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Abstract—Compound-Gaussian models are used in radar signal
processing to describe heavy-tailed clutter distributions. The
important problems in compound-Gaussian clutter modeling
are choosing the texture distribution, and estimating its param-
eters. Many texture distributions have been studied, and their
parameters are typically estimated using statistically suboptimal
approaches. We develop maximum likelihood (ML) methods
for jointly estimating the target and clutter parameters in com-
pound-Gaussian clutter using radar array measurements. In
particular, we estimate i) the complex target amplitudes, ii) a
spatial and temporal covariance matrix of the speckle component,
and iii) texture distribution parameters. Parameter-expanded
expectation–maximization (PX-EM) algorithms are developed
to compute the ML estimates of the unknown parameters. We
also derived the Cramér–Rao bounds (CRBs) and related bounds
for these parameters. We first derive general CRB expressions
under an arbitrary texture model then simplify them for specific
texture distributions. We consider the widely used gamma texture
model, and propose an inverse-gamma texture model, leading
to a complex multivariate clutter distribution and closed-form
expressions of the CRB. We study the performance of the proposed
methods via numerical simulations.

Index Terms—Compound-Gaussian model, Cramér–Rao bound
(CRB), estimation, parameter-expanded expectation–maximiza-
tion (PX-EM).

I. INTRODUCTION

WHEN a radar system illuminates a large area of the sea,
the probability density function (pdf) of the amplitude

of the returned signal is well approximated by the Rayleigh
distribution [1], i.e., the echo can be modeled as a complex-
Gaussian process. That distribution is a good approximation.
This can be proved theoretically by the central limit theorem,
since the returned signal can be viewed as the sum of the re-
flection from a large number of randomly phased independent
scatterers. However, in high-resolution and low-grazing-angle
radar, the real clutter data show significant deviations from the
complex Gaussian model, see [2], because only a small sea
surface area is illuminated by the narrow radar beam. The be-
havior of the small patch is nonstationary [1] and the number
of scatterers is random, see [3]. Due to the different waveform
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characteristics and generation mechanism, the sea surface wave,
i.e., the roughness of the sea surface, is often modeled in two
scales [4], [5]. To take into account different scales of rough-
ness, a two-scale sea surface scattering model was developed,
see [6]–[8]. In this two-scale model—a compound-Gaussian
model—the fast-changing component, which accounts for local
scattering, is referred to as speckle . It is assumed to be
a stationary complex Gaussian process with zero mean. The
slow-changing component, texture is used to describe the
variation of the local power due to the tilting of the illuminated
area, and it is modeled as a nonnegative real random process.
The complex clutter can be written as the product of these two
components

(1)

The compound-Gaussian model is a model widely used to char-
acterize the heavy-tailed clutter distributions in radar, especially
sea clutter, see [2], [6], [9], and Section II. It belongs to the class
of the spherically invariant random process (SIRP), see [10] and
[17]. Note that the compound-Gaussian distribution is also often
used to model speech waveforms and various radio propagation
channel disturbance, see [10] and the references therein.

Modeling of clutter using a compound-Gaussian distribution
involves these important aspects: choosing the texture distribu-
tion, estimating its parameters, and evaluating the efficiency of
the estimations. Many texture distributions have been studied,
but their parameters were typically estimated using the method
of moments, which is statistically suboptimal, see [2]. We
present our measurement model in Section II. In Section III,
we develop the parameter-expanded expectation–maximization
(PX-EM) algorithms to estimate the target and clutter param-
eters. We compute the Cramér–Rao bounds (CRBs) for the
general compound-Gaussian model and simplify them for two
texture distributions in Section IV. In Section V, we verify our
results through Monte Carlo numerical simulations.

II. MODELS

We extend the radar array measurement model in [11] to ac-
count for compound-Gaussian clutter. Assume that an -ele-
ment radar array receives pulse returns, where each pulse pro-
vides samples. We collect the spatiotemporal data from the
th range gate into a vector of size and model

as (see [11] and [12])1

(2)

1A special case of the model (2) for rank-one targets (i.e., scalarX) in com-
pound-Gaussian clutter was considered in [15].
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where is an spatiotemporal steering matrix of the tar-
gets, is the temporal response ma-
trix, is an matrix of unknown complex amplitudes
of the targets. Here is the number of possible directions that
the reflection signals will come from, and is the number of
range gate that covers the target.2 The additive noise vectors

, are independent, identically distributed
(i.i.d.) and come from a compound-Gaussian probability distri-
bution, see, e.g., [3], [10] and [14]–[17].

