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Summary

We present iterative channel estimation and decoding schemes for multi-input multi-output (MIMO) Rayleigh

block fading channels in spatially correlated noise. An expectation-maximization (EM) algorithm is utilized to find

the maximum likelihood (ML) estimates of the channel and spatial noise covariance matrices, and to compute soft

information of coded symbols which is sent to an error-control decoder. The extrinsic information produced by the

decoder is then used to refine channel estimation. Several iterations are performed between the above channel

estimation and decoding steps. We derive modified Cramer–Rao Bound (MCRB) for the unknown channel and

noise parameters, and show that the proposed EM-based channel estimation scheme achieves the MCRB at

medium and high SNRs. For a bit error rate of 10�6 and long frame length, there is negligible performance

difference between the proposed scheme and the ideal coherent detector that utilizes the true channel and noise

covariance matrices. Copyright # 2006 John Wiley & Sons, Ltd.
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1. Introduction

Multi-input multi-output (MIMO) fading channel es-

timation is a major challenge for multiple antenna

systems because the detection of information symbols

depends critically on the availability of full or partial

channel state information. Recently, there has been an

increasing interest in iterative channel estimation and

data decoding [2,10,16], where data decision obtained

from the decoding, either hard or soft, is used as an

additional information to refine the channel estima-

tion. In References [2,10], maximum likelihood (ML)

and maximum a posteriori (MAP) methods are used

to estimate the channel via expectation-maximization

(EM) algorithms [5]. EM algorithms have also been

applied for symbol detection, see References [4,12].

Least-squares (LS) estimation together with hard and

soft decision feedback is studied in Reference [16].

All of these methods assume that the additive noise is

both temporally and spatially white. Channel estima-

tion for MIMO systems in spatially correlated noise

has been studied in References [7,11], where deter-

ministic ML and simple non-iterative data decoding

methods were proposed.

In this paper (see also Reference [13]), we propose

an iterative channel estimation (via EM algorithm)

and decoding scheme for spatially correlated noise

with unknown covariance matrix. Instead of MAP

estimation in Reference [2], which requires knowl-

edge of second-order statistical properties of the
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channel at the receiver, we estimate both the channel

and the spatial noise covariance without prior knowl-

edge of the channel statistical properties. This work

generalizes our results for single-input multi-output

(SIMO) systems in Reference [6] to the coded MIMO

scenario. We also develop an iterative receiver which

alternates between deterministic ML channel estima-

tion with soft decision feedback and error-control

decoding.

The system model is introduced in Section 2. In

Section 3, we derive the EM algorithm for estimating

the unknown channel and noise parameters. Section 4

discussed the design of the iterative space-time recei-

ver. We discuss the initial values and Cramér–Rao

bounds of the channel estimation in Section 5. Simu-

lation results are presented in Section 6 and Section 7

concludes the paper.

2. System Modeling

We consider a coded MIMO system having nT trans-

mit and nR receive antennas in a frequency-flat block

fading environment. We will use turbo code as an

example of the error control code. Other codes, such

as low-density parity-check (LDPC) codes, can also

be used. The discrete-time transmitter model is shown

in Figure 1.

Suppose that a block of L space-time codewords X

of size nT � K each are transmitted. The lth received

space-time data matrix Yl can be modeled as

Yl ¼ H � Xl þ El; l ¼ 1; 2; . . . ; L ð1Þ

where H is an unknown nR � nT channel response

matrix; Xl is the lth transmitted space-time codeword;

El ¼ ½elð1Þ � � � elðKÞ� is the lth noise matrix, where

elðkÞ is temporally white and circularly symmetric

zero-mean complex Gaussian noise vector with un-

known spatial covariance matrix R. It models co-

channel interference (CCI) and receiver noise. This

is a standard model for a communication channel,

subject to (unstructured) interference and jamming,

for example [6,7,11].

