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Abstract—We develop a hidden Markov random field (HMRF)
framework for distributed signal processing in sensor-network
environments. Under this framework, spatially distributed ob-
servations collected at the sensors form a noisy realization of
an underlying random field that has a simple structure with
Markovian dependence. We derive iterated conditional modes
(ICM) algorithms for distributed estimation of the hidden random
field from the noisy measurements. We consider both parametric
and nonparametric measurement-error models. The proposed
distributed estimators are computationally simple, applicable to
a wide range of sensing environments, and localized, implying
that the nodes communicate only with their neighbors to obtain
the desired results. We also develop a calibration method for
estimating Markov random field model parameters from training
data and discuss initialization of the ICM algorithms. The HMRF
framework and ICM algorithms are applied to event-region
detection. Numerical simulations demonstrate the performance of
the proposed approach.

Index Terms—Distributed estimation and detection, hidden
Markov random field models, iterated conditional modes (ICM)
algorithm, sensor networks.

I. INTRODUCTION

RECENT advances in integrated sensor and radio-fre-
quency (RF) technologies, wireless communications, and

signal processing allow development of sensor-network sys-
tems composed of low-cost sensor-processor elements (nodes)
jointly working to collect and analyze noisy spatio-temporal
measurements. Large-scale sensor networks that can monitor
an environment at close range with high spatial and temporal
resolutions are expected to play an important role in various ap-
plications, including assessing “health” of machines, aerospace
vehicles, and civil-engineering structures; environmental,
medical, food-safety, and habitat monitoring; and energy man-
agement, inventory control, and home and building automation;
see also [1, ch. 1.3] and [2]–[8]. Each node will have limited
sensing, signal processing, and communication capabilities, but
by cooperating with each other they will accomplish tasks that
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are difficult to perform with conventional centralized sensing
systems [7], [8]. Sensor networks are expected to reveal previ-
ously unobservable phenomena in the physical world [8] and
are currently attracting considerable attention.

Markov random field (MRF) models have been widely used
to describe spatially distributed random phenomena; see, e.g.,
[9]–[11]. In this paper (see also [12]), we propose a hidden
Markov random field (HMRF) framework for distributed
signal processing in sensor-network environments. Under this
framework, spatially distributed observations (collected at
the sensors) form a noisy realization of a random field with
Markovian dependence structure.1 Previous work on distributed
HMRF-based signal processing for sensor networks focused
on developing message passing algorithms for linear Gaussian
measurement-error and MRF process models with known
model parameters; see also the discussion in Section II-A. In
contrast, our HMRF framework allows for general measurement
and random-field models with unknown measurement-error
model parameters. The unknown measurement-error model
parameters vary from one node to another, thus taking into ac-
count imperfect calibration of the sensors at different nodes and
permitting distributed localized processing and nonparametric
measurement-error modeling. The nonparametric measure-
ment-error models that we employ are important in practical
applications where accurate parametric models are difficult
to find, especially in large-scale sensor networks operating in
time-varying environments [15]–[17].

We derive iterated conditional modes (ICM) algorithms for
distributed estimation of a localized phenomenon (modeled as
a hidden random field) from noisy measurements. In particular,
the proposed ICM algorithms are designed to increase the
predictive likelihood of the hidden field.2 The underlying dis-
tributed-processing paradigm ensures robustness and reliability
of the proposed approach. We demonstrate our approach by
applying it to event-region detection, which is an important
task in wireless sensor networks [14]. We consider parametric
Gaussian and nonparametric (empirical likelihood and entropy)
measurement-error models and utilize an autologistic MRF
process model for event-region detection.

The HMRF framework is introduced in Section II and gen-
eral ICM method is presented in Section III. We discuss the

1Here, Markovian dependence implies that, given random-field values at all
other locations, the conditional distribution of the random field at any location
depends only on the field values at the neighboring locations; see also (2.7) in
Section II.

2See [13, ch. 16.3] for the definition of predictive likelihood and examples of
its use.
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event-region detection problem in Section IV, where we first
propose suitable measurement-error and random-field models
(Section IV-A and -B) and then derive the corresponding ICM
detection algorithms (Section IV-C and -D). Initialization of
the ICM iterations is discussed in Section IV-C1 and -D1. In
Section V, we develop a pseudopredictive likelihood (PPL)
calibration method for estimating MRF model parameters from
training data and specialize it to the event-region detection
problem. This method is based on maximizing the product of
the full conditional predictive probability density or mass func-
tions (pdfs/pmfs) of the random-field values at all the nodes.
In Section VI, we evaluate the performance of the proposed
detection algorithms via numerical simulations. Concluding
remarks are given in Section VII.

II. HIDDEN MARKOV RANDOM FIELD FRAMEWORK

Assume that each node (sensor) in the
network collects a vector of measurements

(2.1a)

where denotes the number of observations collected by each
node and “ ” denotes a transpose. Define also the vector of
all measurements

(2.1b)

We assign a hidden random variable to each node and adopt
the following hierarchical model for the collected observations:

• , form an MRF describing the process
model

(2.2)

• Given the MRF , are conditionally independent
random vectors with pdfs or pmfs that
depend only on

(2.3)

describing the data (measurement-error) model.
Here, is the vector of unknown measurement-error model
parameters at the th node and

(2.4)

Note that the measurement-error model parameters vary with
the node index , taking into account imperfect calibration of
the sensors at different nodes. The above framework can account
for both discrete and continuous measurements and random
fields. The parameters may be used to model the entire
measurement-error probability distribution
in a nonparametric manner, provided that the elements of

are conditionally independent identically distributed (i.i.d.); see
Section IV-A2.

