simplifies to

PCB �
1
2
� exp �nR � (

1
2
SNRSC)

2 (3.27)

and reasonably good performance can be achieved only if the number
of receiver antennasnR is very large.

C. Equal Energy Orthogonal Signaling

We derive the optimal Chernoff bound for the case where the “equal
energy” and orthogonality conditions in (3.13) and (3.17) hold. Substi-
tuting (3.13) and (3.17) into (3.10), we obtain

PCB =
1

2
�

jIIIn nR
+WWW	hj

jIIIn nR
+ �WWW	hj � IIIn nR

+ (1� �)WWW	h

� exp ��(1� �) � ���Hh � (IIIn nR
+ � �WWW	h)

�1

+ [IIIn nR
+ (1� �) �WWW	h]

�1 �WWW���h (3.28)

whereWWW was defined in (3.13). Note that (3.28) remains the same if
� is replaced with1� �. Differentiating the logarithm of the Chernoff
bound expression in (3.28) with respect to� shows that (3.28) is min-
imized for� = 1=2. Therefore, the optimal Chernoff bound is

PCB WWW = ZZZH1 RRR
�1ZZZ1 = ZZZH0 RRR

�1ZZZ0

ZZZH1 RRR
�1ZZZ0 = 0

=
1

2
�
jIIIn nR

+WWW	hj

jIIIn nR
+ 1

2
WWW	hj2

� exp � 1
2
� ���Hh [IIIn nR

+ 1
2
�WWW	h]

�1WWW���h : (3.29)

In the following, we specialize (3.29) to the case of white noise and
uncorrelated fading, and use the obtained result to compute the op-
timal number of transmitter antennas for unitary mutually orthogonal
space–time codes.

1) White Noise and Uncorrelated Fading:Assume that the additive
noise is both spatially and temporally white (i.e.,RRR = �2IIIn N ), the
fading coefficients are uncorrelated with equal variances (i.e.,	h =
 2hIIIn nR

), and the mean of the fading coefficients follows (1.4). Then,
(3.29) simplifies to

PCB =
1

2
�
jIIIn + SNRSC � VVV jnR

jIIIn + 1
2

SNRSC � VVV j2nR
� exp � 1

2
nR SNRLOS

�aaaHT IIIn + 1
2

SNRSC � VVV
� �1

VVV �aaaT (3.30)

where

VVV = �1�
H
1 = �0�

H
0 (3.31)

and SNRLOS and SNRSC are defined in (2.32). For full-rankVVV and
large 1

2
SNRSC � VVV , the above expression simplifies to

PCB full rank �
1

2
�

1

j 1
4

SNRSC � VVV jnR
� exp �nTnR �

SNRLOS
SNRSC

(3.32)

which can also be obtained by substitutingRRR = �2IIIn N , 	h =
 2hIIIn nR

, and� = 1=2 into (3.15).
We now examine the performance of unitary orthogonal codes and

discuss the optimal choice of the number of transmitter antennasnT.
Under the power constraint (2.33), the optimalVVV (which minimizes
(3.32)) has all eigenvalues equal to1=nT, and therefore,

jSNRSC � VVV jMAX =
SNRSC
nT

nT

(3.33)

which is the same as (2.35) obtained for antipodal coherent signaling in
white noise and uncorrelated fading. The condition that1

2
SNRSC � VVV

is large simplifies to the requirement that SNRSC=(2nT) is large. Let
us choose

VVV = (1=nT) � IIIn (3.34)

as in the unitary space–time codes [8], [9]. The optimal Chernoff bound
(3.30) then simplifies to

PCB
VVV=(1=nT)�III

=
1

2
�

1+
SNRSC
2nT

2

1+
SNRSC
nT

� exp

SNRLOS
2nT

1+
SNRSC
2nT

�nTnR

: (3.35)

In Fig. 2 we show the Chernoff bound in (3.35) as a function of the
number of transmitter antennasnT and the line-of-sight SNRLOS,
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Fig. 2. Chernoff bound on error probability for equal energy orthogonal signaling as a function of number of transmitter antennasn and line-of-sight SNR ,
with n = 2 receiver antennas and scattering SNR= 10.

