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Abstract—We derive Chernoff bounds on pairwise error probabilities  gnd
of coherent and noncoherent space—time signaling schemes. First, general ) ~
Chernoff bound expressions are derived for a correlated Ricean fading ® =[o(1) #(2)---S(N)]
channel and correlated additive Gaussian noise. Then, we specialize the
obtained results to the cases of space-time-separable noise, white noiseis the matrix of symbols received in the coherent interval=
and uncorrelated fading. We derive approximate Chernoff bounds for 1, 2. ..., N. Here, thevec operator stacks the columns of a matrix

high and low signal-to-noise ratios (SNRs) and propose optimal signaling . . . .
schemes. We also compute the optimal number of transmitter antennas for one below another into a single column vecfor,denotes the identity

noncoherent signaling with unitary mutually orthogonal space—time codes. Mmatrix of sizen,.and ‘I™ and @ denote transpose and Kro_necker
Index Terms—Chernoff bounds, correlated Ricean fading, multiple an- product, respectively. Furthermore, we. ass””.“? that _th_e m0|sea._
tennas, pairwise error probability, space~time modulation, transmitterand ~ 2€r0-mean complex Gaussian vector with pOSIt!ve-deflnl_tg covariance
receiver diversity. matrix E[ee”/] = R, and that the vector of fading coefficiersis
complex Gaussian with meahn[h] and positive-definite covariance
E[(k — E[R])(h — E[R])"], denoted as
I. INTRODUCTION

2 H
Chernoff bounds on pairwise error probabilities have been used Elb] =p,. E[(h—p,)(h—p,)"] =¥, (1.3)
to design coded modulation schemes for fading channels [1]-[6 » ) . )
re “H” denotes Hermitian (conjugate) transpose. We will examine

and, more recently, to design space—time codes and analyze ) ) A
performance of multiple-input-multiple-output (MIMO) wirelessthe following model for the meap,, of the fading coefficient vector

communication systems, see [7]-[11]. Assuming uncorrelated Rice4R€€ als0 [17]):
and Rayleigh-fading channels and white noise, exact and approximate
expressions for pairwise error probabilities of coherent space—time
signaling schemes were derived in [12] and [13] (see also referen
therein). (For comprehensive treatment of methods for computi
pairwise error probabilities in fading channels, see [14].) Recent

exact and asvmptotic pairwise error probabilities have been com In Section I, we derive Chernoff bound expressions for coherent
X Symptotic pairw P n Ve b . pu]sc? aling. We specialize these expressions to the space—time separable
for space-time signaling schemes in correlated Rayleigh fading an

‘noise scenario (Section II-A) and examine optimal signaling schemes.

white noise, see [15] af‘d [16]. In this correspondence, we.derlv hite noise and uncorrelated fading models are considered in Sec-
Chemoff-bound expressions for coherent and noncoherent S|gnal{ II-Al. In Section Ill, we derive Chernoff bounds for noncoherent

in a correlated flat Ricean-fading channel and correlated additive naling. Based on approximate expressions for high and low scat-
Gaussian noise, generalizing the corresponding results in [7] and ltﬂeﬁing SN.Rs we propose optimal code design criteria for noncoherent
Approximate Chernoff bounds are derived for high and low scatterir}ggna”ng (S,ections lI-A and 11I-B). Finally, in Section I1I-C we

signal-to-noise ratios (SNRs) and optimal signaling schemes Eramine equal-energy orthogonal signaling and compute the optimal

proposed. . . .
. . . number of transmitter antennas for this scenario.
First, we introduce measurement and fading models. Mhex 1

vector signal received by the receiver array at tinlemodeled as

p, =z-ar @ar 1.4)

(\:/ﬁTQ‘ereaT andag areline-of-sighttransmitter and receiver array re-
n - . : - .
I'sﬁonses, and is the complex amplitude of the line-of-sight signal.

Il. COHERENT SIGNALING

y(t) =Ho(t) +e(t). t=1....N (1.1)  we compute Chernoff bounds fooherensignaling (i.e., assuming

that the channel is known to the receiver) by obtaining the Chernoff
ound expression for a given channel realization, and averaging it over
Il possible channel realizations under a correlated flat Ricean-fading

whereH is thenr x nt channel response matrig(t) is thent x 1
vector of symbols transmitted byr transmitter antennas and receive
by the receiver array at tinteande(¢) is additive noise. Stacking aN'

: . : . l.
samples into a single vector, the above set of equations may be W onsider the measurement and fading models in Section |, where the

as channelkh and noise covariancR are known to the receiver. Assume
that we wish to decide between two space—time cdleand®,, i.e.,
totest the hypothesi$;: ®, transmitted versus the alternatiig: ®o
transmitted. Assume also thl&; and®, are equiprobable. Undéf, ,
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Givenh, the Chernoff bound on pairwise error probability for decidingnterestingly, the exact minimum pairwise error probability for
betweenH; andH, is coherent detection (averaged over channel realizations) can be readily

computed using (2.10) and [14, Ch. 12.1.2.1 and eq. (4.2)]
Per(h, A) = % exp[€(Alb)], 0<A<1 (2.2)

PEP(®q, ® ! o 1
where (%o, 1) =7 /0 Hppng + 1525 - QP
§(AR) =1In E{exp[Alnpo(ylh) — Alnp, (y|h)]|H, } (2.3) 1 -t
_ - exp len’a -, <InTnR+_1 75 -Q h) Qu,,
see [18, Ch. 2.7], [19, Ch. 3.4], and [8, Appendix B]. Here, (2.3) be- S sin’
comes (2.11)

E(\h) = ln/ / - exp[-A (y—Zoh)" R (y—Zoh) Se€€ also [12], where a similar expression was derived for uncorrelated
o |TFR| fading and white noise.