Our goal is to estimate the MRF from the observations ,
. We define the probability distribution of via

a conditionally specified model suitable for distributed neigh-
borhood-based signal processing. Before formally defining
an MRF, let us introduce some terminology and notation.
Throughout this paper, we assume that the neighborhood
of a node [denoted by ] consists of all the nodes

that are within a cutoff distance from that
node, i.e.,

and (2.5a)

where

and and are the th and th node locations in Cartesian
coordinates. Define the set of random-field values in this
neighborhood

(2.5b)

and the conditional pdfs or pmfs of given the neighboring
MRF values

(2.6)

Then, the Markov property of an MRF implies that, for all
, the conditional pdfs/pmfs of given the random-

field values at all other nodes satisfy

(2.7)

A. HMRFs as Probabilistic Graphical Models

MRF and HMRF models belong to the (broader) class of
probabilistic graphical models (see, e.g., [11], [18]–[22], and
references therein) and can be formulated using an undirected
mathematical graph whose nodes correspond to the random
variables in the field and edges define the underlying neigh-
borhood structure. In [18] and [20], graphical-model-based
extended message passing3 algorithms are developed for infer-
ence on HMRF models with linear Gaussian measurement-error
and MRF process models and known model parameters; em-
bedded-trees and embedded-triangles algorithms are developed
for this scenario in [19], [20], and [23]. A belief propagation
approach is proposed in [24] for multihypothesis testing of
global phenomena in sensor-network environments. Fig. 1
shows a graphical representation of an HMRF model, where
the filled circles depict the hidden random field (and their
locations correspond to the node locations) and hollow circles

3See [22] for a detailed exposition on message passing algorithms for graph-
ical models.
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Fig. 1. Graphical representation of an HMRF model.

the observed data. The edges in Fig. 1 describe the (condi-
tional) statistical dependence between the nodes in the graph,
as inferred from the specifications in (2.5a) and (2.3).

In the following, we present a distributed algorithm for com-
puting maximum predictive likelihood estimates of the random
field .

III. ICM RANDOM-FIELD ESTIMATION

We propose an ICM algorithm for estimating the MRF
where each node performs the following
steps:

(ICM1) collects the current estimates of from its
neighborhood ;

(ICM2) updates its estimate of by maximizing the
conditional predictive log-likelihood

(3.1)

with respect to ;

(ICM3) broadcasts the obtained estimate of to the nodes in
the neighborhood .

When applied to each node in turn, this procedure defines
a single cycle of the ICM algorithm. The cycling is performed
until convergence, i.e., until the estimates of do not change
significantly for all . The ICM approach
is computationally simple and applicable to a wide range of
sensing environments. It does not require careful treatments of
loops in the inference graphs, constructing junction trees, etc.
It is also localized, implying that the nodes communicate only
with their neighbors to obtain the desired results. Localized al-
gorithms are robust to node failures and the communication
overhead scales well with increasing network size; see [2] and
[3]. Distributed localized algorithms and architectures also fa-
cilitate rapid data processing and information collection and are

well-suited for systems that utilize sleep modes to conserve en-
ergy [25].

Denote by the joint pdf/pmf of . Then,
applying (ICM1)–(ICM3) at each node increases the joint pre-
dictive log-likelihood function of (see also [13, ch. 16.3]):4

(3.2)

in a stepwise-ascent manner.In particular, combining the
stepwise-ascent maximization approach with the Markovian
property of leads to the distributed localized iteration
(ICM1)–(ICM3). In general, this iteration converges to a local
maximum of . However, if the conditional predictive
log-likelihoods in (3.1) are unimodal in (as in the HMRFs
with linear Gaussian measurement-error and MRF process
models studied in [18]–[20] and [23]), then the ICM algorithm
converges to the global maximum of . Interestingly, its
convergence to a local maximum of [when initialized
with the local maximum likelihood (ML) estimates of the s]
may be preferred compared with finding the global maximum
because MRFs often have undesirable large-scale properties
[10].

The predictive log-likelihood in (3.2) has a Bayesian inter-
pretation. Here, we view as the prior distribution of the
hidden field and assign a flat prior distribution to
the measurement-error model parameters . Then, maximizing

in (3.2) yields a mode of the joint posterior pdf/pmf of
the unknown parameters. We emphasize that the purpose of the
proposed method is to resolve ambiguous measurements. Oth-
erwise, if the data provide strong evidence about the hidden field

, the influence of the prior disappears, which is true
for Bayesian methods in general. The ICM approach to finding
modes of joint posterior distributions dates back to the sem-
inal paper by Lindley and Smith [26, Sec. 4]; see also [27, ch.
10.2.1] and [28, ch. 6.2.2]. The iteration (ICM1)–(ICM3) gen-
eralizes the ICM algorithm for image analysis in [9, ch. 7.4.3]
and [10] and adapts it to the sensor-network scenario by al-
lowing for more general neighborhood models and unknown
measurement-error model parameters that vary from node to
node. The latter extension is key for sensor-network applications
where the nodes are not perfectly calibrated and data processing
should be performed locally as much as possible. It also al-
lows nonparametric measurement-error modeling, as discussed
in Section IV-A2.