where the scattering SNR and number of receiver antennas are chosen
to be SNRSC = 10 andnR = 2. For larger values of SNRLOS, the
Chernoff bound decreases withnT. However, for smaller values of
SNRLOS, there exists an optimal number of transmitter antennas
nTOPT for which the Chernoff bound is minimized. Hence, if too
many transmitter antennas are used, the signal power per transmitter
may become so small that the resulting degradation in the performance
of each diversity branch cannot be compensated by the diversity gain,
see also the discussion in Section II-A1 and [35]. This is consistent
with early results in [35] and [36] where optimal numbers of links
for Rayleigh-faded noncoherent diversity systems were obtained
using criteria based on Bhattacharyya bounds and error probabilities,
respectively.

Differentiating the logarithm of (3.35) with respect tonT, it can be
shown that (3.35) is maximized when

ln
1 +

SNRSC

2nT

2

1 +
SNRSC

nT

+

SNRSC

nT

1 +
SNRSC

nT

�

SNRSC

nT

1 +
SNRSC

2nT

+

SNRLOS

2nT
�
SNRSC

2nT

1 +
SNRSC

2nT

2
= 0: (3.36)

Solving the preceding equation gives the optimal number of transmitter
antennasnTOPT that minimizes the Chernoff bound. In Fig. 3, we show
SNRSC=(2nTOPT) as a function of SNRLOS=(2nTOPT), computed
using (3.36). From Fig. 3, we can easily find the optimal number of
transmitter antennas for given line-of-sight and scattering SNRs. For
example, assume a Rayleigh-fading scenario (i.e., SNRLOS = 0) with
SNRSC = 10. Then, we read from Fig. 3 that SNRSC=(2nTOPT) �
1:5 for SNRLOS=(2nTOPT) = 0, and, therefore,nTOPT � 10=(2 �

1:5) � 3. It may be easily verified in Fig. 2 thatnT = 3 is indeed the
optimal number of transmitter antennas in this scenario.

IV. CONCLUDING REMARKS

We derived Chernoff-bound expressions on pairwise error proba-
bilities for coherent and noncoherent space–time signaling schemes.
First, general Chernoff-bound expressions were derived for correlated
Ricean fading and correlated additive Gaussian noise, extending the
corresponding results in [7] and [8]. (We also used our general Chernoff-
bound expression for coherent signaling to find a simple closed-form
expression for the exact pairwise error probability under this scenario,
see (2.11).) Then, we specialized our results to the cases of space–
time separable and white noise, and uncorrelated fading. Approximate
Chernoff bounds for high and low SNRs were derived and optimal
signaling schemes were proposed. We computed the optimal number of
transmitter antennas (minimizing the Chernoff bound) for noncoherent
signaling with unitary mutually orthogonal space–time codes.

Further research will include analyzing the accuracy of the proposed
bounds and computing simple expressions for pairwise error probabil-
ities of noncoherent and concentrated-likelihood detection schemes.

APPENDIX

PROOF OFLEMMA 1

For ann�1 complex vectoraaa = Refaaag+jImfaaag = aaar+jaaai and an
n�n complex Hermitian matrixAAA = RefAAAg+jImfAAAg = AAAr+jAAAi,
define

~aaa =
aaar

aaai
; ~AAA = 1

2

AAAr �AAAi

AAAi AAAr

: (A1)

Note that, sinceAAA is Hermitian,AAAr is symmetric (i.e.,AAAr = AAAT

r ) and
AAAi is skew-symmetric (i.e.,AAAi = �AAAT

i ), and, therefore,~AAA is sym-
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Fig. 3. Scattering SNR =(2n ) as a function of line-of-sight SNR =(2n ), assuming that the optimal number of transmitter antennasn is
deployed.

metric (see also [37, Ch. 2.9], [38, Ch. 15]). The integral in (2.5) can
be computed as follows:

1

�1

� � �
1

�1

1

2
[xxxHAAAxxx+ xxxHaaa+ aaaHxxx+ a0 + a�0]

� exp[� 1

2
(xxxHBBBxxx+ xxxHbbb+ bbbHxxx + b0 + b�0)] dxxx (A2a)

=
1

�1

� � �
1

�1

~xxxT ~AAA~xxx+ ~xxxT ~aaa+Refa0g

� exp � ~xxxT ~BBB~xxx+ ~xxxH~bbb+Refb0g d~xxx (A3a)

