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Estimating Jakes’ Doppler Power Spectrum
Parameters Using the Whittle Approximation
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Abstract—We derive methods for asymptotic maximum likeli-
hood (ML) estimation of Jakes’ Doppler power spectrum param-
eters from complex noisy estimates of the fading channel. We con-
sider both single-input single-output (SISO) and smart-antenna
scenarios and utilize the Whittle approximation to the likelihood to
estimate the Doppler spread, noise variance, and channel covari-
ance parameters. Asymptotic Cramér–Rao bounds (CRBs) for the
unknown parameters are derived. We also discuss the initialization
of the proposed methods and their generalization to the Ricean-
fading scenario. Numerical simulations demonstrate the perfor-
mance of the proposed methods.

Index Terms—Cramér–Rao bound, Doppler-spread (velocity)
estimation, fading, Jakes’ (Clarke’s) spectrum, signal-to-noise
ratio estimation, Whittle approximation.

I. INTRODUCTION

DOPPLER spread and signal-to-noise ratio (SNR) are
important parameters for assessing the quality and rate

of change of wireless communication channels [1]–[10]. The
Doppler spread determines the rate of channel variation and
fading type,1 and can be used for adaptive modulation, coding,
and interleaving, channel tracker step-size selection (at the
receiver), and for network control algorithms, such as handoff
and channel allocation in cellular systems [1]–[10]. Similarly,
the SNR information is instrumental for adaptive modula-
tion, handoff, channel access, and power control [1]–[7]. In
smart-antenna systems, modeling spatial fading correlations,
analyzing their effects on capacity and error-probability per-
formance, and the use of fading correlations in the design of
noncoherent ML space-time receivers and transmit precoding
schemes have recently attracted considerable attention; see,
e.g., [12]–[17] and references therein.

Most existing methods for estimating statistical properties
of fading channels are based on signal-amplitude or power
measurements and do not explicitly account for noise effects;
see, e.g., [1, Ch. 12], [2], [4]–[6], [18], and [19]. In addition, the
Doppler spread and signal strength were estimated separately
[1], [2]. In [20], an approximate average maximum likelihood
method was proposed for estimating the Doppler spread from
noisy channel estimates under a single-input single-output
(SISO) Rayleigh fading scenario. In [9], an exact ML estimator
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1See, e.g., [11, Ch. 5.5.2] for slow- and fast-fading channel characterization.

of the Doppler spread was derived for this scenario, assuming
that the SNR is known and multiple independent data slots
are available. In [17], we derived methods for estimating the
mean and covariance parameters of multi-input multi-output
(MIMO) block-fading channels. In this paper (see also [21]),
we develop asymptotic ML methods for the joint estimation
of the Doppler spread, noise variance, and channel covariance
parameters from complex noisy channel estimates [containing
both the in-phase and quadrature-phase (I/Q) components of
the fading channel] under Jakes’ SISO and single-input multi-
output (SIMO) smart-antenna scenarios.

In Section II, we utilize the Whittle approximation to develop
asymptotic ML methods for Jakes’ Doppler power spectrum es-
timation in SISO systems and derive asymptotic Cramér–Rao
bounds (CRBs) for the unknown parameters (Section II-A). A
generalization of the proposed method to the Ricean fading sce-
nario is derived in Section II-B. The smart-antenna scenario is
considered in Section III, where we present iterative algorithms
for asymptotic ML estimation for unstructured and independent
fading (Sections III-A and B) and corresponding asymptotic
CRBs (Section III-C). In Section IV, we evaluate the accuracy
of the proposed methods via numerical simulations. The asymp-
totic ML estimates of the Doppler spread are compared with the
sample-covariance-based and approximate ML methods in [6],
[10], and [20] and their multivariate extensions. Concluding re-
marks are given in Section V.

II. ESTIMATING JAKE’S POWER SPECTRUM PARAMETERS IN

SISO SYSTEMS

Assume that we have obtained noisy channel estimates
from a Rayleigh fading channel with

Jakes’ Doppler power spectrum2 [1], [22], [23]. For example, if
we transmit an unmodulated carrier, then the real and imaginary
parts of are the I/Q components of the received baseband
signal at time . We assume that the channel
estimates are corrupted by additive white circularly symmetric
complex Gaussian noise with an unknown variance and
that the noise is independent from the fading process. The real
and imaginary parts of the fading process are assumed to be
independent, which follows from [23, App. A] and [1, Ch.
2.1.1]. Define the indicator function

otherwise.
(2.1)

2This model implies isotropic scattering, i.e., the multipath components are
assumed to arrive at the receiver array uniformly from all directions, see [1],
[22], [23].
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Then, the noisy power spectral density (PSD) of can be
written as3

(2.2)

where is the discrete-time frequency

(2.3)

is the vector of unknown parameters

(2.4)

and “ ” denotes a transpose. Here, we have the following:

• is the unknown maximum Doppler fre-
quency (corresponding to the Doppler spread of ).