In the following section, we demonstrate the proposed ap-
proach by applying it to event-region detection.

IV. EVENT-REGION DETECTION USING THE HMRF
FRAMEWORK AND ICM METHOD

We utilize the proposed HMRF framework and ICM method
to efficiently remove false alarms in event-region detection
tasks. Here, our goal is to detect a region in the environment
in which an event of interest has occurred. For example, if

4Note that the conditional predictive log-likelihoodL � j N (k) in (3.1)

follows from the joint predictive log-likelihoodL(���) by substituting the identity

p (���) = p � j N (k) � p N (k) into (3.2) and keeping
the terms that depend on � .
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the network is capable of sensing concentration of chemical
, then it is of interest to answer the following question [14]:

“In which regions in the environment is the concentration of
chemical greater than a specified level?”

We first describe measurement-error and process models suit-
able for event-region detection (Section IV-A and -B) and then
derive the corresponding ICM algorithms for event-region de-
tection (Section IV-C and -D).

A. Measurement-Error Model

In this section, we consider hidden fields that take two dis-
crete values:

• (signal absent);
• (signal present);

and utilize a simple signal-plus-noise measurement-error
model for the measurements collected
at node

(4.1a)

where
• (signal absent);
• is the (unknown) nonzero signal;
• , is zero-mean i.i.d. noise.

We denote the pdf/pmf of the noise by .
Consequently, given , are condi-
tionally i.i.d. random variables with the joint pdf/pmf

(4.1b)

See also (2.3) for a full measurement-error model specification.
1) Gaussian Measurement-Error Model: Let us assume that

the noise pdf at node is zero-mean Gaussian

(4.2)

where is the unknown noise variance at the th sensor. Here,
the measurement-error model parameters are for

and for .
2) Nonparametric Measurement-Error Models: We now

consider a scenario where the noise probability distribution
at node is unknown and utilize a class of nonpara-

metric measurement-error models. This scenario is important
in practical applications where accurate parametric measure-
ment-error models are difficult to find, as is often the case in
large-scale sensor networks operating in time-varying environ-
ments (see, e.g., [15]–[17]). To simplify the notation, we omit
the dependence of the mean value on throughout this
section. Clearly, the discussion on unknown corresponds to
the case where .

Assume that, given , are condi-
tionally i.i.d. random variables with mean where
each is assigned a multinomial probability . We then

construct the following nonparametric log-likelihood function
of the mean at node

(4.3)

where , , are estimates of the prob-
abilities , , computed by minimizing the
Cressie–Read power divergence5 between the discrete distribu-
tion defined by , , and the discrete uniform
distribution on (see [30]–[32, ch. 3.16])

(4.4a)

subject to the constraints

(4.4b)

Here, is a known constant [defining a particular
choice of the discrepancy measure in (4.4a)] and the degenerate
cases are handled by taking limits.

In the following, we focus on the nontrivial case where6

(4.5)
and on the limiting values of (i.e., and ), which
correspond to commonly used least favorable distribution fam-
ilies [32, chs. 9.6 and 9.11] and lead to the empirical likelihood
and empirical entropy measurement-error models discussed
below. (The concept of a least favorable family was introduced
by Stein in [33].)

Empirical Likelihood: If in (4.4a), (4.3) simplifies to
the following concentrated empirical log-likelihood function7 of
the mean at node :

(4.6)

which can be viewed as a multinomial concentrated log-likeli-
hood [34]. In this case, the measurement-error model parame-
ters are for and

for , where the multinomial

5The Cressie–Read divergence is closely related to the Rényi divergence [29];
see also [30] and [31].

6Note that the optimization problem in (4.4) does not have a solution if � <

y MIN or � > y MAX. In such cases, we set l (� ) = �1 by conven-
tion. If y MIN = y MAX = � , we take l (� ) = �N lnN and if � =
y MIN < y MAX or � = y MAX > y MIN, we set l (� ) = �1.

7See also [32] and [34] for the definition and properties of the empirical like-
lihood.
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probabilities are constrained to satisfy the
conditions in (4.4b); see also (4.6).

Maximizing with respect to yields

(4.7a)

which follows by noting that, subject to , the
log-likelihood function is maximized by choosing
the discrete uniform distribution of the observations (i.e.,

, ). This choice yields the nonparametric
maximum likelihood estimate of

(4.7b)

also known as the bootstrap estimate of [34]. In Appendix A,
we compute (4.6) by solving a one-dimensional convex dual
problem

(4.8a)

where

(4.8b)

is a convex function of . To ensure that the estimates of
the multinomial probabilities remain in the allowed parameter
space, the search for that minimizes (4.8b) should be con-
strained to the interval (see Appendix A)

(4.9)

and can be efficiently performed using the damped Newton–
Raphson iteration8

(4.10)

where the damping factor is chosen (at every step
) to ensure that (4.8b) decreases and remains within the

interval specified by (4.9).9 The above iteration converges to the
unique solution .

