(© 2000 IEEE. Personal use of this material is permitted. However, permission
to reprint /republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to

reuse any copyrighted component of this work in other works must be obtained
from the IEEE.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 1, JANUARY 2000 13

Estimating Evoked Dipole Responses in Unknown
Spatially Correlated Noise with EEG/MEG Arrays

Aleksandar Dogariic, Student Member, IEEEBNd Arye NehoraiFellow, IEEE

Abstract—\We present maximum likelihood (ML) methods for current dipole is often used as an equivalent source for a uni-
estimating evoked dipole responses using electroencephalographydirectional primary current that may extend over a few square
(EEG) and magnetoencephalography (MEG) arrays, which allow  captimeters of cortex. It is justified when the source dimensions
for spatially correlated noise between sensors with unknown co- . . .
variance. The electric source is modeled as a collection of current &€ relatively small compared with th_e d|stance§ frpm the source
dipoles at fixed locations and the head as a spherical conductor. to the measurement sensors [2] as is often satisfied for sources

We permit the dipoles’ moments to vary with time by modeling evoked in response to a given sensory stimulus: auditory, visual,
them as linear combinations of parametric or nonparametric etc.

basis functions. We estimate the dipoles’ locations and moments In [3], spatiotemporal measurements are incorporated

and derive the Cramér—Rao bound for the unknown parameters. . - . .
We also propose an ML-based method for scanning the brain US'N9 the common dlpoles-ln-a_-sphere dee'- _The dipoles
response data, which can be used to initialize the multidimensional are assumed to have fixed locations and orientations, whereas
search required to obtain the true dipole location estimates. Nu- their strengths are allowed to change in time according to a
merical simulations demonstrate the performance of the proposed parametric model. De Munck [4] extends the above model by
methods. allowing the dipole strengths to change arbitrarily. In [5], only
Index Terms—Cramér—Rao bound, dipole source, EEG, evoked the dipole position is fixed, and the orientation and amplitude
responses, maximum likelihood parameter estimation, MEG, are allowed to vary in time according to a parametric model.
sensor array processing, unknown noise covariance. In all the above models, the noise is assumed to be spatially
uncorrelated. As a result, these (and most other) localization
|. INTRODUCTION procedures are based on minimizing a sum of squared errors.

. Such a residual function is appropriate only if the brain back-
HE NONINVASIVE techniques of electroencephalogy round noise, which is a major source of noise in EEG/MEG,

raphy (EEG) and magnetoecephalography (MEG) a fows no correlation across the scalp at different electrodes.

necessary for understanding both spatial and temporal beha‘l’-ﬁ%(/vever, since the background noise arises mostly in the cortex,
of the brain. Arrays of EEG and MEG sensors measure elec

. T s expected to be strongly correlated in space. For example,
potentlgl cIJn t_?_ﬁ scalp an? Irgagnenc field arodunt()j the he%gfular rhythms in spontaneous brain activity, such as alpha
reip(_atctlye %/h bese tW(;) 1€ 3 "’?“? gente_rate b 3{ bneilﬁrqt ves, are not only large in amplitude but also correlated be-
activity in tne orain and provide Information about both 1y, eqp neighboring sensors [6]. The correlated-noise problem is
spatial distribution and temporal dynamics. This is in contr portant in EEG because of the bipolar nature of the potential
with other brain imaging techniques that measure anatomi% - - -

; ; ield recordings, i.e., the noise at the reference electrode spreads
information (MRI, CT), blood flow or blood volume (fMRI, g P

. to all other channels [7]. In MEG, environmental noise is an ad-
SPECT), or metabolism of oxygen or sugar (PET). Furthegr [7]