We now represent the above measurement scenario using the
following hierarchical model: are conditionally indepen-
dent random vectors with probability density functions (pdfs):

(3)

where the superscript denotes the Hermitian (conjugate)
transpose, is the (unknown) covariance matrix of the speckle
component, and , are the unobserved
texture components (powers). We assume the texture to be fully
correlated during the coherent processing interval (CPI) [18].
This assumption is reasonable since the radar processing time
is not too long. We consider the following texture distributions

• gamma: follow a gamma distribution [2], [3], [14]
• inverse gamma: follow a gamma distribution

[19]–[21].

III. MAXIMUM LIKELIHOOD ESTIMATION

We develop the ML estimates of the complex ampli-
tude matrix , speckle covariance matrix , and tex-
ture distribution parameter from the measurements

, see [22]. In the following, we
present the PX-EM algorithms for ML estimation of these
parameters under the above three texture models. The PX-EM
algorithms share the same monotonic convergence properties
as the “classical” expectation-maximization (EM) algorithms,
see [23, Theorem 1]. They outperform the EM algorithms in
the global rate of convergence, see [23, Theorem 2]. In our
problem, the computations are confined to the PX-E step of the
PX-EM algorithm. The PX-M step follows as a straightforward
consequence of the PX-E step.

A. PX-EM Algorithm for Gamma Texture

We model the texture components , as
gamma random variables with unit mean (as, e.g., in [3]) and
unknown shape parameter , i.e.

(4)

hence, the unknown parameters are . (The shape
parameter is also known as the Nakagami- parameter in
the communications literature, see, e.g., [24, Ch. 2.2.1.4].) This
choice of texture distribution leads to the well-known clutter
model, see [2] and [3] and references therein.

The method for deriving EM- algorithm from complete-data
sufficient statistics for a similar GMANOVA model is presented

2In high resolution radar, target can usually distribute in more than one range
gates, see [13] and references therein.

in [12]. Since EM algorithms often converge slowly in some sit-
uations, we propose a PX-EM algorithm. Because of the intro-
duction of new parameter, PX-EM algorithm can capture extra
information from the complete data in the PX-E step. Also be-
cause its M step performs a more efficient analysis by fitting the
expanded model, PX-EM has a rate of convergence at least as
fast as the parent EM [23].

The proposed PX-EM algorithm estimates by treating ,
as the unobserved data. First we add an auxil-

iary parameter (the mean of ) to the set of parameters .
Note that in the original model. Hence the augmented
parameter set is , where and are re-
lated as follows: . Note that and are not
unique whereas their product is. Under this expanded model,
the pdf of is (for )

(5)

where denotes the gamma function. The conditional pdfs
of are unchanged, see (3). The underlying statistical prin-
ciple of PX-EM is to perform a “covariance adjustment” to cor-
rect the M step. In this problem, we adjust the covariance matrix

to a product of and . More specifically, we use a ex-
panded complete-data model that has a larger set of identifiable
parameters, but leads to the original observed-data model with
the original parameters identified from the expanded parameters
via a many-to-one mapping [23].

We present the details of the derivation of the PX-EM al-
gorithm in Appendix A. To summarize it, in the PX-E step,
we calculate the conditional expectations of the complete-data
sufficient statistics assuming all unknown parameters are
known from the complete data log-likelihood. In the PX-M
step, we estimate the unknown parameters from these expec-
tations. The derivation of these estimates from the sufficient
statistics are explained in [12] in details. The PX-EM algorithm
for the above expanded model consists of iterating between the
following PX-E and PX-M steps.