Let us now introduce some terminology and notation. A positive-
semidefinite Hermitian matrix is “large” if its nonzero eigenvalues are
wheredy = d(Rey)d(Im{y}). Let us denote complex conjugation by5|gn|f|cantly larger than. Similarly, a positive-semidefinite Hermitian
“x.” To compute (2.4), we use the following lemrha. matrix is “small” if its eigenvalues are significantly smaller than

Also, we will denote by®'/2 a Hermitian square root of a Hermitian
Lemma 1: Let B represent am x n positive-definite Hermitian matrix @; then®—'/2 = (¥'/2)~".

matrix andA ann x n Hermitian matrix; leta andb represent: x Large 1 \IJ”ZQ\IJ” - If the matrix ‘I,l/ZQ\I,IP is “large” then
1 vectors of complex constants; and gt andb, represent complex e can approxmate (2.10) as
scalars. Then

—(1-)) (y—Z, "R ' (y—Z,h)|dy (2.4)

1 1
FPop = - - .
[ |t arsatatata o tai SR e T A
“exp[=L(2" Bz + 2"b+ "2 + by + )] dz cexp[—pl I PQE) -, ] (2.12)
=Lz |L Bt [Qm.(ABfl) —bIB la—aB b whereTI(X) denotes the projection matfbonto the column space
of X, and|A|. denotes the product of thelargest eigenvalues of a
LB 'AB b+ 2Re{ao}] Hermitian matrixA. Note also th{itagk(Q) =nRr -.rm.lk('.fIn —Py).
If ®; — ®, has full rankny (which is therank criterionin [7]), the
. eXp[%b”B_1b — Re{bo}]. (2.5) above expression simplifies to
1 1 _
Proof: See the Appendix. Pop full vank & 5 - T e exp(—pt @, 'p,).  (2.13)
1 .7Q¥;,

Let us define ) .
To achieve the full rankT of ®; — ®,, the number of time samples

Q=(2,-2)"R (2, - 2,). (2.6) needs to be equal to or larger than the number of transmitter antennas,
) . _, i.e,N > nyp. From (2.13), it follows that the optimal codes should

Then, applying Lemma 1 to (2.4), with = y — Z,h, B = 2R™", 5 vimize
A=20,a=0b=2\-R Y2 - Zy)h,ao = 1/|7R|, and , .
bo = MR Qh, we get Q| = |[(®7 — ®;) ©1.,]- R -[(8] —@)) 0 1,,]| (2.14)

ENR) = (A2 = ))-h"'Qh (2.7) Which is an extension of théeterminant criteriorin [7] to this sce-

nario.
which is minimized forx = 1/2, yielding the optimal Chernoff bound ~ Small 1 ®,/*Q®,/*: If the matrix 1 ®;/*Q®¥;/* is “small,” then
for the case of ideal channel state information we can approximate (2.10) as
Pep(h) = L exp(—1n"Qh). (2.8) Pop = % - exp{—1 tr[Q(p,, ;] + ¥4)]}

Now, following the Ricean-fading model for the channel coefficients =1 -exp{—} E("Qh)}. (2.15)

in (1.3), we average (2.8) ovér Clearly, the optimal codes need to maximize

oo oo 1
Fos :L /f Pes(h) s tr[Q(pypy + %) =Ff{[(‘1’1 ®5) 0 L, ]- R
coxp{—(h— ;)" ¥ (h—p,)} dh (2.9) (@1 = @) 0 L] - (wot! +¥0)} (2.16)

which can be computed by applying Lemma 1 with= h, B = which can be viewed as a measure of the SNR. We can define the
20, '+ 1Q,A=0,a=0,b=-2%,"p,, a0 = 1/(2|7¥,|), Riceank-factor as the ratio between the line-of-sight and scattering
andbo = pf @', yielding SNR components

1 1 - mQu
Pep=5 7,7 K= fhxrh 2.17

2 |IVLT”R + %Q‘I’h| TJI‘(QlI’h) ( )

- exp _iu}’j (I"T"R + f;Q‘I’h)ﬂ Qu,]. (2.10) generalizing the single-input single-output (SISO) definition in, e.g.,
[21, Ch. 1.2.2]. If the line-of-sight SNR component is dominant
1The integral in Lemma 1 has a fairly general form. Throughout this corre-
spondence, we will use its special case with= 0 anda = 0. 2For the definition of a projection matrix, see, e.g., [20, Ch. 12.3].