In Appendix A, we sketch a proof that the empirical-likeli-
hood approach employs a least favorable nonparametric dis-
tribution family for estimating and derive the Cramér–Rao
bound (CRB) for estimating under the empirical likelihood

8See, e.g., [35, ch. 9.7] for an introduction to the Newton–Raphson algo-
rithms. To simplify the notation in (4.10) and later in (4.16), we omit the de-
pendence of � and � on � .

9In particular, we start with � = 1 and check if (4.8b) decreases and�
remains within the interval (4.9). If these tests fail, we keep halving � until
they are satisfied.

measurement-error model. Assuming the discrete uniform dis-
tribution of the observations, this CRB simplifies to

(4.11)

where

(4.12a)

(4.12b)

and has been defined in (4.7b).
Empirical Entropy: For , (4.4a) reduces to

(4.13)

subject to the constraints in (4.4b). In (4.13), we minimize the
relative entropy10 between the multinomial distribution defined
by the probabilities , and the discrete uni-
form distribution on , yielding the empirical
entropy estimates , , of the multinomial
probabilities. It can be shown that have the following
form (see Appendix B):

(4.14)
where is obtained by minimizing

(4.15)

with respect to . Note that is a convex function
of and can be efficiently minimized using the damped
Newton–Raphson iteration

(4.16)

Here, the damping factor is chosen to ensure
that (4.15) decreases. Finally, we compute the nonparametric
log-likelihood function of by substituting (4.14) into (4.3)

(4.17)
The above empirical-entropy approach is closely related to the
nonparametric tilting in [37, Sec. 11] and [38, ch. 10.10]. It is
also known as the empirical exponential family likelihood [39,

10Relative entropy, also known as Kullback–Leibler distance, is defined in,
e.g., [36, ch. 2.3].
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ch. 10] because it can be derived by constraining the probability
distribution of to belong to the expo-
nential family of distributions.

In [37, Sec. 11], Efron presented the CRB for under the
empirical entropy measurement-error model and used it to argue
that the empirical-entropy approach employs a least favorable
family for estimating . Assuming the discrete uniform distri-
bution of the observations, the expression for this CRB simpli-
fies to (4.11); see Appendix B and [37, (11.10)].

B. Autologistic MRF Process Model

Assume that each node makes a binary decision about its
current status, i.e., it decides between the hypothesis

• : (signal absent, ), corresponding to
versus the one-sided alternative;

• : (signal present, ), corresponding to .
This formulation is suitable for detecting event regions with el-
evated concentrations of chemicals; see the example at the be-
ginning of Section IV. In this example, we restrict the param-
eter space of the mean signal to the set of nonnegative real
numbers. To describe the binary MRF for event-region detection
problems, we adopt the autologistic MRF process model speci-
fied by the conditional pmfs (see [9, ch. 6.5.1])

(4.18a)

for , where and are spatial-trend and
spatial-dependence MRF model parameters. Furthermore,
we utilize the following simple spatial trend and dependence
models:

• constant spatial trend (independent of )

(4.18b)

• homogeneous spatial dependence with equal evidence
from each neighbor

(4.18c)

where is the cutoff distance; see also Section II.
In event-region detection problems, is a positive constant de-
scribing the field strength. This spatial-dependence model quan-
tifies the notion that the random-field values at the nodes that
are close (in terms of the spatial distance) should be more sim-
ilar than the values at the nodes that are far apart. More com-
plex spatial dependence models can be developed along the
lines of [9] (for isotropic dependence) and [40] (for anisotropic
dependence).

In applications where the cutoff distance is approximately
equal to the radio-transmission range of the sensor elements, the
neighborhood consists of those nodes with which can

communicate directly. Then, we can determine the neighbor-
hoods without utilizing the node location information. However,
the assumption that the cutoff distance coincides with the com-
munication range may be impractical. In addition, the effective
cutoff distance may vary slightly from one node to another.

In the following, we specialize the general ICM algorithm
in Section III to the event-region detection problem using the
measurement-error model in Section IV-A and process model
in (4.18a)–(4.18c).

C. ICM Detection for Gaussian Measurement-Error Model

We first define the indicator function

otherwise
(4.19)

Under the Gaussian measurement-error and autologistic process
models, Step (ICM2) in the ICM algorithm simplifies to se-
lecting if

(4.20a)

(4.20b)

(4.20c)

and selecting otherwise; see Appendix C for details of
the derivation. Here

(4.21)

is the number of neighbors of reporting the presence of signal
and , and have been defined in (2.5a), (4.7b),
(4.12a), and (4.12b). Equation (4.20b) follows by substituting
(4.18b) and (4.18c) into (4.20a). The first term in (4.20b) is the
one-sided -test statistic for the mean (based on the “local”
measurements collected at node ), whereas the second and
third terms account for the spatial trend and spatial dependence
effects introduced by the MRF model.