In this paper, we assume that M-ary phase shift

keying (PSK) modulation and space-time orthogonal

design (cf. [1,8,17]) are used. However, after minor

modifications, the proposed method can also be ap-

plied to other modulation schemes and general space-

time codes. In Reference [6], we discuss similar

modifications for the SIMO case; the extension to

the MIMO case is straightforward, leading to algo-

rithms with higher computational complexity com-

pared with those presented herein. Without loss of

generality, assume that each space-time codeword Xl

is a linear function of K 0 transmitted symbols

Sl ¼ fsðlÞ1 ; . . . ; s
ðlÞ
K 0 g:

Xl ¼
XK 0

k¼1

Re s
ðlÞ
k

n o
Ak þ j � Im s

ðlÞ
k

n o
Bk

� �
ð2Þ

where Ref�g and Imf�g denote the real and imaginary

parts, and Ak and Bk are fixed real-valued nT � K

‘elementary’ code matrices, satisfying the orthogon-

ality conditions as follows [8,17]:

AkA
T
k ¼ InT ; BkB

T
k ¼ InT ; AkB

T
t ¼ BtA

T
k

AkA
T
t ¼ �AtA

T
k ; BkB

T
t ¼ �BtB

T
k ; k 6¼ t

ð3Þ

so that

XlX
H
l ¼

XK 0

k¼1

s
ðlÞ
k

��� ���2 � InT ¼ K 0InT ð4Þ

where ð�ÞT and ð�ÞH denote the transpose and the

conjugate transpose, respectively and symbols s
ðlÞ
k

from M-ary PSK constellation are assumed to have

unit energy. The number of transmitted symbols K 0

represented by one space-time codeword is usually

less than the codeword length K when nT > 2, and is

equal to K when nT ¼ 2.

To allow unique estimation of the channelH (i.e., to

resolve the phase ambiguity associated with PSK

modulation), we further assume that Lp known pilot

space-time codewordsXp;‘, ‘ ¼ 1; . . . ; Lp, are inserted
at the beginning of the block, and denote the corre-

sponding data matrices received by the array as Yp;‘.

Usually, Lp is a small number (say 2) and the pilot

symbols alone do not provide good channel estima-

tion. We adopt the block fading assumption implying

that the channel H and noise covariance matrix R
remain constant within each block of ðLþ LpÞ code-
words, that is KðLþ LpÞ time intervals, and change

from one block to another independently.

Since turbo codes need long frame length to achieve

good error performance, and the length of one block is

limited by the coherent time of the fading channel, theFig. 1. Discrete-time transmitter model.
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turbo encoder implements coding across R blocks.

Therefore, one turbo code frame is composed of

RðLþ LpÞ space-time codewords. At the receiver,

the turbo decoder needs the estimates of the channels

and the noise covariance matrices for all R blocks. A

channel interleaver is used to spread the effect of

imperfect channel estimates across the whole R

blocks.

3. EM Algorithm for Channel Estimation

In this section, we derive an EM-based channel and

noise covariance estimator from one block. The pro-

posed method incorporates extrinsic information

about the transmitted symbols from the turbo decoder

through prior symbol probabilities. The estimates of

the channel and noise covariance matrix will be used

to update the extrinsic information about the trans-

mitted symbols used by the turbo decoder.

Given a block of received data ½Yp;1; . . . ;
Yp;Lp ;Y1; . . . ;YL�, the pilot space-time codewords

½Xp;1; . . . ;Xp;Lp �, and the prior probabilities of the

space-time codewords X1; . . . ;XL, we wish to find

the ML estimates of the channel H and the noise

covariance matrix R for this block.

The EM algorithm is a general iterative method for

computing ML estimates in the scenarios where ML

estimation cannot be easily performed by directly

maximizing the likelihood function for the observed

data [5]. Each EM iteration consists of maximizing

the expected complete-data log-likelihood function,

where the expectation is computed with respect to the

conditional distribution of the unobserved data given

the observed data. A good choice of unobserved data

allows easy maximization of the expected complete-

data log-likelihood.

For our channel estimation problem, the unknown

space-time codewords fXlgLl¼1 are modeled as the

unobserved (or missing) data. By generalizing our

results for SIMO systems in Reference [6], we obtain

the following EM iteration:

Step I:

Hðiþ1Þ ¼ 1

ðLþ LpÞK 0

�
XL
l¼1

YlEXljYl
XH

l ;H
ðiÞ;RðiÞ

� �
þ
XLp
‘¼1

Yp;‘X
H
p;‘

" #

ð5Þ

Step II:

Rðiþ1Þ ¼ Ryy � K 0

K
�Hðiþ1Þ Hðiþ1Þ

� �H

ð6Þ

where

Ryy ¼ 1

ðLþ LpÞK
XL
l¼1

YlY
H
l þ

XLp
‘¼1

Yp;‘Y
H
p;‘

" #
ð7Þ

Note that both Steps I and II contain both the

expectation and maximization steps. To ensure po-

sitive definiteness (with probability one) of the

estimates of R, the following condition needs to be

satisfied:

ðLþ LpÞK � ðnT þ nRÞ ð8Þ

see Reference [14, Theorems 10.1.1 and 3.1.4]. Since

there is a one-to-one mapping between the set of

information symbols Sl and the codeword Xl, con-

ditioning on Sl is equivalent to conditioning on Xl.