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003 1329

(i.e., large Ix) then the optimal code de3|gn criterion for smalbliscussion, we assume thabth the receiver and transmitter arrays
1 \PWQ\I! reduces to maximizinguZQpu, with respect to consist of isotropic omnidirectional antennas, implying that
@1 — .
H H
In the following, we specialize the above results to the case of arar =nr and agag = ng. (2.26)

space-time-separable additive noise. 1) White Noise and Uncorrelated FadingAssuming that the addi-

tive noise is both spatially and temporally white (iB.~= ¢*I.. ~),
the fading coefficients are uncorrelated with equal variangg§i.e.,

In certain practical applications, it is reasonable to assume that agl; — ;2 I,..,), and the mean of the fading coefficients follows
ditive noise is separable with respect to space and time, i.e., its spatiak) (2.10) simplifies to

covariance is constant in time and its temporal covariance is the same

A. Space—Time-Separable Noise

at all sensors (see, for example, [22] and [23]). Therefore, the covafi-, — 1, _ 1 : _
ance matrix of the space—time noise snapshzn be written as 2 L, + 95 /(40?) - U|"®
ol ¢ nr|z)? )2 -t
R=C"ox (2.18) - exp {— ":'Z' call < - f”; U*) U*aT] (2.27)
do 402
whereC andX are the noise temporal and spatial covariance matrices.
Then, (2.6) simplifies to where
Q=U"ox" (2.19) U= (& — )3 —B)". (2.28)
where _ . .
Here we have used the fact thgf ax = nx, which holds if antennas
(B —BNC B — B 29 at the receiver are isotropic (see also (2.26)). . .
U=(® 0)C (& o) (2.20) For full-rankU and largey; /(402) - U, (2.27) is approximated as
For large; &,/°Q®,/* =  ,*(U" © 27H)¥,/* and®, — &, 1 1 nr - np - Jof?
having full ranknr, an approximate Chernoff bound follows easily Fcs full rank & 5 * 7575 jrog  OXP {—72]
2 |¢p/(402)-U| O

from (2.13) (2.29)

1 =" -1
2 L@, U exp(—p, ¥, p,) (221)  \where we have used the fact théfar = nr, which holds if the
* transmitter array consists of isotropic antennas (see also (2.26)). Equa-

PCR full rank ~

and the determinant criterion simplifies to maximizing tion (2.29) can be obtained by substitutidy = %I, ., C = Iy,
_ i o W), = 10y, (1.4), and (2.26) into (2.21).
U= 1[(21 = ®0)C (21— o) | (2.22) For smally? /(40?) - U, (2.27) approximately equals
with respect to®, — .. , 1 el i h?
Consider now the case whete®,/*(U* © =) ®,/” is“small’  Pop & 5 exp |=— 5 arUlar - 40; ~tr(U)| . (2.30)

and the mean of the fading coefficient vechofollows (1.4). Then, an
approximate Chernoff bound follows by substituting (2.19) and (1.4) is interesting to examine optimal signaling schemes under the two
into (2.15) scenarios above. For simplicity, let us concentrate on antipodal sig-
PC,B ~ ]5 - exp {_]Z |¢|2 . a?U*aT . agEflaR na“ng

P, =-P (2.31)
- L[ e z*l)mh]} . (2.23)

implying thatll = 4&, ®1. We define normalizedline-of-sightand

Assuming that the line-of-sight SNR component is dominant, thstatteringSNRs as
noise is temporally white (i.e¢' = Iy), and signaling is antipodal

(ie.,®; = —®,), the optimal codegneed to rgaximiz?@I.@lTaT. SNR.os = @ SNR; Lh (2.32)

Under the power constraint(®,®;") = 1, ap ®7®; ar is max- a

imized for We also impose a power constraint on the transmitted symbols
S - <1/, [allar > -arall (2.24) tr(®, D7) = tr(Po B ) = 1. (2.33)

Large Full-Rank SNRs¢: - &, ®{": For large, full-rank SNRc -
# the optimal antipodal codes (which minimize (2.29)) are con-
structed by maximizing

implying that the optimafp, is a rank-one matrix with the following 3,3
structure:

P = - P ISNRsc: - &1 @7 (2.34)

- . ca} [5(1), 5(2), ..., s(N)] (2.25)
far - 3 Js)P

subject to (2.33). Clearly, the optim@l; $# has all eigenvalues equal
to 1/n1; hence,

which corresponds tdbeamformingi.e., “spatial matching” to the |SNRsc - @1 <I>{1|MAX = < (2.35)
line-of-sight transmitter array response. This can be easily seen

by rewriting (1.4) asE(H) = « - ara’}, and by observing that

at = (a1)”. Note also thauf'ar = nr if the transmitter array  sThe SNRs defined in (2.32) are normalized so that they do not depend on
consists of isotropic omnldlrectlonal antennas. In the followinthe numbers of receiver and transmitter antennas.

