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Abstract—We propose a probabilistic model for sparse signal
reconstruction and develop several novel algorithms for com-
puting the maximum likelihood (ML) parameter estimates under
this model. The measurements follow an underdetermined linear
model where the regression-coefficient vector is the sum of an
unknown deterministic sparse signal component and a zero-mean
white Gaussian component with an unknown variance. Our
reconstruction schemes are based on an expectation-conditional
maximization either (ECME) iteration that aims at maximizing the
likelihood function with respect to the unknown parameters for a
given signal sparsity level. Compared with the existing iterative
hard thresholding (IHT) method, the ECME algorithm contains
an additional multiplicative term and guarantees monotonic
convergence for a wide range of sensing (regression) matrices. We
propose a double overrelaxation (DORE) thresholding scheme for
accelerating the ECME iteration. We prove that, under certain
mild conditions, the ECME and DORE iterations converge to
local maxima of the likelihood function. The ECME and DORE
iterations can be implemented exactly in small-scale applications
and for the important class of large-scale sensing operators
with orthonormal rows used e.g., partial fast Fourier transform
(FFT). If the signal sparsity level is unknown, we introduce an
unconstrained sparsity selection (USS) criterion and a tuning-free
automatic double overrelaxation (ADORE) thresholding method
that employs USS to estimate the sparsity level. We compare the
proposed and existing sparse signal reconstruction methods via
one-dimensional simulation and two-dimensional image recon-
struction experiments using simulated and real X-ray CT data.

Index Terms—Expectation-conditional maximization either
(ECME) algorithm, iterative hard thresholding, sparse signal
reconstruction, successive overrelaxation, unconstrained sparsity
selection.

I. INTRODUCTION

S PARSITY is an important concept in modern signal
processing. Sparse signal processing methods have been

developed and applied to biomagnetic and magnetic resonance
imaging [1], wireless sensing [2], spectral estimation [3], and
compressive sampling (CS) [4]–[7]. For noiseless measure-
ments, the major sparse signal reconstruction task is finding the
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sparsest solution of an underdetermined linear system
(see e.g., [8, eq. (2)]):

(1)

where is an measurement vector, is a known
full-rank sensing matrix with , is an unknown
signal vector, and counts the number of nonzero elements
in the signal vector . Exactly solving the problem (1) re-
quires combinatorial search and is known to be NP-hard [9].
Various tractable approaches for finding sparse solutions

to underdetermined linear systems can be roughly divided
into three groups: convex relaxation, greedy pursuit, and
probabilistic methods. Convex methods replace the -norm
penalty with the -norm penalty and solve the resulting convex
optimization problem. Basis pursuit (BP) directly substitutes
with in the problem, see [10]. To combat mea-

surement noise and accommodate for approximately sparse
signals, several methods with various optimization objectives
have been suggested, e.g., basis pursuit denoising (BPDN)
[10], [11] and Dantzig selector [12]. The gradient projection
for sparse reconstruction (GPSR), fixed-point continuation
active set , and approximate message passing (AMP)
algorithms in [13]–[15] solve the unconstrained version of
the BPDN problem in a computationally efficient manner.
Greedy pursuit methods approximate the solution in an
iterative manner by making locally optimal choices. Orthog-
onal matching pursuit (OMP) [16]–[18], compressive sampling
matching pursuit (CoSAMP) [19], and iterative thresholding
schemes [20]–[24] belong to this category. Probabilistic
methods use full probabilistic models and statistical inference
tools to solve the sparse signal reconstruction problem. Exam-
ples of the methods in this group are: Sparse Bayesian learning
(SBL) [25], Bayesian compressive sensing (BCS) [26] and
expansion-compression variance-component based method
(ExCOV) [27].
Iterative hard thresholding (IHT) and normalized iterative

hard thresholding (NIHT) algorithms in [22]–[24] (see also
[21]) have attracted significant attention due to their low
computation and memory requirements and theoretical and em-
pirical evidence of good reconstruction performance. The IHT
and NIHT methods require only matrix-vector multiplications
and do not involve matrix-matrix products, matrix inversions,
or solving linear systems of equations. However, they converge
slowly, demanding a fairly large number of iterations, require
tuning the signal sparsity level, and are sensitive to scaling of
the sensing matrix (IHT) or require adaptive adjustments in
each iteration to compensate for the scaling problem (NIHT).
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The -norm alternate projection method ( -AP) in [20] gen-
eralizes the IHT algorithms by replacing the transpose of the
sensing matrix in the IHT iteration1 with the Moore-Pen-
rose inverse of . Indeed, if the rows of the sensing matrix
are orthonormal, then the -AP iteration is equivalent to the
IHT iteration in [23, eq. 10].
The contribution of this paper is four-fold.
1. Probabilistic model We propose a probabilistic frame-
work for sparse signal reconstruction based on a random
Gaussian signal model [28], [29]. We develop several
novel algorithms for this model based on an expecta-
tion-conditional maximization either (ECME) iteration
for computing the maximum likelihood (ML) parameter
estimates, see also [28]. Our ECME iteration is closely
related to the IHT and -AP algorithms, see also the dis-
cussion in Section II-A. This probabilistic model enables
us to employ statistical signal processing tools, such as
parameter-space overrelaxation for accelerating algorithm
convergence and model selection for automatically deter-
mining the signal sparsity level.
2. Convergence acceleration We develop a double overre-
laxation (DORE) thresholding method that interleaves two
successive overrelaxation steps with ECME steps, see also
[29]. DORE accelerates the convergence of the ECME al-
gorithm. The line searches in the overrelaxation steps have
closed-form solutions, making these steps computationally
efficient.
3. Convergence Analysis We study the convergence prop-
erties of the ECME and DORE algorithms. We prove
that both algorithms converge monotonically to the local
maximum of the marginal likelihood function under some
fairly mild conditions. Our ECME andDORE convergence
conditions are invariant to invertible linear transforms of
the rows of and, therefore, to scaling of as well by
a nonzero constant.
4. Signal sparsity level selection Most sparse recon-
struction methods require tuning [30], where the tuning
parameters are typically the noise or signal sparsity levels:
the IHT, NIHT, and -AP algorithms require knowledge
of the signal sparsity level. In this paper, we propose an
automatic double overrelaxation (ADORE) thresholding
method that does not require the knowledge of the signal
sparsity level. To automatically select the sparsity level
(i.e., estimate it from the data), we introduce an uncon-
strained sparsity selection (USS) criterion. We prove
that, for sparse signal and noiseless measurements, the
unconstrained model selection criterion USS is equivalent
to the constrained problem (1). ADORE combines
the USS criterion with the DORE iteration and applies
a golden-section search to maximize the USS objective
function.