PX-E Step: Compute the conditional expectations of the
natural sufficient statistics

(6a)

(6b)

(6c)

(6d)

(6e)
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where is the estimate of
in the th iteration and (6a)–(6e) are computed using (8)
with , , and .
PX-M Step: Compute

(7a)

(7b)

(7c)

(7d)

where

(7e)

(7f)

and find that maximizes

The above iteration is performed until , , and con-
verge. The computation of requires maximizing (7c),
which is accomplished using the Newton–Raphson method (em-
bedded within the “outer” EM iteration, similar to [26]). The
conditional-expectation expression (8), shown at the bottom of
the page, is obtained by using the Bayes rule, (3) and (4), and
change-of-variable transformation .The integrals in
the numerator and denominator of (8) are efficiently and accu-
rately evaluated using the generalized Gauss-Laguerre quadra-
ture formula (see [27, Ch. 5.3])

(9)

where is an arbitrary real function, is the quadrature
order, and and , are the ab-
scissas and weights of the generalized Gauss-Laguerre quadra-
ture with parameter .

B. PX-EM Algorithm for Inverse Gamma Texture

We now propose a complex multivariate -distribution model
for the clutter and apply it to the measurement scenario in Sec-
tion II. A similar clutter model was briefly discussed in [17, Sec.
IV.B.3], where it was also referred to as the generalized Cauchy
distribution. Assume that , are
gamma random variables with mean one and unknown shape pa-
rameter . Consequently, follows an inverse gamma
distribution and the conditional distribution of given
is , see also (3). Integrating out the un-
observed data , we obtain a closed-form expression for the
marginal pdf of

(10)

which is the complex multivariate distribution with location
vector , scale matrix , and shape parameter . Here,
the unknown parameters are . We first estimate

and assuming that the shape parameter is known and then
discuss the estimation of .

Known : For a fixed , we derive a PX-EM algorithm for
estimating and by treating , as the
unobserved data and adding an auxiliary mean parameter for

, similar to the gamma case discussed in Section III-A.
The derivation of PX-EM algorithm is analogous to the one for
gamma texture in Appendix A. Here, the resulting PX-EM al-
gorithm consists of iterating between the following PX-E and
PX-M steps:

PX-E Step: Compute

(11a)

for and

(11b)

(11c)

(11d)

(8)
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PX-M Step: Compute

(12a)

(12b)

where

(12c)

(12d)

The above iteration is performed until and converge.
Denote by and the estimates of and
obtained upon convergence, where we emphasize their depen-
dence on .

Unknown : We compute the ML estimate of by maxi-
mizing the observed-data log-likelihood function concentrated
with respect to and

(13)

see also (10).

IV. CRAMÉR–RAO BOUND (CRB) AND RELATED BOUNDS

In this section, we first derive the CRB with general texture
pdf assumption. Then we apply it for different texture distribu-
tions, see [28]. We also consider the hybrid CRB, which is not
as tight as CRB.

A. General CRB Results

Denote by the pdf of the texture . Then, ac-
cording to the above measurement model, is a complex
spherically invariant random vector (SIRV) with marginal pdf

(14)

where

(15a)

(15b)

and denotes the Frobenius norm. Also,
where denotes a Hermitian square root of a Hermitian
matrix .

Given an arbitrary radius , the concatenated
vector of real and imaginary parts of is uniformly dis-
tributed on the surface of a -dimensional ball with radius ,
centered at the origin. Denote by and the partial deriva-
tives of with respect to its first and second entries, i.e.

and . For any
well-behaved , changing the order of differentiation and
integration leads to

(16a)

(16b)

Define the vector of signal and clutter parameters

(17a)

where the subscript denotes a transpose

(17b)

(17c)

and is the texture parameter.3 Here, the vech and
operators create a single column vector by stacking elements
below the main diagonal columnwise; vech includes the main
diagonal, whereas omits it. The Fisher information matrix
(FIM) for is computed by using [29, eqs. (3.21) and (3.23)]:

(18a)

(18b)

where denotes the FIM entry with respect to the param-
eters and , and

(18c)

is the log-likelihood function. Then the CRB for is

(18d)

To simplify the notation, we omit the dependencies of the FIM
and CRB on the model parameters. We also omit details of the

3We parameterize the texture pdf using only one parameter. The extension to
multiple parameters is straightforward.
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derivation and give the final FIM expressions (see Appendix B
for details)

(19a)

(19b)

(19c)

(19d)

(19e)

(19f)

where

(20)

and

(21a)

(21b)

(21c)

(21d)

(21e)

Here, (19a) and (19b) have been computed by using (18a) and
the lemma, whereas (19c)–(19f) follow by using (18b).