SNRso)"T

nrt
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Fig. 1. The approximate single-input—single-output gain as a function of

see also [24] and [25]. In addition, the condition that SNR® | &1
is large simplifies to the requirement that SNR nr is large. For ex-
ample, orthogonal designs, satisfying

&2 = (1/n1) I, (2.36)

are optimal. Substituting (2.35) into (2.29), we obtain an approximate

Chernoff bound for optimal antipodal signaling

PCB,npt
large SNRSC/”T
1 <SNRgc>_"T”R |: nT - NR - |J|2:|
S (Rl CeXp | —
2 nT vy
1 1 7nT77.R
=5 {— - K(SNRsc, SNRL()S):| (2.37)
2 |nr
where
#(SNRsc. SNRuos) = SNRsc - exp (%) . (238)
SNRs¢

In a SISO system, (2.37) simplifies t - 1/x(SNRs¢, SNRLos).
Therefore, we refer te (SNRsc:, SNRy,0s) as an approximate “gain”
of a SISO system. In Fig. 1, we shawtSNRs;c, SNR.os) in decibels
as a function of scattering and line-of-sight SNRs, also in decibels

80 100

20

SNR . (dB)

line-of-sight and scattering SNRs.

we obtain an approximate Chernoff bound for optimal antipodal sig-
naling

PCR‘OP",

small SNRgc

-exp [—nrnr - SNRLos — nr - SNRs¢]

N N

1 —nTnR
- |:exp (SNRLOS + o SNRgc>:| . (2.39)
T
Chernoff Bound for Antipodal Orthogonal DesignsWe compute
the Chernoff bound for antipodal orthogonal designs by substituting
(2.31) and (2.36) into (2.27)

FPc
CB 3 = -3,
&, p = (1/nr) - In,
SNRy O —RTRR
_ ]. SNRSC nT
Interestingly, the Riceak’-factor in (2.17) simplifies to
- SNR.os
K=——"-—. 2.41
Y= S R (2.41)

. Observe that (2.40) decreases exponentially as the number of receiver

meet the large SNR;/nr requirement, we consider only the valuesantennasir grows. Increasing the number of transmitter antennas

of scattering SNR- larger than20 (13 dB). For fixed line-of-sight
SNR.os and for SNRos < SNRsc, x(SNRs¢, SNRLos) grows
linearly with SNR;c:. For fixed SNRc and SNR¢ < SNR.os,
k(SNRsc, SNR,os) grows exponentially with SNR»s. Also, note
that the minimum value of(SNRsc, SNRLos) in Fig. 1is20, which
corresponds to the Chernoff bound(25 in a SISO system.

Small SNRs¢ - ®,®!: For small SNR¢ - &, ¥ and nonzero

results in two opposite effects. Clearly, the diversity gain (equal to
nyng) increases withv thereby reducing error probability. However,
due to the power constraint (2.33), the signal power per transmitter an-
tenna decreases, which results in larger error probability per diversity
branch. These two effects can also be seen by observing (2.40), which
decreases exponentially with-, but the argument of the exponent (in
square brackets) also decreases with In this case, the first effect is

SNRos, the optimal antipodal codes (which minimize (2.30)) are cordominant: (2.40) decreasessas grows for all possible SNR»s and

structed by maximizing SNR)s -a¥ @; ®7 ar +SNRsq - tr(® 817),
subject to (2.33), and are given in (2.25). Th@{,®! = (1/n1) -
ara’ and the condition that SNR - &, & is small simplifies to the
requirement that SNR: is small. Substituting these results into (2.30

SNRs¢. Consequently, the corresponding pairwise error probability
decreases witht as well, see (2.11). Hence, for the fading, signal, and
noise models considered here, it is desirable (in terms of minimizing
)the pairwise error probability) to use as many transmitter antennas as
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possible* This is not true for noncoherent signaling, see Section Ill-Gvhere, to compute (3.4a), we have used the identity

Information-theoretic criteria have also been used to determine the op- 1 1
timal number of transmitter antennas. For example, maximizing noner-g— R,,+ — R, 1>
godic Shannon capacity for coherent low-rank channels was propose -

in [26] and [27], resulting in optimakr that is equal to the channel

rank.

I1l. NONCOHERENTSIGNALING

We compute Chernoff bounds feroncoherensignaling, i.e., as- Pop(\) == -
suming that the channel is not known to the receiver. Consider the mea- 2 [ARy 1+ (1= MRy
surement model (1.2) with known noise covariadteand unknown

iy : -ex){—/\(l—)\)- H(Z, — Zo)"

channel coefficient vectdt, described by known mean, and known 1 B (41 0
covariance®,, see (1.3). (Efficient methods for estimating statistical .
properties of MIMO Ricean-fading channels have been recently pro- ARy 1+ (1=N)Ry 0] (21 —ZO)#h}
posed in [28] and [29].) As before, we consider testing the hypothesis N I
H,: ®, transmitted versus the alternatidlg: ¥, transmitted and as- - 1 Ry, 1| 'A|Ry’0|
sume thatk,; and®, are equiprobable. In this scenario, the received 2 |R+2%,(0)Z"|

measurement vectgrunderH; is a complex multivariate normal with
meanZ, u, and covarianc®®, ; = Z,¥,Z% + R, whereas under
H, itis a complex multivariate normal with meafyu,, and covariance

R, o = Zo¥,Z} + R. Note that the above likelihood functions are

marginal likelihoodswhere the unknown channel vectohas been in-

tegrated out with respect to its prior distribution. (It is also possible toh 0 <\ <1 and
construct concentrated-likelihood detectors that do not require knoWf'€eY = A = L.an