The rest of the paper is organized as follows. In Section II,
we introduce our two-stage hierarchical probabilistic model
and the ECME hard thresholding algorithm (Section II-A).
In Section III, we describe the DORE thresholding method

1The basic IHT iteration is defined in [23, eq. (10)], where in [23] corre-
sponds to the sensing matrix here.

for accelerating the convergence of the ECME iteration. In
Section IV, we introduce the USS criterion and our ADORE
thresholding scheme (Section IV-A) for tuning-free recon-
struction. Our convergence analyses of the ECME and DORE
algorithms are presented in Section V. In Section VI, we com-
pare the performances of the proposed and existing large-scale
sparse reconstruction methods using one-dimensional simula-
tion and two dimensional image reconstruction examples from
simulated and real X-ray computed tomography (CT) data.
Concluding remarks are given in Section VII.

Notation and Terminology

The multivariate probability density function (pdf) of a real-
valued Gaussian random vector with mean vector and
covariance matrix is denoted by . The absolute
value, norm, determinant, and transpose are denoted by
, , , and “ ”, respectively. The smallest integer

larger than or equal to a real number is ; , , and
are the identity matrix of size , the vector of

zeros, and the matrix of zeros, respectively;
and are the minimum and maximum eigenvalues of
a real-valued symmetric square matrix ; is the
smallest number of linearly dependent columns of a matrix
[8]; denotes the restriction of the matrix to the

index set , e.g., if , then ,
where is the th column of ; is the restriction of a
column vector to the index set , e.g., if ,
then , where is the th element of . The
size of a set is denoted by and returns the
support set of a vector , i.e., the index set corresponding to
the nonzero elements of , e.g.,

. The thresholding operator keeps the largest-
magnitude elements of a vector intact and sets the rest to
zero, e.g., .
We refer to an sensing matrix as proper if it has

full rank and

(2)

which implies that the rank of is equal to . Throughout this
paper, we assume that sensing matrices are proper, which
is satisfied in almost all practical sparse signal reconstruction
scenarios.

II. PROBABILISTIC MODEL AND THE ECME ALGORITHM

We model a real-valued measurement vector as

(3a)

where is an real-valued proper sensing matrix, is
an multivariate Gaussian vector with pdf

(3b)

is an unknown real-valued sparse
signal vector containing at most nonzero elements ,
and is an unknown variance-component parameter; we refer
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to as the sparsity level of the signal and to the signal as being
-sparse. Note that counts the number of
nonzero elements in ; we refer to as the support size of
. Therefore, the support size of the -sparse vector is
less than or equal to the sparsity level . The set of unknown
parameters is

(4)

with the parameter space , where

(5)

is the sparse signal parameter space. The above random
Gaussian signal model can be used to describe approximately
sparse signals. Despite its practical importance, the random
signal scenario has been neglected in the sparse signal re-
construction and compressive sampling literature, which is
heavily biased towards the standard signal-plus-noise model.
It is important to design reconstruction algorithms specifically
for this scenario because they will outperform the standard
reconstruction schemes that ignore the underlying structure
of the random signal model; see our results in Section VI-A
where we demonstrate such performance improvements when
the rows of the sensing matrix are correlated.
The marginal likelihood function of is obtained by inte-

grating out [see (3)]:

(6a)

where the fact that is a proper sensing matrix ensures that
is invertible and, consequently, that the pdf (6a) exists.

For a given sparsity level , the ML estimate of is

(6b)

For any fixed , the marginal likelihood (6a) is maximized by

(7)

Therefore, maximizing (6a) with respect to is equivalent to
first maximizing the concentrated likelihood function

(8)

with respect to , yielding , and then determining
theML estimate of by substituting into (7). Obtaining
the exact ML estimate in (6b) requires a combinatorial
search and is therefore infeasible in practice. In the following,
we present a computationally feasible iterative approach that
aims at maximizing (6a) with respect to and circumvents
the combinatorial search.

A. ECME Algorithm for Known Sparsity Signal Level

We treat as the missing (unobserved) data and present an
ECME algorithm that approximately finds the ML estimate
in (6b) for a fixed signal sparsity level . Since is assumed
known, we simplify the notation and omit the dependence of
the estimates of on in this section and in Appendix A. An

ECME algorithm maximizes either the expected complete-data
log-likelihood function (where the expectation is computed
with respect to the conditional distribution of the unobserved
data given the observed measurements) or the actual ob-
served-data log-likelihood, see [31, Sec. 5.7].
Assume that the parameter estimate is

available, where denotes the iteration index. Iteration
proceeds as (see Appendix A for its derivation):
• update the sparse signal estimate using the expectation-
maximization (EM) step, i.e., the expectation (E) step:

(9a)

followed by the maximization (M) step, which simplifies
to

(9b)

and
• update the variance component estimate using the fol-
lowing conditional maximization (CM) step:

(9c)
obtained by maximizing the marginal likelihood (6a) with
respect to for a fixed , see (7).

Iterate until two consecutive sparse-signal estimates and
do not differ significantly.

In (9a), denotes the mean of the pdf
, which is the Bayesian minimum mean-square

error (MMSE) estimate of for known [32, Sec. 11.4].
The iteration (9a)–(9b) is equivalent to the -AP scheme in

[20], where it was introduced as an ad hoc solution to a reg-
ularized form of the problem in (1) for a certain regular-
ization parameter; hence, there is no underlying probabilistic
model behind the method in [20]. The iteration (9a)–(9b) is also
closely related to the IHT scheme in [23, eq. (10)]: The main
difference is that (9a) has an additional term that
ensures convergence of the iteration (9a)–(9b) for a wide range
of sensing matrices, see Section V. In small-scale problems
with dense (e.g., random Gaussian or Bernoulli) sensing ma-
trices , can be pre-computed and stored, where the
storage cost is . Once is stored, the matrix-vector
product in each ECME iteration step
costs only an additional computations, compared to the
IHT iteration whose computational complexity per iteration step
is .2 For large-scale problems (e.g., image and video
reconstruction), it is too expensive to store and compute

, thus necessitating the application of fast sampling
operators. For an important class of fast sampling operators, the
corresponding sensing matrices satisfy

(10)

[obviating the need to compute and store ] and the
large-scale ECME iteration can be implemented exactly and is
equivalent to the IHT iteration in [23, eq. (12)] with step size .
For example, the partial fast Fourier transform (FFT) sampling

2Recall that we assume , see (2).
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operator satisfies (10) with , implying that the rows of the
sensing matrix are orthonormal.
1) Approximation: The exact ECME iteration (9) is not fea-

sible in those large-scale applications where the multiplicative
term is general (i.e., does not have a special struc-
ture); in this case, we suggest approximating this term by a di-
agonal matrix or by , which corresponds to assuming that
(10) holds approximately and leads to the IHT iteration in [23,
eq. (12)] with step size .

III. THE DORE ALGORITHM FOR KNOWN
SPARSITY SIGNAL LEVEL

We now present our DORE algorithm that accelerates the
convergence of the ECME iteration. Since the signal sparsity
level is assumed known, we omit the dependence of the esti-
mates of on in this section.
Assume that two consecutive estimates of the un-

known parameters and
are available from the -th

and -th iterations, respectively. Iteration proceeds as
follows:

1. ECME step Compute

(11a)

(11b)

and define .
2. First overrelaxation Compute the linear combination of
and :

(12a)

where the weight

(12b)

is the closed-form solution of the line search:

(12c)

with the parameter space of extended to , where
is the sparsity level of

and is an arbitrary positive number, see
also (6a).
3. Second overrelaxation Compute the linear combination
of and :

(13a)

where the weight

(13b)

is the closed-form solution of the line search:

(13c)

with the parameter space of extended to , where
is the sparsity level of

and is an arbitrary positive number.