• is the unknown signal-to-noise ratio, defined as
the ratio between the scattering power of the fading
channel and the noise variance .

The maximum Doppler frequency is proportional to the speed
of the mobile , where is the carrier fre-
quency and is the speed of light; see, e.g., [1], [11], [22],
and [23]. The first two terms in (2.2) model the Jakes’ spec-
trum [1], [22], [23], whereas the third term is attributed to ad-
ditive white Gaussian noise. For large , we can apply the
Whittle approximation to the log-likelihood of the measure-
ments (see [24, Chs. 7.9 and 15.9]
and [25]):

(2.5a)

(2.5b)

where

(2.6)

and

(2.7)

are the periodogram and normalized discrete-time Fourier trans-
form (DTFT) of , . Then, ,

3We define the PSD of a stationary zero-mean random process y(t) as
P (f) = E[y(t)y(t + n) ] � exp(�j2�fn), where “ ” denotes
complex conjugation.

form the normalized discrete Fourier transform
(DFT) of , , which can be computed effi-
ciently using the fast Fourier transform (FFT) if is a power of
two. Here, (2.5b) follows by substituting (2.2) into (2.5a). In [24,
Ch. 7.9], the estimation of unknown parameters by maximizing
the Whittle log-likelihood is referred to as asymptotic ML esti-
mation. For stationary processes, it is typically more convenient
to parametrize the PSD rather than the autocorrelation function,
which makes the Whittle approximation very appealing. Here,
the Jakes’ PSD is a closed-form expression of the unknown pa-
rameters, whereas the corresponding covariance matrix of the
observations is not analytically tractable:

(2.8)

where the element of the matrix is

(2.9)

“ ” denotes the Hermitian (conjugate) transpose, the iden-
tity matrix of size , and the zeroth-order Bessel function
of the first kind [1], [22], [23].

We now compute the asymptotic (Whittle) ML estimate of
by maximizing (2.5). For fixed , there exists a closed-form

expression for the asymptotic ML estimate of :

(2.10)

Substituting (2.10) into the Whittle log-likelihood function
(2.5b) and neglecting constant terms yields the concentrated
likelihood function

(2.11)

to be maximized with respect to .
Let us now introduce the following notation: Define

(2.12)

Observe that, since , the following identity holds:

(2.13)

implying that

(2.14)

Approximate ML Estimator of : In Appendix A, we derive
the following approximate ML estimator:

(2.15)
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which is closely related to the approximate average ML method
in [20]. Interestingly, may outperform the asymptotic
(Whittle) ML estimator of , see Section IV.

Initialization: The algorithms for maximizing (2.11) and
(2.15) can be initialized using the following simple estimator
of (see [10, eq. (10)]):

(2.16)

which can be viewed as an extension of the sample-covari-
ance-based estimator by Holtzman and Sampath [6] to the com-
plex (I/Q) measurement scenario. The above estimator performs
well if the number of observations is small but does not have
good asymptotic properties; see Section IV. We also propose the
following initial estimate of :

(2.17)

where can be chosen as, for example, or , and
is the number of terms in the summation in the numerator

of (2.17), equal to the number of indices for which
is nonzero.

A. Asymptotic CRB

We derive asymptotic CRB expressions for the unknown pa-
rameters and simplify them in the case where the SNR and
number of samples are large.

The asymptotic CRB for the unknown parameters is the
inverse of the asymptotic Fisher information matrix (FIM) :

(2.18)

where easily follows from the Whittle approximation of
the log-likelihood in (2.5a):

(2.19)

see also [24, Ch. 15.9]. We now specialize (2.18) and (2.19) to
the Jakes’ PSD model in (2.2), which leads to

(2.20a)

(2.20b)

(2.20c)

for , where we used the following identity
to derive (2.20c):

(2.21)

Consequently

(2.22a)

(2.22b)

(2.22c)

(2.22d)

(2.22e)

(2.22f)

We can partition as follows:

(2.23a)

where

(2.23b)

(2.23c)

(2.23d)
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In the sequel, we use the same block partitioning of the CRB as
for the above FIM. Using (2.22a) and the formula for the inverse
of a partitioned matrix in, e.g., [28, Th. 8.5.11], yields

(2.24a)

CRB

(2.24b)

Observe that does not depend on . Hence,
is a function of only, implying that the asymp-

totic accuracy of (efficiently) estimating the maximum Doppler
frequency and SNR parameter depends on the unknown
parameters only through and . Interestingly, (2.24a) further
implies that CRB is a function of only through
and a function of through , . In
addition, CRB depends on only through in the
numerator of (2.24b); it is a function of through and
a function of through , .