1331

=XNR, - R, ,+(1-NR,; 17" R, — \R,, (3.5)

Y

1 |Ry,l|)\ 3 |Ry40|l_)\

-exp{ —N1=))-pl(2, - 2,)"

edge ofp,. ¥4, or R at the receiver. In these detectors, the likeli- Z =2, Z,

hood function is concentrated with respect to the unknown channel and

noise parameters [15], [30], [31] or statistical channel parameters [31] \ilh(k) _ |:>\‘I’h 0 }
in a manner similar to that used to derive deterministic and stochastic ’ 0 (1-)\¥, '

maximume-likelihood methods for sensor array processing [32]. Per-
formance analysis of concentrated-likelihood detectors is beyond fHServe that

scope of this correspondence.)
As before, denote the pdf gf underH; asp:(y), « = 0, 1. Then,

Z"R+2¥,(\NZ"17'Z
=Z"R'z-2Z"R'Z

following [18, Ch. 2.7], [19, Ch. 3.4], and [8, Appendix B], the Cher-

noff bound on pairwise error probability for deciding betwd&nand
Ho is

Pee(\) = jexplé(V)],  0<A<1 31)

where

¢ = nE{exp[Aupo(y) — Aupi ()] [Hi}.  (32)

Here, (3.2) becomes

)\):ln/ /
5( Jo S |TrRy,(J|/\'|7rRy,1|17/\

- exp [—)\(Q—ZOI‘}L)HRJIO(?I—Zolih)

— (1-0) W=Zvw) "B\ (y=Zum,) | dy (3:3)
which can be computed by applying Lemma 1 with= y — Z1,,,
B=2-[AR;,+(1- MR, ], A=0,a=0b=2\ R,
(Z1=Zo)py,, a0 = 1/(|7Ry o |7 Ry, 1|' "), andbo = Aty (2, —
Zo)" R, - (Z1 — Zo)py:

E(A) = —In[[AR, o +(1—NR, |- Ry o - Ry 1]
M u (1 1 -
—#y (Z1=20)" (Y Byot = Byr ) (Z1-Zo)m,

(3.4a)

ln{ |Ry,1|’\ ) |Ry,0|17k
|’\Ry,1+(1_’\)Ry<0|

AR, +(1=MNRy 0]~ (21— Zo)p,

}—A<1—A>~uf?<z1—zo>ﬂ

(3.4b)

“Note, however, thalPc in (2.40) converges tal /2)-exp[—nr - (SNRsc +
SNRLOS)] asnt — oo.

N —1
: [\Ilh(k)’l +ZHR’IZ] .Z"R'z

=Z"R1'Z-Z"R'Z¥,())

onpny +Z"R' 28,0\ -Z"R 2
=Longnpy + Z"R'Z%,(\) = Z"R ' 29, ()]

Mongny + Z"R' 28,V - Z"R'Z
=Longny + Z"R7' 2%, (V)] - Z"R7' Z.

Here, the right-hand side of (3.8a) follows by using the matrix inversion

lemma in [20, eq. (2.22), p. 424]. Also,
|Ry|* - |Ryo|' "
|)‘Ry‘1 + (1 - ’\)R?l‘()'
_|R+2,%,Z1") - |R+ 2,9, 2] '
IR+ 2Z¥,(0\)Z"|

which follows from the matrix inversion lemma in [20, eq. (2.22), p.
424]. Then, the Chernoff bound for a givans

. [R+Z\ilh()\)Z”]71 (Zl—Zo)ph} (3.6)

(3.73)

(3.7h)

(3.83)

(3.8b)

(3.8¢c)
(3.8d)

(3.93)

_ R ®u) % +ZV R 20N, + 20 R 2|

|B|- %, (\)|- &40 +Z7 R Z|

= Logny + €, Z'R™' 2,9,
Ny + €2 ZE R Z0w )

“Mznpng + TN 22 R 28, (0!

where (3.9b) follows by repeatedly applying the determinant formulain
[20, Theorem 18.1.1, p. 416] to the numerator and denominator terms
in (3.9a). Using (3.8) and (3.9), we rewrite (3.6) as (3.10), shown at the

(3.9b)

(3.9¢)
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bottom of the page. (Observe also that (3.11) holds.) Equation (3.10§3s15), we formulate a determinant code optimization criterion for this
the first closed-form Chernoff bound expression for noncoherent sigeenario: maximize

naling in a MIMO Ricean-fading channel. A special case for orthog- 1 w ZI'R™'Z,
onal signaling in a SISO channel with independent and identically dis- ~ dist(®1, ®¢) = W] o (3.16a)
tributed (i.i.d.) fading and white noise was derived in [33, eq. (12)]. For ZyR™ 2, w

unitary space—time codes in an i.i.d. Rayleigh-fading channel and spa-

_ Hp-—1 17—l pH p—1
tially and temporally white noise, a Chernoff bound was computed in =W-2Zo R Z\W Z'R" 2| (3.16b)

[8], see also [10]. =\W-Z R 'Z,W'ZI'R'Z,| (3.16c)
A. Large®,*ZIR 17, %, ©,°Z¥ R Z,®,?, and where (3.16b) and (3.16c) follow by using [20, Theorem 13.3.8,
W, (N)/2ZER1Z¥, (N /2 p. 188]. It is clearly desirable that