4. Thresholding Threshold to the sparsity level :

(14a)

compute the corresponding variance component estimate:

(14b)

and define our final overrelaxation parameter estimate
.

5. Decision (between ECME and thresholded overrelax-
ation parameter estimates) If or,
equivalently, if

(15)

assign ; otherwise, assign and com-
plete Iteration .

Iterate until two consecutive sparse-signal estimates and
do not differ significantly. Note that the line searches in

the two overrelaxation steps have closed-form solutions and are
therefore computationally efficient. The complexity of DORE
per iteration is comparable to that of ECME, but DORE con-
verges in much fewer iterations than ECME, see the numerical
examples in Section VI. The convergence guarantees we have
proved in Section V for these two algorithms are the same.
Using a single successive overrelaxation step based on

the most recent parameter estimate is a common approach
for accelerating fixed-point iterations, however this scheme
oscillates around the slowest-converging direction of the un-
derlying EM-type iteration [33, Theorem 2], see also [33, Fig.
1], where this oscillation phenomenon is demonstrated in a
two-dimensional example. Here, we adopt the idea in [33,
Sec.3.3] and apply the second overrelaxation, which mitigates
the oscillation effect and thereby converges more rapidly than
the acceleration scheme based on a single successive over-
relaxation. Our algorithm differs from that in [33, Sec. 3.3],
which focuses on continuous parameter spaces with marginal
likelihood that is differentiable with respect to the parameters.
Unlike [33, Sec. 3.3], here we apply successive overrelaxation
steps on parameter spaces with variable dimensions (Steps 2
and 3), threshold the second overrelaxation estimate to ensure
that the resulting signal estimate is -sparse (Step 4), and test
the thresholded estimate from Step 4 versus the ECME estimate
from Step 1 and adopt the better of the two (Step 5).
DORE Initialization. The parameter estimates and

are obtained by applying two consecutive ECME steps (9) to an
initial sparse signal estimate .
The empirical Bayesian signal estimate. We construct the

following empirical Bayesian estimate of the random signal
vector :

(16)
where denotes the estimate of
the unknown parameter set upon convergence of the DORE or
ECME iterations. Unlike , the empirical Bayesian esti-
mate (16) is not -sparse in general, and is therefore preferable
for reconstructing nearly sparse signals that have many small
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nonzero signal coefficients3; we use it for real-data X-ray CT
reconstruction in Section VI-C.
Inspired by our DORE acceleration of the ECME iteration,

Blumensath has recently proposed and analyzed a double
overrelaxation acceleration of the IHT algorithm, see [35].
When (10) holds, this accelerated IHT scheme coincides with
the above DORE iteration and can be obtained by using the
approximation (10) and replacing all multiplicative terms

by in the DORE iteration.

IV. SIGNAL SPARSITY SELECTION AND THE

ADORE ALGORITHM

The ECME, DORE, and most other greedy reconstruction al-
gorithms require the knowledge of the signal sparsity level .
Here, we propose a signal sparsity selection criterion and an
automatic double overrelaxation (ADORE) thresholding algo-
rithm that estimates the signal sparsity level from the measure-
ments.
We introduce the following unconstrained sparsity selection

(USS) objective function for selecting the proper signal sparsity
level that strikes a balance between the efficiency and accuracy
of signal representation:

(17)

where is the ML estimate of the variance component
[see (6b)],

(18)

is the pseudo-logarithm function, and is an arbitrarily small
positive constant introduced to avoid numerical problems when
the ML estimate is zero.4 The USS objective function
(17) is developed from the generalized maximum likelihood
(GML) rule [36, p. 223] for model selection:

(19)

where is the Fisher information matrix (FIM) for the
ML estimate at the sparsity level . The first term in (19)
is a non-decreasing function of , but the second term in (19)
penalizes the growth of . In Appendix B, we derive in
(17) by approximating and modifying GML so that it is com-
putationally efficient and scale-invariant, which are desirable
properties.
The USS objective (17) is closely related to the problem

(1), as shown by the following theorem.
Theorem 1: Suppose that we have collected a measurement

vector using a proper sensing matrix , where

3In the experiment in [34, Sec. 5.2] where the approximately sparse Lena
image was reconstructed from compressive samples, the empirical Bayesian es-
timate (16) achieved consistently higher (by about 1 dB) peak signal-to-noise
ratios than the purely sparse signal estimate .
4In practice, can be chosen as the smallest positive floating-point number

of the implementation platform.

is a sparse signal vector having exactly nonzero
elements. If
(1) the sensing matrix satisfies the unique representation

property (URP) [3] stating that all submatrices
of are invertible or, equivalently, that

(20a)

and
(2) the number of measurements satisfies

(20b)

then
• in (17) is globally and uniquely maximized at

and
• the -optimal solution and ML sparse signal estimate
at [i.e., , see (6b)] are both unique and
coincide with .
Proof: See Appendix C.

Theorem 1 shows that the USS objective function transforms
the constrained optimization problem in (1) into an equiv-
alent unconstrained problem (17) and that, for sparse signals in
the absence of noise, USS optimally selects the signal sparsity
level that allows accurate signal representation with as few
nonzero signal elements as possible.
In the practical scenarios where , (20b) reduces to
, which is the condition required to ensure the uniqueness of

the problem, see [8, Theorem 2].
In the following, we use DORE to approximately evaluate the

USS objective function and apply this approximate USS crite-
rion to automatically select the signal sparsity level.

A. The ADORE Algorithm for Unknown Signal Sparsity
Level

We approximate the USS objective function (17) by replacing
the computationally intractable ML estimate with its
DORE estimate. Maximizing this approximate USS objective
function with respect to by an exhaustive search may be
computationally expensive because we need to apply a full
DORE iteration for each sparsity level in the set of integers
between 0 and .5 Here, we propose the ADORE algorithm
that applies the golden-section search [37, Sec. 4.5.2.1] to
maximize the approximate USS objective function, with the
initial search boundaries set to 0 and . In the practical case
where , we have . For each candidate

, we estimate using the DORE iteration.
After running one golden sectioning step, the length of the new
search interval is approximately 0.618 of the previous interval
(rounded to the closest integer). The search process ceases when
the desired resolution is reached, i.e., when the searching
interval becomes shorter than the prescribed resolution level
. Therefore, ADORE requires roughly
full DORE iterations. For the golden-section search to find the
exact maximum of a function, the function should be unimodal.
Because we approximate by replacing with

5Note that is the largest value of the sparsity level for which reasonable
reconstruction is possible from measurements; otherwise, the and ML
estimates of the sparse signal may not be unique, see e.g., [8, Theorem 2].
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its DORE estimate and this approximation of is not
necessarily a unimodal function of (in general), ADORE
maximizes (17) only approximately, yielding . Our
ADORE sparse signal estimate is equal to the corresponding
DORE estimate at .