Since the Jakes’ PSD in (2.2) is infinite at and
, the regularity conditions for the information inequality

are not satisfied; see [29, Ch. 3.4.2]. To avoid this problem, we
assume that the frequencies , in the DFT
grid do not coincide with or . Note that CRB
strongly depends on the minimum distance between and the
DFT grid . For a fixed , a small variation
in the number of samples may significantly change this dis-
tance, which causes oscillatory behavior of CRB as a
function of ; see Fig. 1 in Section IV. For a large fixed
(i.e., dense DFT grid), a small variation of causes a signifi-
cant change in the minimum distance, resulting in oscillations in
CRB as a function of ; see Fig. 3 in Section IV. (The
exact CRB in [10, Fig. 2], computed under a different mea-
surement model, also fluctuates as a function of .)

CRB and CRB for Large and : For large
and , the following approximations hold:

(2.25a)

(2.25b)

Using (2.27), we simplify (2.24a):

(2.26)

where

(2.27a)

(2.27b)

(2.27c)

Then, the CRBs for and can be approximated as in (2.28a)
and (2.28b), shown at the bottom of the page. Clearly, as the
number of samples grows, the approximate CRB de-
creases proportionally to ; see also the right side of Fig. 1
in Section IV. Furthermore, the approximate CRB does
not depend on [see also the left side of Fig. 2 in Section IV],
and CRB is proportional to , which is also confirmed on
the right side of Fig. 2.

Note that is not identifiable when , implying that
the SNR parameter is not identifiable as well. (Recall that is
defined as the ratio between the scattering power of the fading
channel and the noise variance .) Consequently, CRB
goes to infinity as approaches 0.5; see (2.28b) and Fig. 4 in
Section IV. However, is identifiable when is known; see also
Section IV. This scenario is of practical interest, since may
be estimated from noise-only data. Inverting the approximate

[where the approximate formulas (2.25) were used to
compute its elements] yields the approximate CRB for when

is known

CRB known (2.29)

which decreases proportionally to as increases; see
also Fig. 4.

CRB (2.28a)

CRB

(2.28b)
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B. Extension to Ricean Fading

In the Ricean-fading scenario, has nonzero mean and
(noisy) Jakes’ covariance, which is described by

(2.30a)

cov

(2.30b)

where

(2.31)

and

• is the (unknown) complex amplitude of the line-of-
sight component;

• is the Doppler shift due
to the line-of-sight component;

• is the SNR of the scattering (diffuse) channel com-
ponent.

(Note that the line-of-sight Doppler shift can be written
as , where is the angle between the
line-of-sight and mobile velocity vectors.)

The vector of unknown parameters is now4

Re Im (2.32)

and the Whittle approximation to the log-likelihood (for the
measurements ) becomes

(2.33)

where is the normalized DTFT of the se-
quence , :

(2.34)

4See (2.4) for the definition of ���.

For fixed and , there exist closed-form expressions for
the asymptotic ML estimates of and that maximize (2.33):

(2.35a)

(2.35b)

Substituting (2.35) into the Whittle log-likelihood function
(2.33) and neglecting constant terms yields the concentrated
likelihood function

Re

Im

(2.36)

to be maximized with respect to and .
Initialization: The maximization of (2.36) can be ini-

tialized using the sample-covariance-based estimate of
the maximum Doppler frequency [see (2.16)], nonlinear
least-squares estimate of the line-of-sight Doppler shift :

(2.37)

and an estimator of the scattering SNR shown in (2.38) at the
bottom of the page, where is the number of terms in the
summation in the numerator of (2.38).

III. ESTIMATING JAKES’ POWER SPECTRUM PARAMETERS IN

SMART-ANTENNA SYSTEMS

Consider now a SIMO smart-antenna Rayleigh fading
channel with receiver antennas. Denote by an
vector of the complex fading channel estimates at time

(2.38)
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. We assume that are corrupted by
spatially and temporally white circularly symmetric complex
Gaussian noise with unknown variance and that the noise
is independent of the fading process. If the fading-channel
components at all antennas share the same Doppler spread
and the real and imaginary parts of the fading process are
independent (see [23, App. A]), then the noisy Jakes’
cross-spectral matrix (CSM)5 of can be written as

(3.1)

where is the (normalized) spatial fading covariance
matrix, and with

(3.2)

Here, describes a parametrization of the fading covariance ma-
trix . [An extension of the above model to the MIMO scenario
is straightforward. In the MIMO case, are vectors
of the estimated MIMO channel coefficients, and and

are matrices. For simplicity, we focus on the
SIMO scenario in the following discussion.] We consider two
models for :

i) unstructured: Re vech Im vech
(the correlation structure of the fading channel is com-
pletely unknown);

ii) diagonal, (independent fading): diag
and (the fading-

channel coefficients are independent with nonequal
variances);

where the vech and vech operators create a single column
vector by stacking elements below the main diagonal colum-
nwise; vech includes the main diagonal, whereas vech omits
it. Note that is a valid parametrization only if is a positive
semidefinite Hermitian matrix. For notational simplicity, we do
not explicitly specify the dependence of on in the following
discussion. Note that the covariance matrix of the observations

that corresponds to the CSM
in (3.1) is not analytically tractable:

(3.3)