. . . itional important source of spatial correlation [8], especially in
more, the temporal resolution of EEG/MEG is far superior o unshieIF():led environment P [8], esp y
that ac_h|eved by other modalities. L One of the first attempts to tackle the problem of correlated
Spatiotemporal EEG/MEG data analysis is based on m

i  brai ity b . ¢ distribut bise was by Sekiharet al. [8], who assumed known spatial
€ling a source ot brain activity by a primary curreént distribute O%fe covariance. The localization in [8] is performed using a

over a certain region of the' f:ortex. Evoked TESPONses are Uzt oralized least squares (GLS) method (see also Section I1-B)
to study sensory and cognitive processing in the brain [1] a d measurements at only one point in time. In [9], detection

are applied to clinical diagnosis in neurology and psychiatry. gorithms are derived for known spatial noise covariance and
multiple time snapshots, whereas the temporal evolutions of the
dipole moments are allowed to vary arbitrarily. Litkenhdner has

. . . . analyzed the GLS method for multiple time snapshots and ap-
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signal processing, see Section Ill). Under statistical normality,
this technique gives the ML estimates of the dipole locations
and moments, requiring only a one-stage iterative procedure
with computational complexity comparable with the ordinary
least-squares (OLS) methods widely used in the EEG/MEG
literature (see e.g., [3] and [4]). Both the ML and OLS methods
are consistent if the noise is spatially correlated; however, we
show that the ML is asymptotically more efficient. In Section
IV, we derive the concentrated likelihood for the nonparametric
basis functions which is a function only of the dipole locations
¥ and number of basis functions. Then, in Section V, we derive an
ML-based method for scanning the brain response data, which
can be used to initialize the multidimensional search required
to obtain the true dipole location estimates.
We derive the Fisher information matrix (FIM) and
Cramér—Rao bound (CRB) for the proposed model in Section
VI (see also [18]) and discuss computational issues in Section
VII. Finally, in Section VIII, numerical simulations are used to
compare the estimation accuracy of the ML, GLS, OLS, and
z > scanning methods.

Fig. 1. Dipole in a sphere. Il. SOURCE AND MEASUREMENTMODELS

. . . . . . A. Source Model
particular time point of interest. However, this method is sub-

optimal since it does not use the data containing the respons¥/e model the head as a spherically symmetric conductor lo-
for estimating the noise covariance. Furthermore, there are §lY fitted to the head curvature. Lgbe the position of a cur-
dications that utilizing baseline data may not be justified sinégnt dipole source relative to the center of the sphere

it is hypothesized that the noise covariance changes due to de-
pendence on the state of the subject or visual stimulation [7],
[14], [15]. Thus, the noise covariance may need to be estimateﬂ
only from the data containing the response. A major goal of thig '€
paper is to develop algorithms that solve this problem in an ef-
ficient way.

An iteratively reweighted generalized least squares (IRGL§
procedure [16, pp. 298-300] is proposed in [7] to estimate the
noise covariance matrix and fit the dipole locations at a partic-
ular time point utilizing multiple trials. It is a two-stage pro- ) T
cedure yielding estimates that, if the noise is Gaussian, con- u, = [—sing, cosp, 0]
verge to the maximum likelihood (ML) estimates. This method, u, =p/p (2.2)
however, does not include temporal evolution. In this paper (see
also [17] and [18]), we allow temporal evolutions of all dipoldorm an orthonormal basis (see also [19]). Using this basis, the
moment components by modeling them as linear combinatio#i§ole moment can be written asu, + g, %, +g,u,. We define
of basis functions, assuming spatially correlated noise with uifte vector of moment parameteys= g, g, gpl"
known covariance. The basis functions may be chosen to ex-
ploit prior information on the temporal evolutions of the dipol®. Measurement Model

moments, thus improving their estimation accuracy. If such in- Consider a bimodal array efx EEG andns MEG sensors.
formation is not available, we propose and analyz®apara- The subscriptd: and B refer to the EEG and MEG sensors,

metric basis functions method that exploits repeated trials apgkpectively. Letn = mp, + mp. Then, them-dimensional
the linear dependence of the evoked responses on the digaléasurement vector of this array is

moments to estimate the basis functions. In this case, only the

p = p[sind cosy, sindsing, cos?]? (2.1)