= 1

2
�nj ~BBBj�1=2 � tr ~AAA ~BBB

�1

� ~bbb
T ~BBB

�1

~aaa+ 1

2

~bbb
T ~BBB

�1 ~AAA ~BBB
�1~bbb

+ 2Refa0g � exp 1

4

~bbb
T ~BBB

�1~bbb�Refb0g (A3b)

= 1

2
�nj 1

2
BBBj�1 � 2tr AAABBB�1 � bbbHBBB�1aaa� aaaHBBB�1bbb

+ bbbHBBB�1AAABBB�1bbb+ 2Refa0g exp( 1
2
bbbHBBB�1bbb� Refb0g)

(A3c)

where (A3b) follows by using [20, Theorem 15.12.1, p. 322] or [39,
Theorem 10.5.1, p. 342]. Note also thatRefb0g = (b0 + b�0)=2 and
Refa0g = (a0 + a�0)=2. To derive (A3c) we have used the following
identities:

j ~BBBj = j 1
2
BBBj2 (A4a)

tr(~AAA ~BBB
�1

) = 2tr(AAABBB�1) (A4b)

~bbb
T ~BBB

�1

~aaa = bbbHBBB�1aaa+ aaaHBBB�1bbb (A4c)

~aaaT ~AAA~aaa = 1

2
aaaHAAAaaa (A4d)

~bbb
T
~aaa = 1

2
bbbHaaa+ 1

2
aaaHbbb (A4e)

~bbb
T ~BBB

�1 ~AAA ~BBB
�1~bbb =2bbbHBBB�1AAABBB�1bbb (A4f)

which hold for arbitraryn�1 complex vectorsaaa andbbb, andn�n com-
plex Hermitian matricesAAA andBBB, whereBBB is nonsingular. The iden-
tities (A4a) and (A4d) can also be found, for example, in [38, Ch. 15]
and [37, Ch. 2.9].
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Product-Function Frames in
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Abstract—Frames are the most widely used tool for signal representa-
tion in different domains. In this correspondence, we introduce the concept
of product-function frames for ( ). The frame elements of these frames
are represented as products of two or more sequences. This forms a gen-
eralized structure for many currently existing transforms. We define nec-
essary and sufficient conditions on the frame elements so that they form
a frame for ( ). We obtain windowed transforms as a special case and
derive the biorthogonal-like condition. Finally, we introduce a new family
of transforms for finite-dimensional subspaces of ( ), which we call the
“scale-modulation transforms.” The frame elements of these transforms
can be obtained via scaling and modulating a “mother” window. This trans-
form, thus, complements the shift-modulation structure of the discrete-time
Gabor transform and the shift-scale structure of the discrete wavelet trans-
form.

Index Terms—Frames, Gabor transform, scale-modulation transform,
signal reconstruction, windowed transforms.

I. INTRODUCTION

Representation of a signal in joint domains has been a very active
area in signal processing. Prime examples of such representation are
the short-time Fourier transform (STFT) and the discrete-time Gabor
transform (DTGT) in the joint time–frequency domain, and filter banks
and wavelets in the joint time–scale domain. The varieties of joint-
domain transforms are unified in this correspondence in the form of

Manuscript received November 30,1999; revised January 7, 2003. This work
was supported in part by Maryland Industrial Partnerships (MIPS) with Nortel
Networks under Contract 2218.24. The material in this correspondence was pre-
sented in part at the 35th Conference on Information Science and Systems (CISS
2001), Johns Hopkins University, Baltimore, MD, March 2001.

S. M. Joshi is with Lucent Technologies, Alameda, CA 94502 USA (e-mail:
joshi@ieee.org).

J. M. Morris is with the Communications and Signal Processing Labora-
tory, Computer Science and Electrical Engineering Department, University of
Maryland Baltimore County (UMBC), Catonsville, MD 21250 USA (e-mail:
morris@umbc.edu).

Communicated by J. A. O’Sullivan, Associate Editor for Detection and Esti-
mation.

Digital Object Identifier 10.1109/TIT.2003.810656

0018-9448/03$17.00 © 2003 IEEE


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