V. CONVERGENCE ANALYSIS

We now analyze the convergence properties of our ECME
and DORE algorithms presented in Sections II-A and III.
The analysis in this section applies only to the exact ECME
and DORE iterations that employ the multiplica-
tive terms without approximation. The ECME algorithm in
Section II-A does not satisfy the general regularity conditions
assumed in standard convergence analysis of the EM-type
algorithms in e.g., [31] and [38, Theorem 2]. In particular, the
complete-data and conditional unobserved data given the ob-
served data distributions and are
both degenerate, see (3a) and Appendix A; the parameter space

is non-convex and its interior is empty; in , the partial
derivatives of the marginal likelihood (6a) with respect to the
components of do not exist for most directions. Therefore, we
establish the convergence analysis of ECME and DORE afresh
here.
Maximizing the concentrated likelihood function (8) with

respect to is equivalent to minimizing the weighted
squared error

(21)

The following identity holds for all , :

(22a)

where

(22b)

(22c)

This identity follows by rewriting (22b) as
and ex-

panding the squares. Observe that is minimized at
. When we set to (the estimate of in the -th ECME
iteration), becomes exactly the ex-
pression that is minimized in the M step (9b) and, consequently,

(23a)

Since is minimized at , we have

(23b)

Subtracting (23a) from (23b) and using (22a) yields

(24)

and, therefore, our ECME iteration (9) ensures a monotonically
non-decreasing marginal likelihood (6a), see also (8). Mono-
tonic convergence is also a key general property of the EM-type
algorithms [31].

Note that Step 5 of the DORE iteration (11)–(15) ensures that
the resulting new parameter estimate yields the marginal likeli-
hood function (6a) that is higher than or equal to that of the stan-
dard ECME step (Step 1). Therefore, the DORE scheme ensures
monotonically nondecreasing marginal likelihood as well.
Since (21) is bounded from below by zero, the sequence

must converge to a limit as the iteration index grows
to infinity. However, the fact that converges does not
necessarily imply the convergence of . If converges,
where does it converge? Is it a local or the global maximum
of the marginal log-likelihood function (6a)? To answer these
questions, we first define the local maximum of a function over
the parameter space in (5).
Definition 1 ( -Local Maximum and Minimum): For a func-

tion , a vector is an -local maximum
point of if there exists a , such that, for all
satisfying , we have

(25)

Then, is the corresponding -local maximum of . We
define and as an -local minimum point and
the corresponding -local minimum of if is an -local
maximum point for the function .
Definition 1 states that an -sparse vector is an -local max-

imum (or minimum) point of a function if, in some small
neighborhood, this vector attains the largest (or smallest) func-
tion value among all the sparse vectors within that small neigh-
borhood.
The following theorem establishes that, under mild condi-

tions, ECME and DORE iterations converge to an -local max-
imum point of the concentrated marginal likelihood.
Theorem 2: Assume that the sparsity level satisfies

(26)

and that the sensing matrix satisfies the URP condition (20a).
Then, the signal iterate of the ECME algorithm for sparsity
level converges monotonically to an -local maximum point
of the concentrated marginal likelihood function (8). Similarly,
the signal iterate of the DORE algorithm for sparsity level con-
verges monotonically to an -local maximum point of (8).

Proof: See Appendix D.
Note that (26) is a mild condition. In practice, and

(26) specifies a large range of sparsity levels for which the
ECME and DORE iterations converge. Theorem 2 claims that,
if satisfies the URP condition (20a) and for a sufficiently
small sparsity level , both ECME and DORE algorithms in
Sections II-A and III converge to an -local maximum of the
concentrated marginal likelihood function (8).
The conditions of Theorem 2 holds even when the sensing

matrix is pre-multiplied by a full-rank square matrix. In con-
trast, the convergence result of the -AP method in [20] is re-
stricted to the case where the Moore-Penrose inverse of is a
tight frame (see [20, Sec. 3]) and, consequently, (10) holds. The
IHT algorithm converges to a local minimum of the squared
residual error for a specified signal sparsity level only if is
appropriately scaled. Indeed, [22, Theorem 4] demands that the
spectral norm of the sensing matrix is less than unity; if this
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spectral norm condition does not hold, then the IHT iteration
may become unstable and diverge, see [24, Sec. II-D]. To over-
come such scaling requirements and ensure convergence for an
arbitrarily scaled , a normalized IHT (NIHT) method has been
proposed in [24], where an adaptive step size is introduced to
the original hard thresholding step. This term is monitored and
adjusted in each iteration so that it does not exceed a certain
threshold. However, this monitoring and adjustment consume
CPU time and typically slow down the resulting algorithm, see
the numerical examples in Section VI. In contrast, our ECME
and DORE iterations guarantee monotonic convergence for a
wide range of sensing matrix without the need for step size
monitoring and adjustment.

VI. NUMERICAL EXAMPLES

We now evaluate our proposed methods in Sections III
and IV using one-dimensional simulated examples and two-
dimensional X-ray computed tomographic (CT) image re-
covery experiments.
We compare the following methods:
• the DORE and ADORE6 schemes initialized by the zero
sparse signal estimate:

(27)

with MATLAB implementations available at http://home.
eng.iastate.edu/~ald/DORE.htm;

• the ECME method in Section II-A initialized by the zero
sparse signal estimate in (27);

• the NIHT scheme in [24], initialized by the zero sparse
signal estimate in (27);

• the fixed-point continuation active set algorithm in [14]
with the regularization parameter

(28)

(labeled ) that aims at minimizing the Lagrangian
cost function

(29)

where is manually tuned for good performance in each
of the following two numerical examples;

• the Barzilai-Borwein version of the gradient-projection for
sparse reconstruction method with debiasing in [13] with
the convergence threshold and regulariza-
tion parameter chosen as in (28) (labeled ) with
manually tuned for good performance.

Both GPSR and methods aim at solving efficiently
the unconstrained version of the BPDN problem, but the latter is
numerically more stable than the former in our experiments. The
form of the regularization parameter in (28) was suggested in
[13, eq. (22)].

A. One-Dimensional Sparse Signal Reconstruction

We have generated sparse signals of length con-
taining randomly located nonzero elements.
The nonzero components of are independent, identically

6In the one-dimensional simulation (Section VI-A), the ADORE search res-
olution level is set to , while in the two-dimensional CT image recon-
structions (Sections VI-B and VI-C), is set to 500.

distributed (i.i.d.) samples from Gaussian distribution with
zero mean and unit variance. The measurement vector
is generated using linear model (3), where . We

consider the deterministic and random signal scenarios with
and , respectively. The sensing

matrices are simulated using a white Gaussian sensing
matrix whose entries are i.i.d. zero-mean Gaussian random
variables with variance or a correlated Gaussian sensing
matrix whose columns are i.i.d. zero-mean Gaussian random
vectors of size with covariance matrix whose th
element is , , . The white
Gaussian sensing matrix has approximately orthornormal rows
and satisfies . In contrast, for correlated
Gaussian sensing matrices, . Here, we also
consider two approximate DORE implementations:
• , which approximates the term by

, and
• , which approximates the term by

.
For white Gaussian sensing matrices, and

coincide and are labeled . For cor-
related Gaussian sensing matrices,

. . .
. . .