¥ dipole’s elevation;

@ azimuth;

p distance from the center; see Fig. 1.

us,p is fully described by = [¥, ¢, p]*. The vectors

Uy = [cos?d cosy, cosdsing, — sind]”

number of basis functions needs to be specified. This number y=A(0)g+e (2.3)
is equal to the rank of the moment signal matrix, indicating the
level of correlation between the moment components. wherey = [y, yL]", A(@) is them x 3 array response matrix,

We first derive closed-form expressions for the ML estimatemde = [e}, e}]* is additive noise. The array response matrix
when the dipole locations and basis functions are known aisdderived using the quasistatic approximation of Maxwell's
then a concentrated likelihood function to be optimized whesquations and spherical head model (see [2], [20], and ref-
the dipole locations and basis functions are unknown (ferences therein). The radial component of a dipole produces
references and relationship to previous work in statistics and external magnetic field in the spherical head model [2];
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therefore, the last column of the MEG response matrix is ze@l trials. If K = 1, and@ andzn are known, the above model
Thus, A(8) = [[AB(0), 0, x1]7, Ap(0)T]7, where Ag(8) is known as the generalized multivariate analysis of variance
and Ag(#) are the MEG and EEG response matrices witGMANOVA), which was first addressed in [24] (see also [25],
dimensionsmg x 2 andmg x 3, respectively. The symbol [26, ch. 6.4], and [16, ch. 5]). In statistics, it is usually applied
0., x1 denotes thenp x 1 vector with zero entries. Define to fitting growth curves and thus is also called the growth-curve
r = rank A(#)); usually,» = 3, except when only MEG model [24]-[26].
sensors are employéd = 2). Define B(n) = [¢(1,n)---d(N,n)] and Qp(n) =

For n distinct dipoles, (2.3) holds with(#), 8, andg sub- B(n)[B(n)B(n)¥]~*. The projection matrix on the row
stituted with [A(81)--- A(,,))], 8 = [#7 ---01]17, andg = space ofB is thenPg(n) = Qp(n)B(n). In Appendix A (see
[gF ---qL]%, respectively. Note that in this cageandg are3n-  also [17] and [18]), we extend the GMANOVA equations to
andrn-dimensional vectors, respectively. Since the dipoles amaultiple trials, i.e., we show that for knowhandsy, if the noise
at distinct locations, we assume th#) has full rank equal to e (¢) is normal, the ML estimates of andX are
.

The noise vectot is assumed to be zero-mean with unknown X = [A(6)TS 7L A()] L A0)' S 1Y Qi (n) (3.2a)
spatial covarianck, whereas the source moment signal is deter-
ministic. Thus, the mean and covariance matrix of the snapslaod
y are A(@)q and X, respectively. The noise is predominantly
due to background activity in neurons. An assumption of Gaus- 20, ) = 5 + (I, — TS™)S1 (I, — TS™H)"  (3.2b)
sianity, which is often used in EEG/MEG literature, may be jus-
tified by the additive nature of the noise and the large numb&here

of neurons normally active throughout the brain and has been %
validated in [21]. Tests for the normality of background EEG Y — 1 Z Ya (3.3a)
signals have also been developed in [22]. K Pt
S=R-5, (3.3h)
[1l. M AXIMUM LIKELIHOOD ESTIMATION "
N 1
A. Simultaneous Estimation of the Dipole Parameters and R= NK Z YiYih (3-3¢)
Noise Covariance k=1
_— . . 1 —
We assume that the evoked field is a result of brain electrical S1= N Y Py (n)YT (3.3d)

activity that is well modeled by: dipoles at unknown fixed
locations with time-varying moments. As is commonly done

in analyzing evoked responses, the experiment is repefétedandlm denotes the identity matrix of size. Note thatS and

tlmes to improve the signal-to-noise ratio (SNR). The actlvat%d are functions of only, andT’ and X are functions of both
dipoles are assumed to have the same locations and tempg?a

patterns in each experiment, i.e., the evoked responsd®are anhdn. To simplify the notation, we omit these dependencies