Here, was defined in (2.9), and denotes the Kronecker
product. The multivariate Whittle approximation to the log-like-
lihood can be derived along the lines of [30] (see also [31, Ch.
13.7]):

tr (3.4a)

5We define the CSM of a stationary zero-mean multivariate random process
yyy(t) as PPP (f) = E[yyy(t)yyy(t + n) ] � exp(�j2�fn).

tr
(3.4b)

where

(3.5)

[see (3.1)]. Here, denotes the determinant, and is
the periodogram matrix of the received data:

(3.6)

where

(3.7)

is the normalized DTFT of , . Hence,
, form the normalized discrete

DFT of , . For fixed , there exists a
closed-form expression for the asymptotic ML estimate of
that maximizes (3.4):

tr (3.8)

Substituting (3.8) into (3.4b) and neglecting constant terms
yields the concentrated likelihood function

tr

(3.9)

to be maximized with respect to .
In the following, we derive algorithms for computing the

asymptotic ML estimates of the unknown parameters under the
unstructured and independent fading scenarios.

A. Asymptotic ML Estimation for Unstructured Fading

We compute the asymptotic ML estimates of the unknown
parameters for unstructured fading. We first present a param-
eter-expanded expectation-maximization (PX-EM) algorithm
for computing the asymptotic ML estimates and
of and when is known and then propose its extension
to the case where is unknown (in addition to and ).

Known : In Appendix B, we apply the parameter-expan-
sion approach in [32] to derive the following PX-EM algorithm
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for estimating and when is known: Iterate between the
following.

Step 1)

(3.10a)

(3.10b)

(3.10c)

for .
Step 2)

(3.11a)

(3.11b)

(3.11c)

and

tr

(3.11d)

The above iteration is performed until and
converge; denote by and

the estimates of and obtained
upon convergence. Then, the asymptotic ML estimate of is
computed as

(3.12)

See also (B.5) in Appendix B. The PX-EM algorithm shares the
same monotonic convergence properties as the “classical” ex-
pectation-maximization (EM) algorithm; see [32, Th. 1]. It also
outperforms the EM algorithm in the global rate of convergence
(see [32, Th. 2]), where the performance improvement is par-
ticularly significant in the low-SNR scenarios, i.e., when is
large compared with the entries of .

The iteration (3.10)–(3.11) can be initialized as follows:

(3.13a)

(3.13b)

(3.13c)

where is the number of terms in the summation in (3.13b).
Unknown : If is unknown (in addition to and ),

we propose the following alternating-projection algorithm for
computing the asymptotic ML estimates of , , and :

Step 1) Fix , and compute using
(3.10)–(3.11) and (3.12);

Step 2) Fix [see (3.12)], and find that max-
imizes in (3.9);

which increases the likelihood function (of the unknown param-
eters , , and ) at each iteration cycle.

The above iteration cab be initialized using the following
simple estimator of :

(3.14)

which generalizes the sample-covariance-based method in
(2.16) to the SIMO scenario.

B. Asymptotic ML Estimation for Independent Fading

We compute the asymptotic ML estimates of the un-
known parameters for independent fading, where
diag . As in Section III-A, we first propose
a method for estimating and for known and then
generalize it for an unknown .

Known : The PX-EM algorithm for estimating
and when is known easily

follows (see Appendix B): Iterate between

Step 1)

(3.15a)

(3.15b)
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(3.15c)

for , and
Step 2)

(3.16a)

(3.16b)

(3.16c)

for , and

(3.16d)

Here “ ” denotes complex conjugation and the
th element of . The above iteration is performed

until , , and converge
to , and

. Then, the asymptotic ML estimate of is com-
puted as

diag (3.17)

See also (B.18) in Appendix B. In analogy with (3.13), we can
initialize the iteration (3.15)–(3.16) using

(3.18a)

(3.18b)

(3.18c)

for , where is the number of terms in the
summation in (3.18b).

Unknown : If is unknown, we can estimate it using
(3.14) when is small. For large , (3.14) can be used to ini-

tialize the alternating-projection algorithm for asymptotic ML
estimation of , , and .

Step 1) Fix , and compute using (3.15),
(3.16), and (3.17);

Step 2) Fix [see (3.17)], and find that max-
imizes in (3.9);

which is similar to the asymptotic ML algorithm for unstruc-
tured and unknown in Section III-A.

C. Asymptotic CRB

The asymptotic CRB for the unknown parameters is the
inverse of the asymptotic FIM ; see (2.18). The el-
ement of the asymptotic FIM for dim ,

dim is computed as

tr

(3.19)

which follows by adapting the results of [30] to the complex
data model. For and the Jakes’ spectrum model in (3.1),
the above expression simplifies to

tr

tr

tr

tr

(3.20)

Similarly, for and , we obtain

tr

tr

tr

tr

(3.21)
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Fig. 1. MSEs and asymptotic CRBs for the asymptotic ML, approximate ML, and sample-covariance-based estimators of f (left) and asymptotic ML estimator
of s (right) as functions of N for f = 0:365 and s = 3.