. . .

(30)

which is a sparse banded matrix.7

For the ECME, DORE, ADORE, and NIHT iterations, we use
the following convergence criterion:8

(31)

Our performance metric is the average mean-square error
(MSE) of a signal estimate :

(32)

computed using 500Monte Carlo trials, where averaging is per-
formed over the random sensing matrices , the sparse signal
and the measurements .
The ECME, NIHT, DORE, , and

methods require knowledge of the signal sparsity level ;
here, we use to implement these algorithms. In
contrast, the ADORE method is automatic and estimates the
sparsity level from the measurements using the USS crite-
rion. We tuned the regularization parameter in (28) for the

and methods by varying within the set
and, for each and

each of the two methods, we use the optimal that achieves
the smallest average MSE; the resulting methods are labeled

and , respectively.

7Multiplication by the sparse banded matrix in (30) can be implemented effi-
ciently.
8To implement the NIHT scheme, we incorporated the convergence criterion

(31) into the corresponding MATLAB codes from the sparsify toolbox at http://
users.fmrib.ox.ac.uk/~tblumens/sparsify/sparsify.html.
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Fig. 1. (a)–(b) MSEs, (c)–(d) numbers of iterations, and (e)–(f) CPU times as functions of the sparsity ratio using white [(a), (c), (e)] and correlated [(b),
(d), (f)] Gaussian sensing matrices, respectively, for deterministic signal .

Fig. 1 shows theMSEs, numbers of iterations, and CPU times
of various methods as functions of the sparsity ratio for
deterministic signal . For a large part of MSE curves,
the MSEs of several methods are lower than , which
indicates (nearly) perfect recovery. For white Gaussian sensing
matrices, the MSE performances of ECME, DORE, ADORE
and NIHT are similar, and the approximate method
achieves inferior MSEs when and 0.14. Among
the hard thresholding methods (ECME, DORE, ,
ADORE and NIHT), DORE converges in the smallest number

of iterations, see Fig. 1(c). In terms of the average CPU time9,
DORE and are the fastest methods among all the
methods compared; the ECME and NIHT methods require
slightly longer time to converge and are faster than the convex
methods and , see Fig. 1(c) and (e).

9For ECME, DORE, and ADORE, the matrix inverse term is
precomputed and the CPU time of this computation (which is around 0.027 sec-
onds) is not counted to the CPU time of these algorithms. In practice, as long as

does not change, we need to compute only once and apply it to

run many ECME, DORE, and ADORE iterations.
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Fig. 2. (a)–(b) MSEs, (c)–(d) numbers of iterations, and (e)–(f) CPU times as functions of the sparsity ratio using white [(a), (c), (e)] and correlated [(b),
(d), (f)] Gaussian sensing matrices, respectively, for random signal with variance .

For correlated Gaussian sensing matrices, the ECME,
DORE and ADORE methods achieve significantly lower
MSEs than NIHT, , , and ,
which do not use the multiplicative term . The

method, which uses a fairly accurate approx-
imation of , achieves quite good reconstruction
accuracy, outperforming or matching all other methods ex-
cept the ECME, DORE, and ADORE algorithms that employ

. Note that DORE and converge in
the smallest numbers of iterations and consume the shortest

CPU runtime; in contrast, and NIHT require
significantly more iterations and CPU time to converge, see
Fig. 1(d) and (f).
Fig. 2 shows the reconstruction results for random signal with

variance . For the white Gaussian sensing matrix, the
ECME and DORE that implement exactly achieve
slightly smaller MSEs than NIHT and that do not
use this matrix inverse term, see Fig. 2(a). Interestingly, for

and 0.2, the ADORE method achieves the smallest
MSE among all the hard thresholding schemes. According to
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Fig. 3. (a) The size- Shepp-Logan phantom and the reconstruction achieved by all hard thresholding schemes, (b) a star-shaped sampling domain in the
frequency plane containing 44 radial lines, and (c) the FBP, (d) , (e) , and (f) reconstructions.

Fig. 2(c) and (e), DORE converges in smallest number of it-
erations among the hard thresholding methods and DORE and

are the fastest in terms of CPU time among all the
compared methods.
For correlated Gaussian sensing matrices, we observe again

that the ECME, DORE and ADORE methods achieve signifi-
cantly smaller MSEs than NIHT and that do not
use the multiplicative term . achieves
more accurate reconstruction than , NIHT, and

. DORE and still require the smallest
number of iterations and shortest CPU runtime. Here, NIHT
and need much more iterations to converge and
consume much longer CPU times than for white Gaussian
sensing matrices.
Under both the noiseless and noisy scenarios, the MSEs

of the tuning-free ADORE method are almost as good as the
ECME, DORE, and NIHT methods that have the knowledge of
the true signal sparsity . Under the noisy scenario, DORE
and ECME exhibit similar reconstruction accuracies, which
is expected; under the noiseless scenario, their performances
differ, but mostly in cases where both methods achieve very
small average MSEs. DORE is also consistently faster than
ECME; the acceleration achieved by DORE is more significant
in the large-scale examples, see Sections VI-B and VI-C.
In the following, we consider simulated and real-data X-ray

CT recovery experiments, respectively.

B. Shepp-Logan Phantom Reconstruction From Simulated
CT Data

The sensing matrix has the following structure (see, e.g.,
[6, eq. (2) and Fig. 1]): , where is an sampling
matrix and is an appropriate orthogonal sparsifying

transform matrix. We choose as an inverse discrete wavelet
transform (DWT) matrix [39]. In this section, we also show the
performance of the traditional filtered backprojection (FBP) es-
timate for CT reconstruction, computed as [4].
For the ECME, DORE, ADORE, and NIHT iterations, we use

the convergence criterion in (31).
Consider the reconstruction of the Shepp-Logan phantom of

size in Fig. 3(a). We simulated the tomographic mea-
surements using 2-D discrete Fourier transform (DFT) coef-
ficients of the phantom sampled over a star-shaped domain, as
illustrated in Fig. 3(b), see also [4], [24], [28], and [40]. There-
fore, the sampling matrix is a partial Fourier matrix con-
structed using selected rows of the DFTmatrix that yield the cor-
responding DFT coefficients of the phantom image within the
star-shaped domain. In this example, we select as the inverse
Haar (Daubechies-2) DWT matrix. The Haar wavelet transform
coefficients of the phantom image in Fig. 3(a) are sparse, with