L . throughout this paper. For the above model (and under the Gaus-
mogeneoughis is a strong assumption that may need to be val:_ " . - o -

. . . . Sianity assumption), the sufficient statistics &rand 2. If the
idated in practice. Homogeneity tests for the evoked responses

have been derived in [23]). In thh trial (k = 1, - K), N atricesty become scalars, i.& = y; andA(0) = a, we ob-
tain the well-known results from univariate statistics= 5 =
temporal data vectors (snapshatg)l), ¥, (2), - -, y,(IV) are K —\2 6o
_ /K 375 (g — )% andX = 7/a.
collected. We refer to the matri, = [y, (1) - - -y, (V)] as the ! . o
. . If 3 is known, the ML estimate ok is simply
spatiotemporal data matrixVe assume that the temporal evo-
lutions of the dipoles’ moment components can be described by
linear combinations of a set of basis functiaiis) = X ¢(t, ),
where X is a matrix of unknown coefficients with dimensions : . o .
: . : . as can easily be shown by differentiating the log-like-
rn x [ for the function representation described byitkd basis . . . . .
; : lihood function (see Appendix A) using the identity
vectorsg(t, i), and the parameter vectgiis unknown in gen- 9/0X)t(PTXQ) = POT [27, p. 72]
eral. This parametrization allows us to exploit prior informatiog N » P 2l

on evoked response temporal evolutions and reduce the numb Ifr 9 andy are not known (in addition ta andx.), their ML

i : . .estimate® and# are obtained by maximizing the concentrated
of unknown parameters, thus improving the moment estimatiop . X :
. ikelihood function (see Appendix A)
accuracy. The measurement model is then

T = A()[A(0)T S~ A@)] L A(0)T (3.3¢)

X = [A0)7=71A0)] T AOTE Y QRm)  (34)

() = AO)Xp(t, m) + ex(t) (3.1) I (8, m) = |30, p)[ N5/ (3.5)

fort=1,---, Nandk = 1, ---, K. Here,e,(t) denotes the where3:(8, 5) is the ML estimate oF: for knowné ands, which
noise, which is assumed to be zero mean with unknown spatgdefined in (3.2b). To find the ML estimates &f and:, sub-
covarianceX and uncorrelated in time and between trials. Istituted andn in (3.2a) and (3.2b) b§ ands. If ¢(¢) is modeled
reality, the noise is likely to be correlated in time (within a trialps a linear combination ébasis functions without any prior on
but uncorrelated between trials. The noise covariance matrixheir shape (i.e., nonparametric basis functions), we can con-
is assumed to be positive definite and constant in time and acrosstrate (3.5) with respect ip= veq BT) as well, as shown in
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Section IV. Here, the vec operator stacks the columns of a mM@LS to the spatially prewhitened data. Detection methods for
trix below one another into a single column vector. this case withB = Iy are derived in [9].

The case of{ = 1 and unknowrd was first addressed in [28],
where a concentrated likelihood function of a similar form was. ML Versus OLS
obtained and applied to direction-of-arrival (DOA) estimation. In this section, we show consistency and asymptotic nor-
In addition, a signal subspace fitting (SSF) criterion approxi- '

mating this likelihood function was proposed. Here (see aIé%a.“ty of the ML estimates, as well as cop5|stency of the OLS.
[17] and [18]), we consider a more general model with muF_stlmates. We then show that the ML estimates are asymptoti-

; . 4 i ) lly more efficient than the OLS estimates.
tiple trials (suitable for ana!yzmg evoked respon_ses), muItlrar?I‘?Deﬁnep = VvedX)T, 67, 57| andy = vech(X). Here,
(vector) source moment signals, and parametric and nonp La—