Interestingly, the FIMs of compound-Gaussian models with
different texture distributions share the common structure in
(19a)–(19f) where the texture-specific quantities are the scalar
coefficients in (21). The above FIM and CRB matrices are
block-diagonal [see (19e) and (19f)], implying that the CRBs

for the signal parameters are uncoupled from the clutter
parameters and . Hence, the CRB matrix for remains the
same whether or not and are known. Similarly, the CRBs
for and remain the same whether or not is known. Also,
(19a) and (19b) simplify to the FIM expressions for complex
Gaussian clutter when , and ,
see also [29, eq. (15.52)].

B. CRB for Specific Texture Distributions

Computing the texture-specific terms in (21) typically
involves two-dimensional (2–D) integration that cannot be
evaluated in closed form. This integration can be performed
using Gauss quadratures, see, e.g., [27, Ch. 5.3]. Here we use
the gamma texture as an example.

Gamma Texture: Here we use the same model as in
Section III-A. After applying a change-of-variable transforma-
tion in (15a) and (16), we evaluate both integrals in
(21) using the generalized Gauss–Laguerre quadrature formula
(see (9).) For example, the formula used to compute is given
in (22), shown at the bottom of the page, where, to simplify
the notation, we omit the dependencies of the abscissas and
weights on . In Appendix C, we derive other coefficients
for gamma-distributed texture.

Inverse-Gamma Texture: We use the model discussed in
Section III-B. In this case, (15a) and (16) can be evaluated in
closed form, leading to the following simple expressions for
the texture-specific terms in (21a)–(21e) (see Appendix C)

(23a)

(23b)

(23c)

(23d)

(23e)

where is the trigamma func-
tion. Interestingly, the CRB matrix for the signal parame-
ters is proportional to the corresponding CRB matrix for
complex Gaussian clutter, with the proportionality factor

always greater than one.
As , the inverse gamma texture distribution degener-

ates to a constant, the marginal pdf of in (14) reduces to the
complex Gaussian distribution in (3) with , and (19a)

(22)
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and (19b) simplify to the FIM expressions for complex Gaussian
clutter.

C. Hybrid (HCRB)

The CRB is a lower bound of the covariance of all unbiased
estimators of an unknown parameter vector. However, in some
scenarios, we need to assess the estimation performance quickly
but not so tightly. Thus, we also consider the computation of a
less optimal bound, the HCRB.

The HCRB is defined in [30]

(24a)

HCRB (24b)

Note that the HCRB takes the expectation over the unobserved
data for the whole product of two complete data score func-
tions while the CRB takes the expectations, respectively. This
usually reduces the calculation effort at the cost of degraded
bound tightness. Similarly, we omit the dependencies of the in-
formation matrix and HCRB on the model parameters. With the
derivation presented in Appendix D, the information entries of
the HCRB for general texture are

(25a)

(25b)

(25c)

(25d)

Compared with FIM, the information matrix of HCRB is
much simpler and easier to compute. It is interesting to observe
the following.

• , and are decoupled from each other. The HCRB is a
block diagonal matrix with three blocks. Note that in the
CRB, and are coupled.

• is constant. It does not change over the choice of
texture models.

• affects in a simple way—by multiplying a con-
stant with .

V. NUMERICAL EXAMPLES

The numerical examples presented here assess the estimation
accuracy of the ML estimates of , , and the shape parameters
of the texture components. We consider a measurement scenario
with a 3-element radar array and pulses, implying that

. We select a rank-one target scenario with ,
, complex target amplitude ,

and

(26)

where with nor-
malized Doppler frequency , and

with spatial frequency .
Here, denotes the Kronecker product. The speckle covari-
ance matrix was generated using a model similar to that in
[31, Sec. 2.6] with 1000 patches. The th element of the
covariance matrix of the speckle component was chosen as

(27)

which is the correlated noise covariance model used in [33] (see
also references therein). In the simulations presented here, we
select . The order of the Gauss-Hermite and gener-
alized Gauss-Laguerre quadratures was .

We compare the average mean-square errors (mse) of the ML
estimates of , and over 2000 independent trials with the
corresponding CRBs derived in Section IV. We also show the
HCRBs in the results. Note: we just shown the average of ele-
ments of , , and in this paper.