, where the true signal vector con-
sists of the Haar wavelet transform coefficients of the phantom
in Fig. 3(a). For our choices of and , the rows of are or-
thonormal, i.e., (10) holds exactly with , implying that the
ECME iteration in Section II-A is equivalent to the IHT itera-
tion with unit step size.
We use the peak signal-to-noise ratio (PSNR) of a recon-

structed image as performance metric, where is the es-
timated wavelet coefficients vector:

(33)
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Fig. 4. (a) PSNR, (b) number of iterations, (c) CPU time, and (d) estimated signal sparsity level as functions of the normalized number of measurements for
phantom image reconstruction.

where and denote the smallest and largest
elements of .
ECME, DORE, and NIHT require knowledge of the signal

sparsity level ; in this example, we set to the true signal sup-
port size:

(34)

In contrast, the ADORE method is automatic and estimate
from the measurements using the USS criterion.
We tuned the regularization parameter in (28) for the

and methods by selecting from the set

(35)

We varied by changing the number of radial lines in the star-
shaped partial Fourier sampling pattern and found that GPSR
achieves the best overall PSNR for and that GPSR
becomes numerically unstable for .10 For

, the optimal value of changes as varies, with the
best values falling in the set . achieves

10Even though the and methods aim at solving the same
convex optimization problem, in this example, their corresponding reconstruc-
tions differ greatly for : the solution achieves a
much lower Lagrangian cost function (29) as well as better reconstruction ac-
curacy than GPSR.

the same reconstruction performance as , which is in-
ferior to for . Fig. 3 shows the per-
formances of and .
Parts (a) and (c)–(f) of Fig. 3 show the images reconstructed

by the above methods using the 44 radial-line sampling pattern
in Fig. 3(b), which corresponds to the normalized number of
measurements (subsampling factor) . Here, all hard
thresholding methods (ECME, DORE, NIHT, and ADORE)
achieve perfect reconstructions of the original phantom image
with PSNRs over 100 dB. achieves good recovery
with PSNR around 60 dB. In contrast, the other methods
achieve inferior reconstructions with PSNRs 20.2 dB, 34.4 dB,
and 38.4 dB for the FBP, , and estimates,
respectively.
In Fig. 4, we vary and show the PSNRs, numbers of itera-

tions, and CPU times of the above methods, as well as the signal
sparsity level estimate obtained by ADORE. In this example, all
hard thresholding methods exhibit a sharp phase transition at

. achieves a fairly sharp and large phase
transition at whereas achieves an ear-
lier but smaller phase transition at . The
method exhibits no obvious phase transition. The performance
difference of for different shows the sensitivity of
the convex methods to tuning.
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ADORE performs as well as the ECME, DORE, and NIHT
methods that require prior knowledge of the signal sparsity
level. Indeed, Fig. 4(d) shows that the USS criterion accurately
selects the signal sparsity level, particularly after the phase
transition has occurred . This is consistent with the
essence of Theorem 1.
Among all hard thresholding methods, DORE needs the

smallest number of iterations to converge and is also the fastest
in terms of the CPU time. DORE needs 3.2 to 7.8 times less
iterations than ECME and 1.5 to 5.2 times less iterations than
NIHT; in terms of the CPU time, DORE is 1.9 to 4.6 times
faster than ECME and 2.5 to 14.8 times faster than NIHT. In
addition, DORE is noticeably faster than the convex methods

and GPSR.
Since only a single choice (27) is used to initialize ECME,

DORE and ADORE, their PSNR curves in Fig. 4(a) are only
lower bounds on the PSNRs achievable by these methods.

C. Real-Data X-Ray CT Reconstruction

In this example, we apply our proposed methods to recon-
struct an industrial object from real cone-beam X-ray CT pro-
jections. First, we performed the standard fan-to-parallel beam
conversion (see [41, Sec. 3.4]) and generated parallel-beam pro-
jections with 1 spacing and measurement array size of 1023 el-
ements, yielding frequency-domain measurements
per projection (upon taking FFT of each projection). To the
best of our knowledge, this is one of the first applications of
compressive sampling to real CT data using the standard com-
pressive sampling model that employs the sensing matrix in the
form of the product between the sampling and sparsifying trans-
form matrices. Almost all existing CT examples of compres-
sive sampling in e.g., [4], [24], [28], [40] and the previous ex-
ample use synthetic data, such as the Shepp-Logan phantom,
and approximate the CT sampling operation by selected 2-D
discrete Fourier transform (DFT) coefficients of the underlying
image on the uniformCartesian grid in the 2-D spatial frequency
plane. However, this approximation is crude. According to the
Fourier slice theorem [41, Sec. 3.2], upon applying 1D-DFT
to each of the X-ray CT projections, we obtain discrete-space
Fourier transform (DSFT) coefficients of the underlying image
along straight radial lines in the 2-D spatial frequency plane,
which are concentrated in the center (low-frequency) region
of this plane, see Figs. 5(a) and 6(a). Therefore, the approx-
imation of the CT sampling operation in [4], [24], [28], [40]
cannot be used in real X-ray CT applications, see also [40, foot-
note 4]. Here, we employ the non-uniform frequency-domain
sampling pattern that accurately maps the X-ray CT measure-
ments to the corresponding spatial frequency locations. Given
the raw CT projection data, we first compute the FFTs of the CT
projections and, after separating the real and imaginary parts,
stack the real-valued FFT coefficients of all projections into the
measurement vector . The corresponding sampling matrix
is implemented using the nonuniform fast Fourier transform
(NUFFT) [42], which efficiently computes the DSFT coeffi-
cients at the desired frequency locations. The orthonormal spar-
sifying matrix is constructed using the inverse Daubechies-6
DWTmatrix and the sensing matrix is constructed using [43]

with the full circular mask, yielding signal ele-
ments. In this example, is equal to 1024 times the number of
CT projections, which is 180 or 160 for the two sampling sce-
narios in Figs. 5(a) and 6(a). Because of the nonuniform spacing
of the frequency locations and the numerical interpolation em-
ployed by the NUFFT algorithm in [42], here the rows of are
only approximately orthonormal; we implement the DORE it-
eration using (10) with estimated by averaging the diagonal
elements of . The sampling pattern in Fig. 5(a) corre-
sponds to the standard 180 uniform-angle X-ray CT projections
and Fig. 6(a) corresponds to a limited-angle projection scenario
where 20 out of the 180 uniform-angle projections are missing
with themissing projections contiguous in two regions. The lim-
ited-angle projection scenario is motivated by the fact that, in
some applications, the physical constraint of the CT scanner or
the object being scanned prevents projections from certain di-
rections [41, Sec. 6.7.6]. We have implemented the FBPmethod
using the Hann window in the frequency domain [41, Sec. 3.3].
For the and GPSR methods, we tune the regularization
parameter in (29) and select , see (28).
We compute an approximate log-likelihood function at Iter-

ation of the DORE and NIHT iterations as

(36a)

obtained by taking the logarithm of (8), using the approximation
[see (10)], substituting , and neglecting

constant terms. Note that (36a) is a monotonic function of the
residual squared error at Iteration ; the residual squared error is
a common measure for evaluating the performance of the NIHT
algorithm. In Fig. 7, we show the approximate log likelihoods
(36a) of the DORE and NIHT iterations for
as functions of CPU time and declare convergence at Iteration
satisfying . For these two methods,

we apply an approximate empirical Bayesian estimate of the
random signal vector :