1) Initialization: To obtain initial decisions at each node ,
we ignore the neighborhood dependence and apply the local
one-sided test for the mean : select if

(4.22a)

and select otherwise. This test is also the generalized
likelihood ratio (GLR) test for the hypothesis testing problem
described in Section IV-B. Denote by the
central beta distribution with parameters 0.5 ( 1) and 0.5.
We select the threshold

(4.22b)
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to guarantee a specified probability of false alarm . Here,
is defined using

(4.22c)

where is a 0.5 1 0.5 random variable.

D. ICM Detection for Nonparametric Measurement-Error
Models

Under the nonparametric measurement-error models in
Section IV-A2, (4.5) implies that one-sided detection in
Section IV-B will be meaningful only if

(4.23)

with equality implying . For the em-
pirical likelihood and entropy measurement-error models, Step
(ICM2) simplifies to selecting if

(4.24a)

(4.24b)

(4.24c)

and selecting otherwise; see Appendix D. Here, the
nonparametric log-likelihoods for the empirical likeli-
hood and entropy models are computed using (4.8) and (4.17),
respectively.

1) Initialization: We now discuss the initialization of the
ICM iteration under the empirical likelihood and entropy mea-
surement-error models. We propose the following local GLR
tests that ignore the neighborhood dependence: select if

(4.25a)

and select otherwise. The threshold that guarantees
a specified probability of false alarm can be approximately
computed by solving (see Appendix E)

(4.25b)

where denotes the cumulative distribution function of the
standard normal random variable. The above approximation is
based on Wilks’ theorem for the empirical likelihood [32, Th.
2.2],[34, Sec. 2.3] and similar results for empirical entropy [41],
[42], derived under the assumption that ; see also Ap-
pendix E. Therefore, its accuracy improves as the number of
observations per sensor increases.

In the above ICM algorithms, the nodes exchange binary mes-
sages ( or ) to inform neighbors about their status;
the communication cost of this exchange is low, which is impor-
tant in most practical applications that require energy and band-
width efficiency [7].

V. MRF CALIBRATION

Assume that training data is available containing both the ob-
servations , and the true values of the MRF

. We develop a calibration method for estimating the MRF
model parameters from the training data. Denote the vector of
MRF model parameters by . To emphasize the dependence
of the local and global predictive log-likelihood functions in
(3.1) and (3.2) on , we use and
to denote these functions throughout this section. Similarly, we
use to denote the conditional pdfs in
(2.6).

We denote

(5.1)

as the “predictive” pdfs or pmfs of ; see [13, ch. 16.3]. Then,
we may compute maximum “predictive” likelihood estimates of

by maximizing the expressions in (5.1). However, the denom-
inators in (5.1) are usually computationally intractable. Moti-
vated by Besag’s pseudolikelihood approach in [9, pp. 461–463]
and [43], we construct a computationally tractable log pseudo-
predictive likelihood function

(5.2)

and estimate the MRF model parameters by maximizing
with respect to . Here

(5.3)

is the full conditional predictive pdf/pmf of . The above cal-
ibration method applies to the general measurement-error and
MRF models described in Section II.

A. Event-Region Detection

We now specialize (5.2) to the event-region detection
problem, leading to

(5.4)

where “const” denotes terms that do not depend on the MRF
model parameters . Here, (5.4) follows by substituting the
autologistic MRF model (4.18a)–(4.18c) into (5.2) and ne-
glecting constant terms. Under the Gaussian and nonparametric
measurement-error models in Section IV-A, the expressions

in (5.4)
simplify to (4.20b) and (4.24b), respectively. To efficiently
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(a) (b)

Fig. 2. (a) Noiseless field and (b) a sensor network with K = 1000 nodes.

(a) (b)

Fig. 3. Gaussian measurement scenario: (a) averaged observations y , k = 1; 2; . . . ; K , as functions of the node locations and (b) one-sided t-test results for
P = 5%.

compute the last term in (5.4), we utilize the following approx-
imation: for large positive

(5.5)

Interestingly, setting the data-dependent log-likelihood terms in
(3.1) to zero and substituting the resulting expressions into (5.2)
yields Besag’s pseudo-log-likelihood function

(5.6)

for estimating the MRF model parameters; see [9, pp. 461–463]
and [43]. Note that (5.6) utilizes only the MRF and does

not depend on the measurements , . Maxi-
mizing the pseudo-log-likelihood (5.6) would yield reasonable
estimates of the MRF parameters if the measurement-error
model parameters were known in the ICM
estimation/detection stage. Note, however, that we assume
that are unknown and estimate them locally at
each node, which is taken into account by the PPL calibration
method in (5.2).

VI. NUMERICAL EXAMPLES

To assess the performance of the proposed event-region de-
tection methods, we consider sensor networks containing

nodes randomly (uniformly) distributed on a 50 m 50 m
grid with 1 m spacing between the potential node locations. We
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(a) (b)

Fig. 4. Gaussian measurement scenario: event-region detection results after (a) one cycle and (b) two cycles of the Gaussian ICM algorithm.

assume that each sensor collects measurements cor-
rupted by i.i.d. zero-mean additive noise, unless specified oth-
erwise (see, e.g., Section VI-C). The noiseless field containing
two event regions is shown in Fig. 2(a) and the sensor locations
(with corresponding ideal decisions) are shown in (b). Here, the
filled circles correspond to the nodes in the event regions. The
noisy measurements collected at the nodes in the two event
regions have means whereas the noise-only mea-
surements collected at the nodes outside the event regions have
zero means.