For , we have

tr

tr

(3.22)

To derive (3.20)–(3.22), we used (3.5) and the identity (2.21).
See Appendix C for further simplifications of these expressions
under the unstructured and independent fading scenarios.

Using the same block partitioning as in (2.23a), we have
, and , and

can be constructed using (3.20)–(3.22). Then, the formula for
the inverse of a partitioned matrix [28, Th. 8.5.11] yields

(3.23a)

CRB

(3.23b)

As in the SISO case, and are functions
of only, implying that the asymptotic accuracy of (efficiently)
estimating the maximum Doppler frequency and normal-
ized spatial fading covariance parameters depends on the un-
known parameters only through and . Furthermore, (3.23a)
implies that CRB is a function of through ,

. In addition, CRB depends on
only through in the numerator of (3.23b) and is a function of

through , .
As in Section II-A, we assume that the sampling frequencies
, do not coincide with or since

the Jakes’ CSM in (3.1) is infinite at and .

IV. NUMERICAL EXAMPLES

We evaluate the performance of the proposed methods using
numerical simulations. Our performance metric is the mean-
square error (MSE) of an estimator, calculated using 400 inde-
pendent trials. In all the examples, we have chosen unit noise
variance: . The noise variance is assumed to be unknown,
unless specified otherwise (see Fig. 4).

SISO Rayleigh-fading Scenario: In the first set of simula-
tions, we examine the MSE performances of

• the asymptotic (Whittle) ML estimators of the un-
known parameters of interest ( and );

• the approximate ML and sample-covariance-based es-
timators of in (2.15) and (2.16), respectively.

Simulated data was generated using the Jakes’ correlation model
in (2.8); in particular, we simulated the measurement vector by
premultiplying a white unit-variance complex Gaussian vector
by a square root of the Jakes’ covariance matrix in (2.8). In
this scenario, we also generated simulated data using the sum
of complex exponentials (as in, e.g., [2, eq. (3)] or [20, eq.
(2)]), corrupted by additive white circularly symmetric complex
Gaussian noise. The obtained MSE results were almost identical
to the results reported here.

In Fig. 1, we show the MSEs (and corresponding asymptotic
CRBs) for the above estimators as functions of the number of
samples . The maximum Doppler frequency and SNR were
fixed and set to and . In this scenario,
the asymptotic ML estimator of clearly outperforms the ap-
proximate ML and sample-covariance-based methods; see the
left side of Fig. 1. Here, the asymptotic ML estimator of
achieves excellent performance for samples, com-
pared with 500 samples needed for the approximate ML method.
We consider the accuracy of estimating the maximum Doppler
frequency to be excellent if it is approximately within 6% of the
true value, which corresponds to MSE

. This choice is consistent with the best performance in
[19, Fig. 5]; see also [1, Ch. 12].) Note that the sample-covari-
ance-based method fails to reach MSE . The MSE for the
asymptotic ML estimate of on the right side of Fig. 1 is close
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Fig. 2. MSEs and asymptotic CRBs for the asymptotic ML, approximate ML, and sample-covariance-based estimators of f (left) and asymptotic ML estimator
of s (right) as functions of s for f = 0:365 and N = 300.

Fig. 3. MSEs and asymptotic CRBs for the asymptotic ML, approximate ML,
and sample-covariance-based estimators of f as functions of f , for s = 3

and N = 300.

to the corresponding CRB for all values of and is ap-
proximately proportional to , as predicted in Section II-A.

In Fig. 2, we present the MSEs of the above estimators as
functions of for fixed and . When

, CRB is approximately independent of , whereas
CRB increases with proportionally to ; see also Sec-
tion II-A. Clearly, is not identifiable when , which
explains the sharp increase in CRB as decreases to-
ward zero.

Figs. 3 and 4 show the MSEs and asymptotic CRBs for
and (respectively) as functions of , for and .
In this scenario, the approximate ML estimator (2.15) outper-
forms the asymptotic ML method for ; see Fig. 3.
However, the approximate ML method performs poorly when

is large, in contrast to the asymptotic ML estimator, which
is (approximately) insensitive to the choice of . Motivated by
the discussion on the identifiability of in Section II-A, we now

Fig. 4. MSEs and asymptotic CRBs for the asymptotic ML estimator of s
(unknown � ) and asymptotic ML estimator of s for known � as functions
of f , for s = 3 and N = 300.

study the performances of the asymptotic ML estimators of
for both unknown and known noise level ; see Fig. 4. For un-
known , the estimation of deteriorates as approaches 0.5,
as predicted by the approximate CRB results in Section II-A. In
contrast, for known , the estimation of improves as in-
creases.6 The MSEs for the asymptotic ML estimates of are
close to the corresponding CRBs under both scenarios.

To compute the asymptotic ML estimates of and and
approximate ML estimates of , we utilized the Nelder–Mead
simplex method7 [33, Ch. 10.4], which converged in 24 iterations
(on average).