(36b)

obtained by substituting into (16), see Figs. 5(c)
and 6(c). Compared with ECME, DORE is also numerically ro-
bust when the approximation (10) is used: Even if the approxi-
mate ECME step fails to increase (36a) because of the inaccu-
racy of this approximation, the corresponding DORE step often
succeeds. Indeed, in this example where we estimate by aver-
aging the diagonal elements of , the ECME iteration does
not converge whereas DORE climbs the approximate log like-
lihood successfully, see Fig. 7.
For 180 uniform-angle projections, the FBP reconstruction

is noisy compared with the DORE, NIHT, and sparse
signal reconstructions, see Fig. 5. The GPSR reconstruction is
noisy and also achieves a higher Lagrangian cost function (29)
than .
For 160 limited-angle projections, the FBP reconstruction

in Fig. 6 exhibits band artifacts caused by aliasing due to the
missing projections. In contrast, DORE, NIHT, and
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Fig. 5. (a) The frequency sampling pattern for 180 uniform-angle projections and (b)–(f) the corresponding reconstructions. (a) Sampling pattern. (b) FBP. (c)
DORE with . (d) DORE . (e) DORE . (f) NIHT . (g) . (h) .

Fig. 6. (a) The frequency sampling pattern for 160 limited-angle projections and (b)–(f) the corresponding reconstructions. (a) Sampling pattern. (b) FBP. (c)
DORE with . (d) DORE . (e) DORE . (f) NIHT . (g) . (h) .

yield reconstructions that are similar to those obtained from the
full 180 uniform-angle projections: Compare parts (c)–(g) of
Figs. 5 and 6. The GPSR reconstruction is noisy, has stronger
band artifacts than the reconstruction, and also achieves
a higher Lagrangian cost function (29) than .
Figs. 5(c) and 6(c) show the DORE reconstructions com-

puted using in (36b) for under the two sampling
scenarios. Figs. 5(d)–(e) and 6(d)–(e) show the DORE recon-

structions computed using the sparse signal estimates
for and Figs. 5(f) and 6(f) show the NIHT
reconstructions computed using the sparse signal estimates

for . For the same sparsity level ,
the DORE and NIHT reconstructions based on exhibit
artifacts caused by the sparsifying transform and are blurred
and smoother than the corresponding reconstructions based on
. Selecting the larger sparsity level removes the
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Fig. 7. The approximate log-likelihood function (36a) of the DORE and NIHT methods with as a function of CPU time for (a) 180 uniform-angle
projections and (b) 160 limited-angle projections.

TABLE I
THE CPU TIMES OF VARIOUS METHODS IN SECONDS

TABLE II
THE APPROXIMATE LOG-LIKELIHOOD FUNCTIONS (36A) ACHIEVED UPON CONVERGENCE OF THE DORE AND NIHT ITERATIONS

blurring, but also introduces scattered snow-like artifacts, see
Figs. 5(e)–(f) and 6(e)–(f); in this case, the signal reconstruction
based on and are almost identical and we show only
those based on .
Table I shows the CPU times of the compared sparse signal

reconstruction methods. In this example, DORE is significantly
faster than NIHT and and its speed in comparable to
that of which, however, does not yield as good recon-
structions as the other sparse reconstruction algorithms. Table II
shows the convergence points of the log likelihoods in Fig. 7,
i.e., the approximate log-likelihood function levels achieved by
DORE and NIHT upon convergence.

VII. CONCLUDING REMARKS

We proposed a probabilistic framework for sparse signal re-
construction and developed three hard thresholding methods
based on this framework: ECME, DORE, and ADORE. ECME
differs from the IHT algorithm by employing a stabilizing mul-
tiplicative term in each iteration step, which guarantees mono-
tonic convergence for a wide range of sensing matrices. The
DORE algorithm accelerates the convergence of the ECME it-
eration. We analyzed the convergence and reconstruction per-
formances of the proposed ECME and DORE iterations. The
conditions required by our theoretical analysis are invariant to

invertible linear transforms of the rows of the sensing matrix.
In the large-scale applications where the multiplication by the
stabilizing term is memory and computationally too expensive,
an approximation is necessary. If we approximate the stabilizing
term by a matrix proportional to identity, ECME reduces to IHT
and the resulting approximate DORE algorithm can be viewed
as a scheme for accelerating the IHT method. We proposed the
tuning-free ADORE method based on our USS model selection
criterion and showed the equivalence between USS and the
problem for sparse signals and noiseless measurements.
Further research will include incorporating information about

the underlying signal structure and analyzing the reconstruction
accuracy of the proposed algorithms.

APPENDIX A
ECME ALGORITHM DERIVATION

Consider the following hierarchical two-stage model:

(A1a)

(A1b)

where is the vector of missing data and is a known noise
covariance matrix. For , this model reduces to that
in (3a) and (3b) in Section II.
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The complete-data likelihood function of the measurements
and the missing data given follows from

(A1a) and (A1b):

(A2)

From (A2), the conditional pdf of given and is

(A3)

see [32, Theorem 11.1]. Assume that the parameter estimate
is available; then, in Iteration , the

E and M steps for estimating simplify to

(A4a)

and

(A4b)

Setting in (A4a) and (A4b) yields (9a) and (9b),
which are not dependent on .

APPENDIX B
AS AN APPROXIMATE GML CRITERION

For a given signal support set with
, the FIM for the nonzero signal coefficients and the vari-
ance parameter is given by

(B1)

which follows using the FIM result for the Gaussian measure-
ment model [32, eq. (3.32) on p. 48]. Substituting (6a) and (B1)
into (19) yields

(B2a)

(B2b)

where corresponds to the terms that are not functions
of and . In (B2b), we approximate the
computationally expensive term

by , which is a quite good approximation when is a
random Gaussian or Bernoulli matrix.
Since and its approximation in (19) and (B2b) are

not scale-invariant, i.e., it is affected by scaling of the measure-
ment vector by a nonzero constant, we normalize so that

, leading to the scale-invariant USS crite-
rion in (17).

APPENDIX C
PROOF OF EQUIVALENCE BETWEEN
USS AND THE PROBLEM (1)

Proof of Theorem 1: When conditions (1) and (2) of The-
orem 1 hold, we have and the con-
dition of [8, Theorem 2] is satisfied. Therefore, is the unique
solution of the problem, according to [8, Theorem 2]. We
now consider the USS function under different sparsity level .
For , the ML estimate of is

and unique, since it leads
to infinite likelihood function (6a) and no other yields infinite
likelihood, due to the fact that is the unique solution of the

problem. Plugging into (17) yields

(C1)

Furthermore, since (20b) holds, we have and
therefore grows to positive infinity as decreases to
zero.
For , for any -sparse vector ; consequently,

and is finite. As long as we pick a suffi-
ciently small , for will be always smaller
than .
For , the ML estimate of must be ,

which leads to infinite likelihood. However, in this case, we
have

(C2)

for small enough .
The claim follows by combining the above conclusions.