Throughout this section, we set the cutoff distance to m
and define neighborhoods according to (2.5a). In all simulation
examples, we estimated the MRF model parameters (spatial
trend) and (field strength) using the calibration procedure in
Section V, where the calibration field and other details of our
implementation are given in Section VI-D.

A. Gaussian Measurement Scenario

In the first set of simulations, we generated the simu-
lated data using the Gaussian measurement-error model in
Section IV-A1 with constant noise variance for all

. In Fig. 3(a), we show the averaged obser-
vations , , in (4.7b) as functions of the
node locations for one realization of the noisy field. Applying
the one-sided test in (4.22) yields the results in Fig. 3(b),
where the threshold was chosen to satisfy the false-alarm
probability . The filled circles correspond to the
nodes declaring the presence of signal, whereas hollow circles
correspond to the nodes declaring the signal absence. The -test
decisions were used to initialize the Gaussian ICM detector
(described in Section IV-C; see also Section III); the decisions
after one and two ICM cycles are shown in Fig. 4. In this
example, all isolated nodes reporting the presence of signal
were correctly recognized as false alarms already after two
ICM cycles. The Gaussian ICM algorithm converged in four
cycles, yielding the results in Fig. 5.

Fig. 5. Gaussian measurement scenario: event-region detection results upon
convergence of the Gaussian ICM algorithm.

Applying the nonparametric ICM detectors in Section IV-D
yields (upon convergence) the results in Fig. 6. These detec-
tors were initialized using the local GLR tests in (4.25) with the
threshold chosen to (approximately) satisfy the false-alarm
probability . Both the empirical likelihood and en-
tropy based ICM algorithms converged in four cycles and were
successful in removing the false alarms.

B. Quantized Gaussian Measurement Scenario

We now study the performance of the proposed methods
in the case where the Gaussian observations (generated as
described in Section VI-A) have been coarsely quantized,
leading to non-Gaussian measurements from a discrete prob-
ability distribution. Here, we quantized the measurements to
the closest integer values in the interval [ 2, 3]. In Fig. 7(a),
we show the averages , of the quantized
observations [see (4.7b)] as functions of the node locations.
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(a) (b)

Fig. 6. Gaussian measurement scenario: Event-region detection results for (a) the empirical likelihood and (b) empirical entropy nonparametric ICM algorithms.

(a) (b)

Fig. 7. Quantized Gaussian measurement scenario: (a) averaged observations y , k = 1; 2; . . . ; K; as functions of the node locations and (b) event-region
detection results for the Gaussian ICM algorithm.

Applying the ICM detectors for Gaussian and nonparametric
measurement-error models to the quantized measurements
yields the results in Fig. 7(b) and Fig. 8, respectively. The
ICM algorithms were initialized using the local GLR tests
in (4.22) and (4.25) with the thresholds and chosen
using (4.22b)–(4.22c) and (4.25b) to satisfy the false-alarm
probability . The Gaussian ICM algorithm per-
forms poorly under this scenario due to the mismatch between
the quantized observations and assumed Gaussian measure-
ment-error model; see Fig. 7(b). The empirical likelihood and
empirical entropy based ICM methods estimated the unknown
probability distributions of the measurements and successfully
removed the false alarms; see Fig. 8. Unlike the Gaussian and
empirical likelihood approaches, the empirical entropy method

provides a connected estimate of the event region in the upper
right corner of the network.

C. Probabilities of False Alarm and Miss

We analyze the average error performances of the GLR and
ICM methods under the Gaussian and quantized Gaussian mea-
surement scenarios. Our performance metrics are the average
probabilities of false alarm and miss, calculated using 100 in-
dependent trials11 where averaging has been performed over
the noisy random-field realizations, random node locations, and
scheduling (in the ICM methods).

11Here, the two error probabilities were estimated using the ideal decisions
in Fig. 2(b).
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(a) (b)

Fig. 8. Quantized Gaussian measurement scenario: event-region detection results for (a) the empirical likelihood and (b) empirical entropy nonparametric ICM
algorithms.

(a) (b)

Fig. 9. Gaussian measurement scenario: Average probabilities of (a) false alarm and (b) miss as functions of the number of observations per sensor N .

We first consider the Gaussian measurement scenario and
present the average probabilities of false alarm and miss for dif-
ferent methods as functions of the number of observations per
sensor ; see Fig. 9. In this case, we have the following.

• The average false-alarm and miss error performances of all
ICM methods improve as increases.

• The average false-alarm probability of the one-sided test
is constant and equal to the specified value of 5%, verifying
the validity of (4.22b)–(4.22c).

• The false-alarm probabilities of the local nonparametric
GLR tests attain the specified level of 5% asymptotically
(i.e., for large ; see also Section IV-D).

• The Gaussian ICM method achieves the smallest
false-alarm probability for all (compared with the
other methods).

Consider now the quantized Gaussian measurement scenario.
In Fig. 10, we show the average probabilities of false alarm
and miss for different methods as functions of . Observe the
following.