First we study the performance of the ML estimation for
gamma texture in Section III-A. We have set the shape param-
eter to . The Fig. 1 shows the mse for the ML estimates
of and and the average mse for the ML estimates of the
speckle covariance parameters as functions of .

In Fig. 2, we show the performance of the ML estimation
for the inverse gamma texture in Section III-A. Here, the shape
parameter was set to . Fig. 2 shows the mse for the ML
estimates of and and the average mse for the ML estimates
of the speckle covariance parameters as functions of .

In Figs. 1 and 2, the mse matches the CRBs very well when
the number of observations increases, which indicates that the
PX-EM is the optimal asymptotically efficient estimation for
target and the clutter parameters. HCRBs show their loose esti-
mation to the lower bound of estimation variance as aforemen-
tioned. The average signal power and clutter power can be cal-
culated by their definitions

(28a)

(28b)

Thus, the signal-to-noise ratio (SNR) in these examples are
6.70 and 7.95 dB respectively. Note that in these examples,

the SNRs do not change with number of snapshots .
We also investigate the performance of the clutter spikiness,

which can be indicated by the clutter texture parameter . In
Fig. 3, we show the average mse of the estimates under the in-
verse-gamma texture model for four different values. The re-
sults are the averaged mse among 500 independent trials. When

decreases, i.e., the clutter becomes spikier, the results show
that there is no much difference for the performance of estimate
of , while the estimate for becomes worse and the estimate
for becomes more accurate.

VI. CONCLUDING REMARKS

In this paper, we developed maximum likelihood al-
gorithms for estimating the parameters of a target with
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Fig. 1. Average mse for the ML estimates of ���, ���, � and corresponding CRBs
and HCRBs under the gamma texture model, as functions of N .

compound-Gaussian distributed clutter. The algorithms are
potentially useful to mitigate sea-clutter in high-resolution and
low-grazing-angle radar. The proposed maximum likelihood

Fig. 2. Average mse for the ML estimates of ���, ���, � and corresponding CRBs
and HCRBs under the inverse-gamma texture model, as functions of N .

estimation is based on the parameter-expanded expecta-
tion-maximization algorithm. We also computed the CRBs and
their hybrid versions for the unknown parameters. Our results
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Fig. 3. Average mse for the ML estimates of ���, ���, � under the inverse-gamma
texture model as functions of N for different � values.

are based on the general compound-Gaussian model and can
be applied to various texture distributions. We obtained com-
pact closed-form results of the bounds for the inverse-gamma

texture. Numerical simulations confirmed the asymptotic effi-
ciency of our estimates.

APPENDIX A
PX-EM ALGORITHM DERIVATION FOR GAMMA TEXTURE

We derive the PX-EM algorithm to estimate the parameter set
given the observations .

With the auxiliary parameter , the augmented parameter
set is , and the augmented model can be
written as

(A29a)

(A.29b)

Denote . Instead of maximizing
the intractable likelihood function for the measurement , we
maximize the complete data log-likelihood

(A.30)

Substitute (3) and (5) into (A.30), we can write the complete
data log-likelihood as

(A.31a)

where are nat-
ural complete-data sufficient statistics [25, ch.1.6.2]:

(A.32a)

(A.32b)

(A.32c)

(A.32d)

(A.32e)

We first assume that is a known constant. Take derivative
of (A.31a) with respect to , , respectively and let these
derivatives equal to zero, we get a set of equations. Solving these
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equations, we can obtain the ML estimates of , , (see
[12] for the derivations of the ML estimates for and )

(A.33a)

(A.33b)

(A.33c)

(A.33d)
where

(A.33e)

(A.33f)
With these estimates, we can find the ML estimate of that

maximizes the concentrated complete data log-likelihood

In the PX-E step, we calculate conditional expectations
of sufficient statistics , , ,
, (see (6a)–(6e)). Then in the PX-M step,

we use these expectations to calculate the ML estimates of
parameters in . The iteration goes between PX-E and PX-M
steps until estimation results converges.

APPENDIX B
DERIVATION OF THE SCORE FUNCTIONS AND FISHER

INFORMATION MATRIX (FIM)

Lange et al. derived the FIM of multivariate real -distribution
in Appendix B of [19]. Here we follow the same procedure to
derive the entries of the FIM of complex compound-Gaussian
distribution.