Following a derivation similar to Reference [11,

Equation 7], the likelihood function of Xl, H, and R
can then be written as

f ðYl jXl;H;RÞ ¼ f ðYl j Sl;H;RÞ

¼ const �
YK 0

k¼1

exp
n
2Re

�
ðReðTr½YH

l R
�1HAk�Þ

þ j � ImðTr½YH
l R

�1HBk�ÞÞsðlÞk
�o

¼ const �
YK 0

k¼1

fk Yl j sðlÞk ;H;R
� �

ð9Þ

where const denotes the terms that do not depend on

s
ðlÞ
k . The second equality in the above expression

follows by applying the orthogonality conditions in

Equation (3) which leads to the decoupling of

the likelihood function for the space-time codeword

into the product of the likelihood functions

fkðYl j sðlÞk ;H;RÞ for the information symbols s
ðlÞ
k ,

where the normalizing constants have been omitted.

Assume that the information symbols s
ðlÞ
k , k ¼ 1; . . . ;

K 0, l ¼ 1; . . . ; L, are independent and have the prior

probability mass functions pðsðlÞk Þ ¼ pðsðlÞk ¼ smÞ,
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m ¼ 1; . . . ;M, then Step I of the EM iteration can be

simplified as

Hðiþ1Þ ¼ 1

ðLþ LpÞK 0
XL
l¼1

XK 0

k¼1

Yl

"

� Re E
s
ðlÞ
k
jYl

s
ðlÞ
k ;HðiÞ;RðiÞ

h i� �
AH
k

�
� j

� Im E
s
ðlÞ
k
jYl

s
ðlÞ
k ;HðiÞ;RðiÞ

h i� �
BH
k þ

XLp
‘¼1

Yp;‘X
H
p;‘

�

ð10Þ

where

E
s
ðlÞ
k
jYl

s
ðlÞ
k ;HðiÞ;RðiÞ

h i

¼
PM

m¼1smp s
ðlÞ
k ¼ sm

� �
fk Yljsm;HðiÞ;RðiÞ� �

PM
n¼1p s

ðlÞ
k ¼ sn

� �
fk Yljsn;HðiÞ;RðiÞ� �

ð11Þ

and Step II remains the same. The prior probabilities

pðsðlÞk Þ comes from the error control decoder.

Most of the computations are in the calculation of

Equation (10). Given E
s
ðlÞ
k
jYl
½sðlÞk ;HðiÞ;RðiÞ�, we need

2nRK � LK 0 þ 2nRnTK � K 0 multiplications to compute

Hðiþ1Þ. According to Equation (9), 2nRK multiplica-

tions are needed for computing E
s
ðlÞ
k
jYl
½sðlÞk ;HðiÞ;RðiÞ�.

If K 0 ¼ K ¼ nR ¼ nT
�
n, then the total computational

complexity can be expressed as Oð4n2Þ per symbol

per iteration.

4. Iterative Space-Time Receiver

The proposed iterative receiver model is shown in

Figure 2. It consists of two modules: a bank of R

channel estimators and demodulators (developed in

the previous section) and a turbo decoder. The soft

information about the information symbols is ex-

changed between them. For simplicity, we have not

shown the interleaver and deinterleaver in the dia-

gram. In the following, we also assume that the

interleaving and deinterleaving operations are per-

formed as needed.

The received data Y are first divided into R

blocks f½Yr
p;1; . . . ;Y

r
p;Lp

;Yr
1; . . . ;Y

r
L�gRr¼1 each of

length ðLþ LpÞK, and then fed into R channel esti-

mators. Based on the pilot codewords and the prior

probabilities of the information symbols, each chan-

nel estimator estimates the channel Ĥr and noise

covariance matrix R̂r, then computes the posterior

log-probabilities of the information symbols as

follows

�1
r s

ðlÞ
k

h i
¼ const þ logp s

ðlÞ
k

� �
þlog f1 Yr

l jsðlÞk ; Ĥr; R̂r

� �
¼ const þ �21

r s
ðlÞ
k

h i
þ �12

r s
ðlÞ
k

h i
r ¼ 1; . . . ;R; l ¼ 1; . . . ; L; k ¼ 1; . . . ;K 0

ð12Þ

where const denotes the terms independent of s
ðlÞ
k .