• As in the Gaussian scenario, the average false-alarm and
miss error probabilities of all ICM methods decrease with

.
• Tthe average false-alarm probabilities of the local and

nonparametric GLR tests attain the specified level of 5%
for large .

• For small , the nonparametric ICM methods achieve
smaller average false-alarm and miss error probabilities
than the Gaussian ICM method.

• Due to the averaging effect, the Gaussian ICM method per-
forms well when is large.
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(a) (b)

Fig. 10. Quantized Gaussian measurement scenario: Average probabilities of (a) false alarm and (b) miss, as functions of N .

Fig. 11. Noiseless field used for calibration.

Note that the error-probability results presented in Figs. 9 and
10 do not show if the obtained event-region estimates were con-
nected or not, which may be of interest in practical applications.

D. MRF Calibration

We utilize the calibration method in Section V to estimate
the MRF model parameters and . The training data were
generated by randomly placing nodes on a 50 50
m grid and simulating noisy realizations of a calibration field
having constant mean within a circular event region with
radius 8 m; see Fig. 11. Twenty training data sets were gener-
ated by varying the noise realizations, node locations, and values
of the event-region mean . We applied the calibration method
proposed in Section V to fit each training data set and then av-
eraged the obtained estimates, yielding the final calibration re-
sults. To obtain the average error probabilities in Figs. 9 and 10,
the values of in the 20 training data sets were generated by

sampling from the uniform(0.4, 1.4) distribution. To calibrate
the ICM algorithms whose results are shown in Figs. 4–8, we
sampled from a wider range of values [following the uni-
form(0.4, 3.4) distribution]; the resulting calibration provided
smaller false-alarm probabilities and larger miss probabilities
[compared with the results obtained by sampling from uni-
form(0.4, 1.4)].

VII. CONCLUDING REMARKS

We presented an HMRF framework for distributed localized
estimation and detection in sensor-network environments. We
developed a calibration method for estimating the MRF model
parameters from the training data and discussed initialization of
the proposed algorithms. The proposed framework was applied
to event-region detection.

Further research will include extending the HMRF frame-
work and ICM method to allow tracking of the field changes
over time, analyzing the impact of communication errors
(among the nodes) on the performance of the ICM method,
comparing the ICM and message passing approaches, relaxing
the conditional independence assumption in (2.3), developing
data aggregation algorithms and energy-aware sensor-network
design strategies for HMRFs (e.g., deciding which nodes will
be in “alert” or “sleeping” modes), and studying asymptotic
properties of the proposed methods as the number of measure-
ments per node grows.

It is also of interest to relate the proposed ICM and dis-
tributed consensus approaches recently proposed in [24], [25],
and [44]. If we select a Gaussian MRF model structure and
modify the ICM iteration by replacing the measurements
with the estimates of the hidden field from the previous
ICM cycle, the resulting algorithm closely resembles the av-
erage-consensus scheme in [44, (3)]. Note that the consensus
methods estimate global phenomena (e.g., the mean field)
whereas the ICM methods estimate localized features, which is
an important distinction between the two approaches.
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Since the autologistic MRF model may be too simplistic
for many applications, it is important to develop more general
process models that will allow utilizing multiple information
bits to describe the hidden field of interest. Here, it is of par-
ticular interest to derive physically based process models and
corresponding ICM methods.

APPENDIX A
EMPIRICAL LIKELIHOOD AND CRB FOR ESTIMATING

We derive the concentrated empirical log-likelihood expres-
sion in (4.8). This derivation is similar to that in [32, ch. 2.9
and 3.14] and [34, Sec. 2.4] and is given here for completeness.
We utilize the method of Lagrange multipliers to solve the con-
strained optimization problem in (4.6). Define

(A.1)

where and are Lagrange multipliers. Forming a weighted
sum of the partial derivatives of with respect to and
setting the result to zero yields

(A.2)

where the second equality follows by using the constraints
and . Therefore

, implying that

(A.3)

where is chosen as a solution to

(A.4a)

(A.4b)

Substituting (A.3) into the multinomial log-likelihood yields

(A.5)

where was defined in (4.8b). To satisfy (A.4a),
we need to minimize the above expression with respect to ,
yielding the convex dual formulation in (4.8). Assuming (4.5),
all estimates of the multinomial probabilities need to satisfy

(A.6)

and (4.9) is obtained by using the second inequality in (A.6)
for all . Finally, the first two derivatives of

with respect to are

(A.7a)

(A.7b)

and the Newton–Raphson iteration (4.10) follows.

A. Least Favorable Families and CRB for Under the
Empirical Likelihood Model

We derive the CRB for under the empirical likelihood
measurement-error model and sketch a proof that the empir-
ical-likelihood approach employs a least favorable nonpara-
metric distribution family for estimating .