If the matrices®,/*Z' R~ Z,¥}"*, ®,/*Z{' R Z,¥,/*, and Z¥R 'Zo=0 (3.17)

¥, (\N)2Z"R™' Z%,()\)'/? are “large” then (3.10) can be approx-

hich i iti h li
imated using (3.12), shown at the bottom of the page. Note that which can be viewed as a condition forthogonalitybetween codes

&, and®,. Then, (3.16) simplifies to

TR, e dist(®1 20)lzp1p-12,-0 = W], (3.18)
o7 For space-time separable noise (il¢ satisfies (2.18)), the equal en-
rank(Z) = ng - rank([®1, o ]). ergy condition (3.13) simplifies to
Equal Energy Signaling Consider the case where V=36,0"8"=3,0'8} (3.19)
W=2Z'R 'Z,=Z{R 'Z (3.13)  and the noncoherent determinant criterion in (3.16) becomes
which may be viewed as a multivariate extension ofeéljeal energy Bt (B Bo) = V-&,07 '@V '®,C o) ™"
condition (and is closely related to unitary space—time codes in [8]; see © ist(P1, Bo) = |Z |
also Section 111-C). For full-rank antipodal signaling (i.®; = —®,
has full ranknt), (3.12) simplifies to _|v-ecTteivie.cl e (3.20)
- D '

Pop(Mlg,——a, & 1 exp {—4)\(1 —-A)- #,Ij\Illjlph} (3.14) ) N . )
If the orthogonality conditionk;C ™" ®;° = 0 holds (which follows
which is minimized for\ = 1/2. As expected, antipodal signaling per-by simplifying (3.17)), the noncoherent determinant criterion reduces
forms poorly in this scenario: there is no diversity gain and, additionallyy maximizing|V| = |&,C~' ®!|.
this scheme breaks down if the channel coefficients have zero mean.
If, in addition to the “equal energy” condition (3.13), we assume th@. Small¥}/*Z!'R~'Z,%}/* ®}/*Z/R~'Z,¥}/*, and
[T, ®7] has full rank equal tant (or, equivalentlyZ has full rank W, (NYV2ZE R 2%, (\)/?

equal to2nrnr), then (3.12) becomes it the matrices@L{QZ{{R’lzl\PL/Q, ‘I’L/ZZ(g{RleO‘IJL/?’ and
B, (\NY2ZER1ZE, (M) are “small” then we may approximate

Por(M)|w = ZUR™'Z, = ZVR™'Z, (3.10) as
rank (Z) = 2nrnr Pop(A\) = § - exp (—A(l =) {IM[JQILh
~ W] ) Hg—1 1 Hp-1 Hp—142
DS AR (—ﬂh T, p,,) (3.15) t3ul(Z1 ¥ 2 R~ Z0%0 20 R) ]}) (3.21)

which is minimized forA = 1/2. To achieve the full rankny of where@ was defined in (2.6). To derive (3.21), we have used the fol-
) ) lowing approximation:

[®7, ® ], the number of time samples must be equal to or larger than

twice the number of transmitter antennas, i’€.,> 2nr. Based on In|I, + A| = tr(A) — %tr(A2) (3.22)
Py = L Mo + B 2R Z G Ly + 9 2R 20w
CB =3 n N
2 Lonpng + W0 (V22T R 29, (V)72
H H Hp—1lga “l oHpo1 Ry,
cexp 4 —A(1—\)- [,uh ’ —uh] : [IznTnRJrZ R Z‘Ilh(A)] z'r'z-| (3.10)
“Hh

Dopng + (N Z7 R 28, (V)
Lijnn +A-9,°ZH R Z, 9}/ NI=N\) -2 Z{R ' Z, %}/
VA=Y - OPZV R 28 Ly + (1= )) - 22 R Z, W)

A

(3.11)

1—X

‘xp;/ﬁz{’R—1z1\p;/2

e 2] R 2,9,

rank(Zy) rank(Zg)

Pc]:;(/\) ~

DO =

‘\ilh(/\)W?Z”R“ 28, (V)12

rank(Z)

- exp {—A(l—/\)- [ufg—pf] T\ V21 (\ilh(A)WZHR*IZ\i:h(A)l/Z) ()2 { Fn ]} (3.12)
—HKy,
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which holds for a “small’» x n positive-semidefinite Hermitian matrix whereW was defined in (3.13). Note that (3.28) remains the same if
A. The approximation (3.22) was applied to (logarithms of) the threkeis replaced witi — . Differentiating the logarithm of the Chernoff
determinantterms in (3.10). Note that (3.21) is minimized\fer 1/2.  bound expression in (3.28) with respecttshows that (3.28) is min-
Clearly, the optimal codes need to maximize imized for A = 1/2. Therefore, the optimal Chernoff bound is

t(Quypy, + (21, ZVR™' — Zo®,4Z ' R™')?] (3.23) L L W
nTnR .