: . : . . : P vech operator creates a single column vector by stacking the
metric basis functions. This formulation also includes as specl T .
. . Sements below the main diagonal columnwise.
cases the ML radar array processing methods in [29] and [3 “The vector of all unknown parametersyis= [o%, $7]7. As-
In Section VII, we show how to maximize the function in (3.5)Sume that the true values of the parameter \I/)e’ asd ' are
with respect to botl# andn in a computationally efficient way. =~ ved X\ 0.7 nT1T and P i, T IqiT re’; ec-
For a discussion on identifiability of the unknown parameterﬁgel_y[ dXo)™, b0 107 Yo = [po™- %o" I, resp
18, App. B]. : . . . .
see [ 8,_ pp ]_ . L Let Zgignai1(<y) be the Fisher information matrix [31] of the
Modeling the dipole moments by linear combinations of paraignal parametera. The exact expression will be given in Sec-
metric basis functions allows us to exploit prior informatior}

on the temporal evolutions of the evoked responses, which i jon VI; see (6.2) and (6.3). To establish asymptotic properties

proves the moment estimation accuracy. Since the temporal e%ggzj?ti'\élrll‘s"_’md OLS methods, we need the following regularity
lutions can be described with a small number of parameters, fie '

parametric basis function models may also be used as featureR1) The parameter space pfs compact, and the true pa-

extractors in a pattern recognition scheme. However, their dis- rameter_valuepo is an interior point.
advantage is that the likelihood function often needs to be max- R2) The noise vectore;(#), k = 1,---, K.t =
imized with respect to the nonlinear basis paramefeis ad- L, .-, N are independent, identically distributed
dition to the unknown dipole location paramet@rdhis can be (i..d.) with zero mean and arbitrary positive-definite
avoided by using nonparametric basis functions; see Section IV. covariance.. . '

The above estimators have good asymptotic properties evenR3) 4(#) and B(n) are continuous and have continuous
when the noise is not Gaussian: Theorem 1 in the following sec- firstand second partial derivatives with resped &md

tion states that regardless of the noise distribution, the covari- n . ) ]

ance of these estimators asymptotically achieves the CRB cal- R4) The matriXZsizmai(y) is nonsingular.

culated under normality. In the sequel, we do not restrict our- R5) t{X™'[A(6) X B(n)—A(60)XoB (,)][A(6) X B(n)—

selves to a particular distributional assumption, except when A(80)XoB(mo)]"} = 0ifand only if p = py.

discussing the FIM and CRB, which is justified by the abov&he regularity condition R5) is essentially an identifiability con-

comment. Thus, we slightly abuse the terminology by referirgjtion for p, requiring uniqueness of the mean response corre-

to these estimators as the ML estimators. Having a similar t&ponding to the true value of the parameter veptofsee also

minology problem, some authors refer to these methods as Ey8, App. B]). Observe that the above conditions do not require

tended least squares (ELS). specific distributional assumptions on the noise veatg(s).
Theorem 1:Under the regularity conditions R1)-R5), the

B. Ordinary and Generalized Least Squares ML estimate ofp satisfies (agt — o)

The (nonlinear) ordinary least squares method [16, pp.
447-448] applied to the above model gives the residual sum of
squares 5 — (1/N)A(0)[A(8)T A(0)] L A(0)TY Pr(n)Y " }
as a cost function to be minimized with respecf andr. This p=po+ OP(K_I/?) (3.6b)
expression is easily derived by substitutiig = 21, and
identities (3.4), (A.4a), and (A.4b) from Appendix A into theand
likelihood function in (A.1b); thus, the OLS is ML for Gaussian
spatially uncorrelated noise. Obviously, the OLS method does . d .
not account for the spatial correlation in the noise covariance. VNK(p—po) = N(0, NKIgignal(70)” ) (3.7)
Further, the OLS estimates are not based on the sufficient
statistics since does not affect the above minimization. Ifwhere®>"indicates almost sure convergence, agﬂdndicates
K = 1andB = Iy, i.e., q(t) is an arbitrary vector at eachconvergence in distribution.
time pointt = 1, ---, N, this method coincides with the Proof: The proof follows from [33, ch. 5.6], [34], where
deterministic maximum likelihood in, e.g., [31]. it is shown for a more general case; see also [16, pp. 300-301],