We first differentiate the empirical log-likelihood in (4.8a)
with respect to

(A.8)

which follows by using (A.3)–(A.4) and the constraint
. Then

(A.9)

where can be computed by differentiating (A.4a)
[with evaluated at ]

(A.10a)

leading to

(A.10b)

and, consequently

(A.11)

Then, assuming the discrete uniform distribution of the obser-
vations , the CRB for estimating is
given by (4.11), which follows from the fact that the discrete
uniform distribution of the observations implies and

. Note that (4.11) closely resembles the well-known
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CRB expression for under the parametric Gaussian measure-
ment-error model in Section IV-A1 (see, e.g., [45, (3.9)])

(A.12)

In particular, (4.11) is a good estimate of (A.12). Hence, the
empirical likelihood approach employs a least favorable non-
parametric distribution family for estimating . This conclu-
sion follows from the notion that a least favorable nonparametric
family is one in which the estimation problem (i.e., estimating

in our case) is “as hard as in a parametric problem” (corre-
sponding to the Gaussian measurement-error model in the above
example); see also the discussion in [32, ch. 9.6], [33], [42, Sec.
2.3], and [46, ch. 22.7].

APPENDIX B
EMPIRICAL ENTROPY AND CRB FOR ESTIMATING

We utilize Lagrange multipliers to solve the constrained op-
timization problem in (4.13) [subject to the constraints (4.4b)].
Define

(B.1)

where and are Lagrange multipliers. Setting the partial
derivatives of with respect to to zero yields

(B.2)

for . Finding that satisfies the constraint
leads to the following expressions for the multi-

nomial probabilities:

(B.3)
Finally, the constraint is satisfied

by finding that solves

(B.4)

Note that (B.4) is an increasing function of and that satisfying
(B.4) is equivalent to minimizing in (4.15) with re-
spect to . Finally, the first two derivatives of with
respect to are

(B.5a)

(B.5b)

and the Newton–Raphson iteration (4.16) follows.
1) Least Favorable Families and CRB for Under the Em-

pirical Entropy Model: We derive the CRB for under the
empirical entropy measurement-error model and sketch a proof
that the empirical-entropy approach employs a least favorable
nonparametric distribution family for estimating .

We first differentiate the nonparametric log-likelihood (4.17)
for the empirical entropy model with respect to

(B.6)

To derive (B.6), we have used the identity

(B.7)

which follows from (B.4). We now compute by
differentiating (B.7)

(B.8a)

leading to

(B.8b)

where we have used (B.7) to obtain (B.8b). Finally

(B.9)

Then, assuming the discrete uniform distribution of the observa-
tions , we have , ,
and

(B.10)

which follows by using (B.8b). Therefore, (4.11) holds, im-
plying that estimating is as hard as in a parametric Gaussian
model and, consequently, the empirical entropy approach em-
ploys a least favorable nonparametric distribution family (see
also Appendix A).
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APPENDIX C
ICM DETECTOR FOR THE GAUSSIAN

MEASUREMENT-ERROR MODEL

Under the Gaussian measurement-error model (4.2) in
Section IV-A1, the conditional predictive log-likelihoods in
(3.1) simplify to (C.1)

(C.1a)

(C.1b)

and (4.20b) follows.

APPENDIX D
ICM DETECTOR FOR NONPARAMETRIC

MEASUREMENT-ERROR MODELS

We specialize Step (ICM2) of the ICM algorithm to the non-
parametric measurement-error models in Section IV-A2. Here,
the conditional predictive log-likelihoods in (3.1) simplify to

(D.1a)

(D.1b)

We now show that, for and

(D.2)

Proof of (D.2) for Empirical Likelihood: Consider the em-
pirical likelihood model ( ). Then, the result for
follows from (4.7a).

We now focus on the case where . Then, for ,
the expression in (A.4a) is negative at . Since (A.4a) is a
decreasing function of , the optimal which solves (A.4) for
any must be negative. Then, (A.8) implies that, in this
case, is a decreasing function of and (D.2) follows.

Proof of (D.2) for Empirical Entropy: Consider now the em-
pirical entropy model ( ). Then, the result for
follows by noting that:

• solves (B.4);
• the nonparametric log-likelihood for the empirical entropy

model is maximized at , which follows by setting

in (B.6) to zero and noting that
is always positive [see (B.8b)].

In the case where and , the derivative
in (B.6) is negative. Therefore, is a de-

creasing function of and (D.2) follows.
Finally, substituting (D.1) and (D.2) into (4.24a) yields

(4.24b).

APPENDIX E
GLR TESTS FOR UNDER NONPARAMETRIC

MEASUREMENT-ERROR MODELS

We derive the empirical likelihood and entropy GLR tests in
Section IV-D. Under the null hypotheses , the
asymptotic distribution of the GLR test statistics

(E.1)
is given by, for

(E.2)

which follows by adapting the results in [32, Th. 2.2], [34, Sec.
2.3] (for empirical likelihood) and [41], [42] (for empirical en-
tropy) to the one-sided testing problem in Section IV. Here,
denotes a random variable having a central distribution with
one degree of freedom and can be obtained by squaring a stan-
dard normal random variable. The second term in (E.2) corre-
sponds to the probability that under , which is 1/2;
in this case, the GLR test statistics (E.1) becomes zero.

Note that (4.25a) follows by using the square root of (E.1) as
the test statistics, which is possible because
are nonnegative. Then, (E.2) implies that a specified false-alarm
probability will be achieved by comparing

(E.3)

with the threshold , computed using (4.25b).
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