which further simplifies to Pen W=2z'R'Z,=2ZlR'Z, T 35" i FIWE, P
npnR B)
K Qu, Z'R'Z, =0
if the line-of-sight component is dominant in (3.23), i.e.,
1 Qu, > L (2,9, 2V R — Zow, Z0 R, coxp =1 pf Lugog + 5 W8] Wa, | (329)
In the following, we simplify (3.21) to the case of white noise angh, he following, we specialize (3.29) to the case of white noise and
uncorrelated fading. uncorrelated fading, and use the obtained result to compute the op-

1) White Noise and Uncorrelated FadingJsing the optimal i) number of transmitter antennas for unitary mutually orthogonal
A = 1/2, and assuming that the additive noise is both spatially a'%%ace—time codes

temporally Wh't.e (ie.B = 7 I”RN.)‘ the fad,'Qg coefficients are 1) White Noise and Uncorrelated FadingAssume that the additive
uncorrelated W'th equal variances (8, = Vilupag), and the gice is poth spatially and temporally white (i.8,= 0”1, ~), the
mean o_f the_ _fadlng coefficients follows (1.4) (see also (2.26)), thefgding coefficients are uncorrelated with equal variances @¢.,=
(3.21) simplifies to U1y, ), and the mean of the fading coefficients follows (1.4). Then,

_PR {SNRLOS ca (@, — B0) (B, — ®0) ar  (3.29) simplifies to

4
i H ’ Pep = 1 |I.; +SNRsc - V"R oo [ -
i %SN%C a |:(§1 B {)O {)O) :|}) . (324) e 2 |InT + 15 SNRs¢ - V|2“R XT

This approximation is valid if the matrices SNR- &, $4!, SNRs¢ -

@, ¢, andiSNRsc - [®87, {7 (@1, ®{'] are small. If the line-of-

sight component in the exponent of (3.24) is dominant, then the bearTF
forming scheme in (2.25) is optimal. where

1
Py ~ §~exp (

nr SNRLos

NI

-l (I, + % SNRsc - V*) ™" V*aq] (3.30)

Rayleigh Fading If SNRr.0s = 0 (Rayleigh fading), it follows from .37 — .V
(3.24) that the optimal codes need to maximize V=29 = 2% (3.31)
tr[(®] B — B ®0)°]. (3.25) and SNRos and SNRc are defined in (2.32). For full-rank” and

(This scenario has been recently investigated in [34], where a cutd@fge  SNRsc - V, the above expression simplifies to

rate-based design criterion was proposed.) Since ’ 1 1 (" SNRuos
tI‘(':I)l”‘I>1<I)6T‘I>o) :tr[(<I>1¢'é[)~ (@1(1)(?)”] 2 0 CB full rank ~ § m exXp nrnRr SNRSC

orthogonal signaling (i.e®: ®{ = 0) is clearly optimal in this case. (3.32)

For orthogonal signaling, the code design criterion (3.25) further sim-

which can also be obtained by substituti®y = ¢*I,,~, ¥, =
UL pny, andX = 1/2 into (3.15).
tr[(@1 @)% + tr[(Bo ()7 (3.26)  We now examine the performance of unitary orthogonal codes and
discuss the optimal choice of the number of transmitter antemnas
Subject to the power constraint (2.33), this criterion is maximized f@inder the power constraint (2.33), the optin¥al(which minimizes
.87 = wini’ and®o @i’ = wouo™, whereui'u, = wo”uo =1 (3.32)) has all eigenvalues equallidn, and therefore,
andufu, = 0, which we refer to a®rthogonal-subspace beam-

plifies to

- ) N - SNRsc \""
forming. Orthogonal-subspace beamforming is an example of a sig ISNRs¢ - V|pax = (3.33)
naling scheme in which the “equal energy” condition (3.13) does not nr
hold. which is the same as (2.35) obtained for antipodal coherent signaling in

To summarize, orthogonal-subspace beamforming is optimal WhgRite noise and uncorrelated fading. The condition h&NRsc - V

SNRsc is small, SNRos = 0, and the power constraint (2.33) isjs |arge simplifies to the requirement that SNR (2n7) is large. Let
imposed. The approximate Chernoff bound then simplifies to us choose

Pep = § - exp [-nr - ($SNRsc)?] (3.27)
and reasonably good performance can be achieved only if the number
of receiver antennasr is very large.

V=_Q/nr) L., (3.34)

as in the unitary space—time codes [8], [9]. The optimal Chernoff bound

C. Equal Energy Orthogonal Signaling (3.30) then simplifies to

We derive the optimal Chernoff bound for the case where the “equlg(LB
energy” and orthogonality conditions in (3.13) and (3.17) hold. Substi-
tuting (3.13) and (3.17) into (3.10), we obtain

In n W‘I’7 SNR« 2 . —nTnR
N S Joem) (o
S ——NhL %D . (3.35)

V=(1/np)Tny

2 |InTnR + AW\I’h| . |InTnR + (1 - A)‘/I"\I’h‘ = 5 . 1+ SNRgg m
nT

2np
. exp [—m A -t (L + AW,
In Fig. 2 we show the Chernoff bound in (3.35) as a function of the
+ Moy + (1= X) - W¥,]7'} - Wp,] (3.28) number of transmitter antennas: and the line-of-sight SNRs,
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Fig. 2. Chernoff bound on error probability for equal energy orthogonal signaling as a function of number of transmitter antemthine-of-sight SNRos,
with ng = 2 receiver antennas and scattering SNR= 10.