SISO Ricean-fading Scenario: We now analyze the perfor-
mances of the Rayleigh-fading based estimators of and and

6For known � , the asymptotic ML estimates of s and f are obtained by
maximizing (2.5b).

7The simplex method was implemented using MATLAB’s fminsearch
function and initialized using (2.16) and (2.17).
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Fig. 5. MSEs and asymptotic CRBs for the Rayleigh- and Ricean-fading based
estimators of f as functions of K , for s = 3 and f = 0:265.

Fig. 6. MSEs and asymptotic CRBs for the Rayleigh- and Ricean-fading based
estimators of f as functions of K , for s = 3 and f = 0:365.

the Ricean-fading based asymptotic ML estimators of these pa-
rameters (Section II-B) under the Ricean fading scenario. Sim-
ulated data was generated using the model in (2.30). Figs. 5 and
6 show the MSEs of the above estimators as functions of the
Ricean factor , which is defined as the
ratio of the powers of the line-of-sight and scattering (diffuse)
channel components [1, Ch. 2.1.2.2], [11, Ch. 5.6.2]. Here, we
set the scattering SNR to and consider two choices of
the maximum Doppler frequency: (Fig. 5) and

(Fig. 6). For (Rayleigh fading), the approx-
imate ML method for estimating outperforms other methods
when ; however, it is outperformed by both the
Rayleigh- and Ricean-fading based asymptotic ML estimators
when , which is also consistent with the results in
Fig. 3. For large , the approximate ML and Rayleigh-fading
based asymptotic ML methods perform poorly. Interestingly,
the sample-covariance-based estimator (2.16) is quite robust to

Fig. 7. MSEs and asymptotic CRBs for the asymptotic ML, sample-
covariance-based, and approximate ML estimators of f in a SIMO system
with correlated fading, as functions of N .

the presence of the line-of-sight component. As expected, the
best overall performance is achieved by the Ricean-fading based
asymptotic ML method.

SIMO Rayleigh-fading Scenario: Consider the SIMO
Rayleigh-fading scenario in Section III with the maximum
Doppler frequency and number of receiver antennas set to

and . Simulated data was generated using
the Jakes’ correlation model for SIMO channels in (3.3); in
particular, we simulated the measurement vector by premul-
tiplying a white unit-variance complex Gaussian vector by a
square root of the Jakes’ covariance matrix in (3.3). We first
examine the asymptotic ML method for correlated fading,
where the normalized spatial fading covariance matrix was
chosen as follows:

(4.1)

In Figs. 7–9, we show the MSEs (and corresponding asymptotic
CRBs) for the asymptotic ML estimates of the unknown param-
eters and , under the correlated fading scenario (see Sec-
tion III-A), as functions of the number of samples . Fig. 7 also
compares the MSE performance of the asymptotic ML estimator
of with the sample-covariance-based estimator in (3.14) and
approximate ML method:

tr (4.2)

which generalizes (2.15) to the SIMO scenario; see also
Appendix A. As expected, the asymptotic ML estimator out-
performs the approximate ML and sample-covariance-based
methods for large . In this example, the sample-covariance-
based estimator outperforms the asymptotic and approximate
ML methods when is small (less than 100). Simplicity and
good performance for small numbers of observations are im-
portant when fast computation of is needed (e.g., in adaptive
modulation schemes; see [2]); then, the sample-covariance-
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Fig. 8. MSEs and corresponding asymptotic CRBs for the asymptotic ML estimates of s and s in a SIMO system with correlated fading, as functions of N .

Fig. 9. MSEs and corresponding asymptotic CRBs for the asymptotic ML estimates of Refs g and Imfs g in a SIMO system with correlated fading, as
functions of N .

based estimator (3.14) may be the method of choice. As in the
SISO case, the MSEs for the asymptotic ML estimates of (the
elements of) are close to the corresponding asymptotic CRBs
for all values of and are approximately proportional to ;
see Figs. 8 and 9. The PX-EM algorithm for estimating and

in (3.10)–(3.11) converged in 40 iterations (on average).
The estimation of was performed using the Nelder–Mead
simplex method, which converged in less than 20 iterations.

We now consider the independent fading scenario with
diag diag . In Figs. 10 and 11, we

show the MSEs (and corresponding asymptotic CRBs) for the
asymptotic ML estimates of the unknown parameters and ,

(respectively) under the independent fading scenario (see Sec-
tion III-B), as functions of the number of samples . Fig. 10 also
shows the MSE performances of the sample-covariance-based
method in (3.14) and asymptotic ML estimator (4.2). The
asymptotic ML estimator outperforms the approximate ML and
sample-covariance-based methods for large , whereas the
sample-covariance-based method outperforms the asymptotic
and approximate ML methods when is less than 100. As in
the SISO and unstructured SIMO fading scenarios, the MSEs
for the asymptotic ML estimates of and are close to the

Fig. 10. MSEs and asymptotic CRBs for the asymptotic ML and sample-
covariance-based estimators of f in a SIMO system with independent fading,
as functions of N .

corresponding asymptotic CRBs for all values of and are
approximately proportional to ; see Fig. 11.
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Fig. 11. MSEs and corresponding asymptotic CRBs for the asymptotic ML estimates of s and s in a SIMO system with independent fading, as functions ofN .