APPENDIX D
PROOFS OF THE CONVERGENCE RESULTS IN SECTION V

To prove Theorem 2, we first need the following lemmas.
Lemma 1: Assume that the sensing matrix satis-

fies the URP condition, see also (20a). For an index set
, if

(D1a)

then

(D1b)
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Proof: Observe that

(D2)

where

(D3)

defines the index set complementary to . By (D1a),
. And, due to the URP

condition, is full rank. Combining these facts, we
conclude that is strictly positive definite;
therefore,

(D4)

and (D1b) follows.
Lemma 1 leads to the following result which is useful for the

proof of Theorem 2.
Lemma 2: Under the conditions of Theorem 2, the distance

between two consecutive ECME signal iterates
goes to zero. Similarly, the distance between two consecutive
DORE signal iterates also goes to zero.

Proof: We first prove the lemma for the ECME iteration.
Let and be ECME signal updates at Iterations
and , respectively. If , the lemma imme-
diately follows. Therefore, without loss of generality, we as-
sume . Since in (21) converges to a limit,

converges to zero. Now,

(D5a)

(D5b)

(D5c)

(D5d)

(D5e)

where . Here, (D5a) fol-
lows from (22a), (D5b) follows by (23a) and the fact
that , (D5c) is obtained by using the
identities and

, and (D5e) follows
by using the Rayleigh-quotient property [44, Theorem 21.5.6].
Note that , where the second in-
equality follows from (26). Therefore, (D1a) holds and (D1b) in
Lemma 1 implies that the term

in (D5e) is strictly positive. Since con-
verges to zero, then converges to zero as well.
This completes the proof for the ECME iteration.
Now, let and be DORE signal updates at DORE

Iterations and , respectively, and let the be the ECME
signal update in Step 1 of DORE Iteration . Step 5 of the
DORE scheme ensures and, therefore,

(D6a)

(D6b)

where , and (D6b) follows from
(D5). By the discussion in Section V prior to Theorem 2, for
DORE estimates , we have converges to a limit, and

converges to zero. Therefore, mimicking
the arguments for ECME convergence, we have con-
verges to zero as well. This concludes the proof of Lemma 2.
The following two lemmas are also needed for the proof of

Theorem 2.
Lemma 3: For any -sparse vector , there exists a
such that, for all satisfying , we

have

(D7)

Proof: The proof is by contradiction. First, define
and . Suppose that, for all , there

exists a satisfying and .
Since ,

(D8)

implying that the set is not empty, see also the def-
inition of the complementary index set in (D3). Choose to
be half the magnitude of the smallest nonzero element in :

. Now,

(D9)

which contradicts to the assumption that for all
. Therefore, Lemma 3 follows.
Lemma 4: An -sparse vector is an -local max-

imum or minimum of a twice differentiable function
if

(1) for all such that

(D10a)

we have

(D10b)

and
(2) there exists a , such that, for all satisfying

, the Hessian matrix

(D11)

is negative semidefinite (for a maximum) or positive
semidefinite (for a minimum).
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Proof: We first consider the case of an -local maximum
of and assume that conditions (1) and (2) hold for a point

. By condition (2), for the positive number , the Hes-
sian matrix is negative semidefinite around for all sat-
isfying . By Lemma 3, for any -sparse vector
, there exists a such that, for all satisfying

, we have

(D12)

Now, for , consider any satisfying
, and expand around using the Taylor

series with Lagrange’s form of the remainder [45, p. 243]:

(D13a)

(D13b)

(D13c)

(D13d)

where . Since the vector is -sparse
and satisfies , the Hessian in (D13a)
is negative-semidefinite and (D13b) follows. Condition (1) of
Lemma 4 and (D12) imply that the partial derivatives in (D10b)
are zero for all coordinates with indices ,
and (D13d) follows. Now, we have a such
that, for all satisfying , ;
therefore is an -local maximum.
If the Hessian matrix is positive semidefinite around

, then is negative semidefinite around . Therefore,
is an -local maximum of , and, by Definition 1, is

an -local minimum of .
Lemma 4 gives a sufficient condition for checking an -local

maximum or minimum point. The first condition of Lemma 4
implies that, instead of checking that all partial derivatives of
our function are zero (which is required in the standard first-
derivative test for finding local maxima and minima), we only
need to check its derivatives along a few allowed coordinate
axes, where the allowed coordinate axes are defined by the prop-
erty that perturbing along these axes does not violate the sparsity
requirement, see (D10a). If has exactly nonzero elements,
then in (D10a) must be in , and we should only check
the partial derivatives that correspond to the nonzero compo-
nents of .
We are now ready to show Theorem 2.
Proof of Theorem: We first prove the Theorem for the

ECME iteration. Let and be ECME signal updates
at Iterations and , respectively. Now, we have

(D14)

see (9b) and (22b). By Lemma 2, goes to zero
as grows.
We first show that the conditions of Lemma 4 hold for the

function in (21) and the -sparse vector as
goes to infinity. The proof is by contradiction. Suppose that

condition (1) of Lemma 4 is not satisfied as goes to infinity,
i.e.,

(D15)

as goes to infinity. Here, is some strictly positive constant
and

(D16)

Let

(D17)

and for simplicity of notation, we just write . Without
loss of generality, assume that this partial derivative is strictly

positive: . By the definitions of the partial deriva-

tive and limit, for the real number , there exists a
positive number such that, for all , the vector

satisfies

(D18a)

and, therefore,

(D18b)

Now, compute [see (22c)]

(D19a)

(D19b)

(D19c)

(D19d)

where (D19c) follows by observing that is
positive semidefinite and (D19d) holds due to the triangle in-
equality.
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Therefore, we have [see (22a)]

(D20a)

(D20b)

(D20c)

where (D20b) follows from (D18b) and (D19). Note that the
terms converges to zero
as grows according to Lemma 2. Observe also that the vector

is -sparse. So, for any

(D21)

we have (as goes to infinity),
which contradicts to (D14). Hence, the condition (1) of Lemma
4 holds as grows to infinity.
The condition (2) of Lemma 4 holds because, for any
, the Hessian of is which is clearly

a positive semidefinite matrix.
Since the conditions of Lemma 4 hold for the function

in (21) and (as goes to infinity), we
apply Lemma 4 and conclude that converges to an -local
minimum point of and consequently an -local max-
imum point of the concentrated marginal likelihood function
(8), which follows from the fact that (8) is a monotonically
decreasing function of , see also (7).
Now, for DORE iteration, let be DORE signal update at

DORE Iterations , and let the be the ECME signal update in
Step 1 of DORE Iteration :

(D22)

and according to (D6), converges to zero. Simply
apply the same arguments from (D14)–(D20) for ECME to
DORE by replacing with , and we conclude that the
DORE signal iterate also converges to an -local maximum
point of the concentrated marginal likelihood function (8).
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