The second term �21
r ½sðlÞk � represents the prior log-

probability of the information symbol s
ðlÞ
k , which is

computed by the turbo decoder in the previous itera-

tion, and then fed back to the channel estimator. For

the first iteration, we assume equally likely symbols,

that is no prior information available. The third term

�12
r ½sðlÞk � in Equation (12) represents the extrinsic

information produced by the channel estimator and

demodulator, based on the received data Yr, pilot

codewords, and the prior information of all other

symbols in the block. All the extrinsic information

metrics f�12
r ½sðlÞk �gR;K 0;L

r¼1;k¼1;l¼1 are reassembled together,

and sent into the turbo decoder, as the prior informa-

tion for the decoding.

Using the extrinsic information of the information

symbols coming from channel estimators and the

structure of the turbo codes, the turbo decoder

computes the posterior log-probability of each symbol

as:

�2
r s

ðlÞ
k

h i
¼ constþ �12

r s
ðlÞ
k

h i
þ log

p s
ðlÞ
k

��� �12
r0 s

ðl0Þ
k0

h in oR;K 0 ;L

r0¼1;k0¼1;l0¼1;ðr0 ;k0 ;l0Þ6¼ðr;k;lÞ
;

�
code constraints

�

¼ constþ �12
r s

ðlÞ
k

h i
þ �21

r s
ðlÞ
k

h i
ð13Þ

It is seen from Equation (13) that the output of the

turbo decoder consists of the prior information

�12
r ½sðlÞk �, provided by the channel estimators, and

the extrinsic information �21
r ½sðlÞk � delivered to the

channel estimators in the next iteration. This extrinsic
Fig. 2. The receiver with iterative channel estimation and

decoding.
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information is the information of the symbol s
ðlÞ
k in the

rth block obtained from the prior information of the

other symbols in the frame and the code constraints.

The turbo decoder also outputs the a posteriori prob-

ability APPðuiÞ of every information bit ui, which is

used to do the decision in the last iteration.

5. Discussion

5.1. Initialization of the EM Algorithm

Although the EM algorithm increases (or at least does

not decrease) the likelihood function at each iteration,

it may get trapped at the local maximum when the

initial values are too far from the true parameters. So

we need a more robust method to give good initial

estimates of the channel and noise covariance ma-

trices, which are used to initialize our EM algorithm.

For this purpose, we choose the iterative weighted

least-squares with projections (ILSP) method for

space-time coding systems proposed in Reference

[15]. For completeness, we summarize below our

implementation of this method:

Step 1: Fix H ¼ Ĥ and compute

X̂l ¼ proj HHR�1
yy Yl

h i
; l ¼ 1; . . . ; L ð14Þ

Step 2: Fix X1 ¼ X̂1; . . . ;XL ¼ X̂L and compute

Ĥ ¼ 1

ðLþ LpÞK 0 �
XL
l¼1

YlX
H
l þ

XLp
‘¼1

Yp;‘X
H
p;‘

" #
ð15Þ

Go to step 1 and repeat.

where proj½�� denotes projection onto the nearest (in

the Frobenius norm) space-time codeword. This

method is initialized with the least-square estimate

using the pilot codewords

ĤLS ¼ 1

LpK 0
XLp
‘¼1

Yp;‘X
H
p;‘ ð16Þ

After several iterations, we obtain a rough estimate of

the channel, then the estimate of the noise covariance

matrix is computed using Equation (6), both of which

will be used to initialize the EM algorithm.

5.2. Modified Cramér–Rao Bound

The exact Cramér–Rao bound (CRB) for the unknown

parameters under the data model in Section 2 is

difficult to compute. Here, we derive the modified

CRB (MCRB) [9], which is a lower bound on the

exact CRB. First, we rewrite Equation (1) by stacking

all K time samples from the lth received space-time

data matrix into a single vector:

yl ¼ Zlhl þ el ð17Þ

Zl ¼ XT
l � InR ð18Þ

where yl ¼ vecðYlÞ, hl ¼ vecfHlg, ek ¼ vecðElÞ, �
denotes the Kronecker product, and the vec operator

stacks the columns of a matrix one below another

into a single column vector. Then, Equation (17)

holds for the pilot data as well, with Yl and Xl

replaced by Yp;‘ and Xp;‘, respectively. Define also

Zp;‘ ¼ XT
p;‘ � InR and the vector of the unknown

channel and noise parameters q ¼ ½gT;wT�T, where
g ¼ ½ReðhÞT; ImðhÞT�T and w ¼ ½RefvechðRÞgT,
ImfvechðRÞgT�T. (The vech and vech operators cre-

ate a single column vector by stacking elements

below the main diagonal columnwise; vech includes

the main diagonal, whereas vech omits it.) The

MCRB for the unknown parameters q is identical

to the exact CRB for these parameters when the

space-time codewords Xl are known, and is equal to:

MCRBq ¼ MCRBg 0

0 MCRBw

	 �
ð19Þ

where

MCRBg ¼ 1

2K 0ðLþ LpÞ

�
RefInT � Rg �ImfInT � Rg
ImfInT � Rg RefInT � Rg

" #

ð20Þ

MCRBw ¼ 1

K 0ðLþ LpÞ � I
�1
w ð21Þ

and the ði; kÞth element of Iw is

½Iw�i;k ¼ tr R�1 @R
@wi

R�1 @R
@wk


 �
� Iðwi;wkÞ ð22Þ

for i; k ¼ 1; 2; . . . ; n2R. Denote by Rp;q the ðp; qÞ ele-

ment of R, for p; q ¼ 1; 2; . . . ; nR. Using this notation,
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we further simplify Equation (22): for p1 > q1 and

p2 > q2, we have

IðRefRp1;q1g;RefRp2;q2gÞ¼IðRefRp2;q2g;RefRp1;q1gÞ
¼2�Ref½R�1�q2;p1 � ½R�1�q1;p2þ½R�1�q2;q1 � ½R�1�p1;p2g

ð23Þ

IðRefRp1;q1g; ImfRp2;q2gÞ¼IðImfRp2;q2g;RefRp1;q1gÞ
¼�2�Imf½R�1�q2;p1 �½R�1�q1;p2þ½R�1�q2;q1 �½R�1�p1;p2g

ð24Þ

IðImfRp1;q1g; ImfRp2;q2gÞ¼IðImfRp2;q2g; ImfRp1;q1gÞ
¼2�Ref�½R�1�q2;p1 �½R�1�q1;p2þ½R�1�q2;q1 �½R�1�p1;p2g

ð25Þ

for p1 ¼ q1 and p2 > q2

IðRp1;p1 ;RefRp2;q2gÞ ¼ IðRefRp2;q2g;Rp1;p1Þ
¼ 2 � Ref½R�1�q2;p1 � ½R�1�p1;p2g

ð26Þ

IðRp1;q1 ; ImfRp2;q2gÞ ¼ IðImfRp2;q2g;Rp1;q1Þ
¼ �2 � Imf½R�1�q2;p1 � ½R�1�p1;p2g

ð27Þ

and, for p1 ¼ q1 and p2 ¼ q2

IðRp1;p1 ;Rp2;p2Þ ¼ j½R�1�p1;p2 j
2 ð28Þ

6. Simulation Results

We use numerical simulations to evaluate perfor-

mance of the proposed iterative channel estimation

and decoding scheme for a turbo coded MIMO system

in a frequency-flat correlated Rayleigh fading envir-

onment with nT ¼ 2 transmit and nR ¼ 2 receive

antennas. Our performance metrics are the average

mean-square error (MSE), bit error rate (BER), and

frame error rate (FER), averaged over random

channel realizations generated using an independent

identically distributed Rayleigh fading model with

unit-variance channel coefficients. The Alamouti

transmission scheme [1] was used to generate the

space-time codewords Xl, implying K 0 ¼ K ¼ 2.

The transmitted symbols fsðlÞk g were generated from

a 4-PSK constellation (i.e., M ¼ 4) with normalized

energy. The space-time codewords were transmitted

in R blocks as one frame, and each block consisted of

Lp ¼ 2 pilot codewords followed by L ¼ 32 data

codewords. The signal was corrupted by additive

complex Gaussian noise with spatial noise covariance

matrix R whose ðp; qÞth element is

Rp;q ¼ �2 � 0:9jp�qj � exp½jð�=2Þðp� qÞ� ð29Þ

which is the noise covariance model used in Reference

[18] (see also references therein). For simplicity, we

assume that R does not change within the data frame,

but this knowledge is not used in the channel and noise

covariance estimation. The turbo code consisted of two

parallel concatenated (37, 21) recursive systematic

convolutional codes connected with a random interlea-

ver. Puncturing was employed to achieve the code rate

Rc ¼ 1=2. The bit signal-to-noise ratio (SNR) per

receive antenna was defined as

SNR ¼ 10 log10
Lþ Lp

L
� nTK

K 0log2ðMÞ � Rc � �2

	 �

¼ 10 log10
Lþ Lp

L
� nT
�2

	 �
ðdBÞ

ð30Þ

To initialize the EM algorithm, four iterations of the

iterative weighted ILSP method were carried out.