The PX-EM algorithm for estimating and [see (3.15)
and (3.16)] converged in less than 25 iterations. The asymptotic
ML estimation of was performed using the Nelder–Mead
simplex method, which converged in less than 20 iterations.

V. CONCLUDING REMARKS

We derived asymptotic ML methods for estimating the
Doppler-spread, noise variance, and channel covariance parame-
ters from fading-channel estimates containing both the in-phase
and quadrature-phase components under SISO and smart-an-
tenna scenarios.Asymptotic CRBs werederived for the unknown
parameters. We also generalized the sample-covariance-based
and approximate ML methods for estimating the Doppler spread
in [6], [10], and [20] to the smart-antenna SIMO scenario. The
performance of the proposed methods was evaluated for all
parameters of interest under various simulation scenarios. We
compared several Doppler-spread estimators and discussed their
relative merits (for example, we observed in Section IV that the
approximate ML and sample-covariance-based methods for
Doppler-spread estimation may outperform the asymptotic ML
estimator in some scenarios, e.g. when the Doppler spread or the
number of samples are small). In general, the asymptotic ML
method shows excellent performance for large data records. We
also discussed identifiability of the signal-to-noise ratio param-
eter and showed how its estimation may be improved (and the
identifiability problem resolved) when the noise level is known.

Further research will include
• examining the performance of the proposed methods

in realistic nonuniform angle-of-arrival (AoA) and im-
pulsive-noise environments;

• developing methods that account for nonuniform AoA
distributions (along the lines of [2], [10], and [34]) and
man-made and atmospheric impulsive noise (along the
lines of [35] and [36]);

• efficiently estimating the AoA and noise-distribution
parameters;

• extending the SIMO asymptotic ML estimators in Sec-
tion III to the Ricean fading scenario;

• computing exact CRBs for the Rayleigh and Ricean
fading models in Sections II and III.

APPENDIX A
APPROXIMATE ML ESTIMATION OF THE DOPPLER SPREAD

We derive the approximate ML estimator (2.15) of the
Doppler-spread parameter in the SISO scenario, discuss its
relationship with the approximate average ML method in [20],
and extend it to the smart-antenna SIMO scenario.

SISO Scenario: We start with the following basis-function
representation of the measurements (see, e.g., [37, eq. (2.6)
and Fig. 1] and references therein):

(A.1)
which is a linear combination of complex exponentials
at frequencies , , weighted by
the (unknown) complex amplitudes , , and
corrupted by additive white circularly symmetric complex
Gaussian noise with unknown variance . Equation (A.1)
approximates a multipath fading channel with uniformly dis-
tributed scatterers around the mobile (see also a similar model
in [20, eq. (2)]). For a fixed and under the model (A.1), the
ML estimates of , , and easily follow (see,
e.g., [37]):

(A.2a)

(A.2b)

where is shown in the equation at the bottom of the
next page. Substituting (A.2) into the likelihood function for the
above measurement model yields the concentrated likelihood
function (see, e.g., [37, eq. (5.5)])

(A.3)
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to be maximized with respect to . For large , we can use
the following approximation (see [31, p. 157]):

(A.4)

and a monotonic transformation
to obtain a simpler form of

the concentrated likelihood

(A.5)

The above expression is equivalent to the approximate average
log-likelihood function for in [20, eq. (16)], where it was
derived using a different measurement model. Note that (A.5)
cannot be computed efficiently because of nonuniform sampling
of the periodogram at frequencies that depend on the unknown
parameter . For large , (A.5) is proportional to

(A.6)

and (2.15) follows. Note that (A.6) is different from [20, eq.
(17)]. In [20], the authors mistakenly suggest maximizing

with respect to ; see [20, eqs.
(3) and (17)].

SIMO Scenario: The above derivation is easily extended to
the SIMO scenario in Section III, yielding (4.2).

APPENDIX B
PX-EM ALGORITHM DERIVATION

We derive PX-EM algorithms for estimating and , as-
suming that is known.

First, note that the Whittle log-likelihood in (3.4) can be
rewritten as

(B.1)

which would be the exact log-likelihood in the scenario where
, are independent zero-mean

circularly symmetric complex Gaussian random vectors with
covariances . In the following, PX-EM algorithms
are derived for maximizing (B.1) with respect to and , as-
suming that is known. We consider both the unstructured and
independent fading scenarios; see the following discussion.