where the scattering SNR and number of receiver antennas are chdsén= 3. It may be easily verified in Fig. 2 that, = 3 is indeed the
to be SNRc = 10 andnr = 2. For larger values of SNR)s, the optimal number of transmitter antennas in this scenario.
Chernoff bound decreases withy. However, for smaller values of

SNRyos, there exists an optimal number of transmitter antennas IV. CONCLUDING REMARKS

ntopt for which the Chernoff bound is minimized. Hence, if too

e St e Bl o coneren an ronconeret Spece.Gme inaing chenes
of each diversity branch cannot be compensated by the diversity g rIl—.‘lzrs,t, general Chernoff-bound expressions were derived for correlated
. L . o . icean fading and correlated additive Gaussian noise, extending the
see also the dlscu_ssmn in Section 1I-Al1 and_[35]. This is Cons_'Steéérresponding resultsin [7] and [8]. (We also used our general Chernoff-
with early results in [35] and [36] where optimal numbers of link und expression for coherent signaling to find a simple closed-form

for_ Ray_lelg_h-faded noncoherent diversity systems were obte_u_n_g pression for the exact pairwise error probability under this scenario,
using criteria based on Bhattacharyya bounds and error probabllltlg‘ge (2.11).) Then, we specialized our results to the cases of space—

respectively. . . . , time separable and white noise, and uncorrelated fading. Approximate
Differentiating the logarithm of (3.35) with respectita, it can be  chermoff bounds for high and low SNRs were derived and optimal

We derived Chernoff-bound expressions on pairwise error proba-

shown that (3.35) is maximized when signaling schemes were proposed. We computed the optimal number of
) transmitter antennas (minimizing the Chernoff bound) for noncoherent
(1 + 3‘2&) SNRgq signaling with unitary mutually orthogonal space—time codes.
ln L nL Further research will include analyzing the accuracy of the proposed
SNRoo SNRao yzing Yy prop
1+ 7@5“ L+ 7@5@ bounds and computing simple expressions for pairwise error probabil-
ities of noncoherent and concentrated-likelihood detection schemes.
SNRgC SNRy,0s . SNRgc
no '2771‘ 2nT _
BRI + a2 (3.36) APPENDIX
20T (1 BT ) PROOF OFLEMMA 1

. . o ) . Foramx1complexvectoe = Re{a}+jIm{a} = a,+ja; andan
Solving the preceding equation gives the optimal number of transmitter, . complex Hermitian matrid = Re{A} +,;Im{A} = A, +j 4
antennasropt that minimizes the Chernoff bound. In Fig. 3, we showafine '

SNRs¢/(2ntopr) as a function of SNRos/(2nropt), computed

using (3.36). From Fig. 3, we can easily find the optimal number of .| A= A A A1

transmitter antennas for given line-of-sight and scattering SNRs. For a= a |’ T2 A A | (A1)
example, assume a Rayleigh-fading scenario (i.e.,i2NR= 0) with

SNRs¢ = 10. Then, we read from Fig. 3 that SNR/(2nTopT) = Note that, sinced is Hermitian, A, is symmetric (i.e.A; :VA}.') and
1.5 for SNR,os/(2nropt) = 0, and, thereforepropr =~ 10/(2- A is skew-symmetric (i.,e.di = —A/), and, therefored is sym-
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SNRg /(2 nyp)

1 1

0.5 L
0 0.05

deployed.

0.1

0.15 0.2 0.25

SNR (6/(2 Nyop7)

Fig. 3. Scattering SNR:/(2nropt) as a function of line-of-sight SNRys /(2nropt), assuming that the optimal number of transmitter antemrasr is

metric (see also [37, Ch. 2.9], [38, Ch. 15]). The integral in (2.5) can

be computed as follows:

/ / La" Az + 2" a+ a2 + a0 + 5]

-exp[—L (2" Bz + 2"b+b" 2 + bo + b5)] da (A2a)
- /‘X’\ .. /% [#" A& + " + Re{uo}]

. exp [— (:zéTB:i +a'b+ Re{bo})] d (A3a)

LB [ (A7) =8 B 1B AT

+ ZR,e{ao}] - exp (1Z b'B 'b- Re{bo}> (A3b)

=1lz1B|"". [Qtr (AB™")—=3"B 'a—a "B

+ "B 'AB b+ QRe{ao}} exp(%bHBflb — Re{bo})

(A3c)

a"Aa =la"Aa (A4d)
ba=1b"a+La"b (Ade)
' BT'AB 'b=2"B 'AB b (A4f)

which hold for arbitrary: x 1 complex vectora andb, andn x n com-
plex Hermitian matricegt and B, whereB is nonsingular. The iden-
tities (A4a) and (A4d) can also be found, for example, in [38, Ch. 15]
and [37, Ch. 2.9].
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where (A3b) follows by using [20, Theorem 15.12.1, p. 322] or [39,

Theorem 10.5.1, p. 342]. Note also that{bs} = (bo + b5)/2 and
Re{ag} = (a0 + ag)/2. To derive (A3c) we have used the following

identities:
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