We compare the proposed EM-based scheme with an

iterative receiver using deterministic ML channel esti-

mation with soft decision feedback, which is similar to

the iterative receiver derived in Section 4, but with the

channel estimation algorithm replaced by the determi-

nistic ML method [3,7,11]. The deterministic ML

channel estimator utilizes the expectations of the coded

symbols computed from the extrinsic information pro-

duced by the decoder. Both methods were initialized

using the iterative weighted ILSP method.

Figure 3 shows the BER performance versus bit

SNR per receive antenna with R ¼ 16 blocks. Three

iterations have been carried out between the EM

channel estimators and the turbo decoder. Clearly,

iterating between the channel estimation and turbo

decoding can improve the error performance for both
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EM and deterministic ML methods. As a comparison,

we also present the performance of ideal coherent

detector for exactly known H and R. After three

iterations, our method outperforms the deterministic

ML by about 0.6 dB at BER ¼ 10�4, and comes

within about 2 dB of the performance of the ideal

coherent detector.

Next, we study the performance of the proposed

EM-based scheme for long frame length, see Figures 4

and 5. Each data frame consisted of R ¼ 64 blocks,

and there were six iterations between the EM channel

estimators and the turbo decoder.

In Figure 4, the average MSE of the channel

estimates improves as the number of iterations be-

tween the channel estimation and turbo decoding

increases, and reaches the MCRB at SNR � �4 dB.

Although the MCRB is the CRB assuming known

information symbols, and hence a lower bound of the

exact CRB, it can be regarded as the exact CRB when

SNR � �4 dB since the BER has become very small

(see Figure 5(a)) such that almost all the information

symbols are correctly decoded.

The BER and FER performances of the proposed

scheme are depicted in Figure 5(a), (b), respectively.

After three iterations, the improvement provided by

more iterations becomes smaller and smaller: an

effect of diminishing returns. Such a saturation effect

is more obvious in the Figure 5(b). The BER perfor-

mance difference between our method and the ideal

coherent detector becomes negligible at a BER level

of 10�6, which is achieved only after three iterations.

Unlike the BER performance which depends on the

specific turbo code used in the system, FER provides a

performance measurement of the iterative receiver

itself. It is seen from Figure 5(b) that upon conver-

gence, our method approaches the performance of the

ideal coherent detector, which is a lower bound of the

performance for such MIMO systems.

The method proposed in this paper takes into

account spatial correlation of the noise. To demon-

strate the importance of this factor, we compare the

proposed method with another EM-based iterative

receiver, termed white-noise EM method, under a

spatial correlated noise scenario. The method pro-

posed in Section 4 differs from the white-noise

EM method by the channel estimation algorithm.

The white-noise EM algorithm assumes spatially

white noise, that is R ¼ �2InR , where �2 is the

variance parameter to be estimated. A similar algo-

rithm assuming known noise variance is proposed in

Reference [10]. Figure 6 shows the BER performance

of the white-noise EM method after three and six

iterations between channel estimation and turbo de-

coding. As a comparison, the performance of the ideal

coherent detector is also provided. It is seen that the

proposed method has a 7 dB advantage over the white-

noise EM method at a BER of 10�5 after both three

and six iterations.

7. Conclusions

We developed an EM-based iterative channel estima-

tion and decoding scheme for a coded system over
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MIMO Rayleigh block fading channels in spatially

correlated noise. By exchanging the extrinsic infor-

mation of the transmitted symbols, both the channel

estimation and the decoding can be improved. We also

presented the MCRBs for the unknown parameters.

Numerical simulations demonstrated the good perfor-

mance of the proposed method and other competitive

schemes.

One possible extension of this paper is to develop

an adaptive version of the channel estimation algo-

rithm that can account for continuously varying chan-

nels (as opposed to the block-fading scenario

considered here) and also reduce the EM algorithm

complexity. It is also of interest to adapt the algorithm

for frequency-selective MIMO channels, possibly in

combination with orthogonal frequency-division mul-

tiplexing (OFDM).
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