A. Unstructured Fading

We now derive the PX-EM algorithm for estimating and
for known and the unstructured fading scenario. Consider the
following expanded measurement model:

(B.2a)

vec (B.2b)

for , where is the matrix of the auxiliary
parameters, are independent, identically distributed (i.i.d)
zero-mean complex Gaussian random vectors with covariance

, and is additive zero-mean white complex
Gaussian noise with covariance . Here, the
vec operator stacks the columns of a matrix one below another
into a single column vector, and (B.2b) follows from (B.2a) by
applying the following identity:

vec vec (B.3)

which holds for arbitrary conforming matrices and and an
identity matrix of appropriate dimensions; see [28, eq. (2.11)
at p. 342]. We assume that and are independent, im-
plying that for .
Clearly, the covariances of can be written as

(B.4)

implying that

(B.5)

We wish to find the ML estimates of the following parameters
of the expanded model: , , and ; then, the ML estimate
of easily follows by using (B.5). To compute these ML es-
timates, we derive the EM algorithm (see, e.g., [38] and [39])
for the model (B.2) by treating , as the
unobserved (or missing) data. Then, the complete-data log-like-
lihood function is as in (B.6), shown at the bottom of the next
page, and the complete-data sufficient statistics are

(B.7a)

(B.7b)

(B.7c)

(B.7d)

...
...

...
...
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where . The complete-data log-
likelihood (B.6) is easily maximized with respect to , , and

, yielding the following estimates:

(B.8a)

(B.8b)

and, for a given

tr tr

tr (B.8c)

Equation (B.8a) follows as a least-squares solution to the linear
regression problem in (B.2b):

vec

(B.9)

where we used the Kronecker product theorem [28, Lemma
16.1.2], stating that for arbitrary conforming matrices , , ,
and , . Then, (B.8a) follows
by applying (B.3) to (B.9).

The complete-data likelihood belongs to an exponential
family of distributions, i.e., the log-likelihood (B.6) is linear in
the natural sufficient statistics (B.7); see, e.g., [29, ch. 1.6.2]
for the definition of the multiparameter exponential family and
natural sufficient statistics. Then, it easily follows from (B.6) that
the expectation (E) step reduces to computing the conditional
expectations of the complete-data natural sufficient statistics
[in (B.7)], given the observed data . Observe that, for the
measurement model in (B.2), and are jointly
complex Gaussian with the following mean and covariance:

(B.10a)

cov

(B.10b)

and then it easily follows from [24, result 7, pp. 508, 509] that
conditioned on is a complex Gaussian vector

with the mean and covariance equal to

(B.11a)

cov

(B.11b)

where . Define also

(B.12)

We now use the above expressions to find the conditional expec-
tations of the complete-data natural sufficient statistics (B.7):

(B.13a)

cov

(B.13b)

(B.13c)

cov

(B.13d)

where we emphasize the dependence of the above conditional
expectations on the parameters , , and . Now, the max-
imization (M) step follows by replacing the complete-data suf-
ficient statistics (B.7) that occur in the complete-data ML es-

tr

(B.6)
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timates (B.8) with their conditional expectations computed in
(B.13):

(B.14a)

(B.14b)

tr

tr

tr

(B.14c)

and (3.11) easily follows. To derive (3.11d), we used the fol-
lowing identity [see also (B.11)]:

tr cov

tr

tr

tr

tr (B.15)

B. Independent Fading

The PX-EM algorithm for estimating and for known
and the independent fading scenario is easily derived from the
following expanded measurement model:

(B.16)

for , , where are the
auxiliary parameters, are independent zero-mean com-
plex Gaussian random variables with variances , and is
additive zero-mean white complex Gaussian noise with covari-
ance , independent from . Under the
above assumptions, the covariance matrices of can
be written as

diag

(B.17)

implying that

diag

(B.18)
The PX-EM algorithm for independent fading in Section III-B
follows from the above measurement model by using arguments
similar to those in Section A above, where the PX-EM algorithm
was derived for the unstructured fading scenario.

APPENDIX C
ASYMPTOTIC FISHER INFORMATION MATRIX

We utilize (3.20)–(3.22) to compute the elements of that
correspond to the normalized fading covariance parameters in
unstructured and independent fading scenarios (see Sections A
and B below). To simplify notation, we omit the dependences
of and on and , respectively.

A. FIM for Unstructured

Denote by the element of , where
. First, we use (3.20) to compute

tr

(C.1)

and, for

tr
Re

Re (C.2a)

tr
Im

Im (C.2b)

Similarly, (3.21) implies

tr

(C.3)
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and, for

tr
Re

Re (C.4a)

tr
Im

Im (C.4b)

Finally, for and , (3.22) simplifies to

Re

Re

tr
Re

Re

Re

(C.5a)

Im

Re

tr
Re

Im

Im

(C.5b)

Im

Im

tr
Im

Im

Re

(C.5c)

for and

tr

Re

Re (C.6a)

tr

Im

Im (C.6b)

and for and

tr

(C.7)
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B. FIM for Independent Fading

For independent fading (i.e., diag and
), the elements of related to can

be computed as follows:

tr

(C.8a)

tr

(C.8b)

for , and

tr

(C.9)

for .
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