Before starting to derive the FIM entries, we list some pre-
liminary results that will be used in the derivation here.

Lemma 1: For uniformly distributed on real sphere
and any real matrices and

(B.34)

(B.35)

Proof: See [19] Appendix B.
Lemma 2: For uniformly distributed on sphere
and any matrices and

(B.36)

(B.37)

Proof: Let , where and are real and
imaginary parts of vector . By applying Lemma 1, the proof is
trivial.

Lemma 3: For independently uniformly dis-
tributed on sphere and any matrices and

(B.38)

(B.39)

Proof: Note that and are independent

By symmetry

The first equation is proved. By applying the first equation in
Lemma 2, the second equation is also easily proved.

Now we start the derivation of FIM. First, recall the com-
plete data log-likelihood (18c). We can get the contribution
of each parameter to the score vector through straightforward
calculations

(B.40a)

(B.40b)

(B.40c)

These rules are used in the derivation

and
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The entry of FIM corresponding to is

(B.41a)

Using Lemma 2 and Lemma 3, we can get the following
results:

(B.42a)

where . See [32]
for details.

The entry of the FIM matrix related to can be derived
directly

(B.43)

Also, see (B.44a) at the bottom of the page.

Finally, we prove that

(B.45)

and

(B.46)

Proof: Since and
, for fixed , is an odd func-

tion of (B.40a) while and are even functions
of (B.40b).

APPENDIX C
CALCULATION OF EXPECTATIONS

In this section, we propose the calculation method of expec-
tations derived in Appendix A. First recall that for any well-be-
haved function and SIRV real vector with pdf in
the form of

(C.47)

where is the surface area of the unit sphere in . See [19],
Appendix A.

Now build a 1-1 map by letting
, where and are the real and imaginary parts of

, respectively. Clearly, if is SIRV in , will be SIRV in
. Also note that , where denotes the

norm. Applying (C.47), we get

(C.48)

Since , we can get following result

(C.49)

(B.44a)
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Define

(C.50)

By applying (C.48) and (C.49),

Similarly, see the equation at the bottom of the page.

Gamma Distribution: From the pdf of the gamma distribu-
tion (4), we can get the following results easily:

(C.51a)

(C.52a)

where is the digamma function. For
notation simplification, we define

. In the calculations, we change variables with
and use the general Gauss–Laguerre quadrature for
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both inner and outer integration. The results are shown in the
first equation at the bottom of the page. Similarly, see the second
equation at the bottom of the page and the equation at the bottom
of the next page.

Inverse-Gamma Distribution: Fortunately, we have a closed
form for the functions of , , and in the inverse-gamma
distribution with pdf

(C.53)

(C.54a)

(C.54b)
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and

(C.54c)

The calculations yield

(C.55a)

(C.55b)

(C.55c)

(C.55d)

(C.55e)

APPENDIX D
HCRB

A. General Results

In the compound-Gaussian model

(D.56a)

(D.56b)

The complete data log-likelihood function is

(D.57)

Let ,
. is SIRV.

1) Expectations: Since

(D.58)

Similarly to Appendix C, we build a map .
Then

(D.59a)

(D.59b)

(D.60)

It is not hard to get

(D.61a)

(D.61b)

where the recurrence relation is used. Here
is the surface area of a unit ball in .

Before deriving the entries of the FIM, we note that the first-
order partial derivatives are

(D.62a)

(D.62b)
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(D.62c)

We follow the same procedure of Appendix B and get (see [32]
for details)

(D.63a)

(D.63b)

(D.63c)

where , and

(D.63d)

B. Application to Specific Texture Distributions

1) Gamma Distribution: From gamma pdf

(D.64)
We can derive . Also

(D.65a)

(D.65b)

Substitute the above results into (D.63a) and (D.63c), we get

(D.66a)

(D.66b)

(D.66c)

2) Inverse Gamma Distribution ( -Distributed Clutter):

(D.67)

(D.68)

and

(D.69a)

(D.69b)

Thus

(D.70a)

(D.70b)

(D.70c)

Interestingly, the inverse-gamma texture and the gamma tex-
ture share the same block in the FIM of and .
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