The GLS method [16, pp. 448-449] is the ML method for sp428], and [35]. ]
tially correlated Gaussian noise with known spatial covarianceTheorem 2: Under the regularity conditions R1)-R5) [where
3. Itis a simple extension of OLS since it reduces to applying4) and R5) should be checked usifig= 1, instead of the

» 2% p, (3.6a)
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actual noise covariance], the OLS estimategpdfatisfy (as  In Appendix C, we derive the concentrated likelihood func-

K — ) tion for the nonparametric basis functions in the form of a gen-
eralized likelihood ratio (GLR) test statistic [27, p. 418], [36]
for testing Hy: X = 0 versus H: X # 0. First, the GLR is

F3 OLSa_.§.p0 (3.8a) suitably rewritten [see (C.2)] and then maximized with respect
N -1 to B using the Poincaré separation theorem [27, pp. 64—65]; see
. _ K D(t, p,)Y D(t, also Appendix C. The resulting GLR is given by the product
Pors =Po+ ; (£ p0)" Dt o) of the ! largest generalized eigenvalues of the matrites—
K N (1/N)YYTW(0)Y andIy — (1/N)YTR™Y, where
<303 Dit po) enlt) + op(K7H?)
k=1 t=1
(3.8b)
_ N N N —1
=po + Op(K /%) (3-80) W) =R — RA(0) [A(Q)TR*A(Q)}
where -
- CAOTRTL (4.1)
(A X p(t,
Dt p) :W. 3.9)

The rows of the ML estimaté are the corresponding general-
N T ) . ized eigenvectors of the above two matrices. Note that assuming
Here, K thl_D(t, p)* D(t, p) equalsZy;zpna(7y) in (6.2) and rank A(#)) < N (which holds in most practical applications),
(6.3) whenx = I,,,. . !
there can be only rarik(#)) = nr generalized eigenvalues

Proof: See [18, App. CJ. greater than one (and the rest are equal to one); thgs] <
If ex(¢) are i.i.d. normal, it can be shown that the ML estimat r+ see also (C.7) in Appendix C. - 1, all the comp_one_nts

p is asymptotically efficient in the sense of first-order efficienc . i
P ymp y f the dipole moments have the same temporal evolution (up to

[27, Sec. 5¢.2 and 5f.2]. .
In Appendix B, we prove that under the above regularity Cor?_scalmg factor), and thus, they are fully c_orrelated. Onthe other
hand,! = nr allows as many basis functions as the number of

ditions, the ML estimate op is asymptotically more efficient oment components, in which case, the concentrated likelihood
than the OLS estimate, i.e., the difference between the asyr};gb-simply I — (1/NYTTW (O /| Iy — (1/N)YTR-Y]

totic covariances of the ML and the OLS estimates is negatiye,. ; .
semidefinite, where equality is achievedif= o1, which follows from the fact that the determinant of a matrix

eoquals to the product of its eigenvalues). Further, this expres-

witThhtE;lz ugﬁgogais%z %tf;;ﬁigog;" ;neciagl‘ :Ezt Il/lhlé cglr_nsp ZrS:%on is equal to the GLR for known basis functions in the form of

mator does not utilize information contained in the second-ordg} &¢ pulses, i.e3 = Iy [see (C.2) in Appendix C]. Thus, mo- .
moment matrix2: see also Section lI-B. ment components can be completely uncorrelated. The choice

of [ allows us to specify the level of correlation between the mo-
ment components, ranging from fully correlatéd=( 1) to un-
correlated { = nr). This is a useful property since the sources
of evoked responses are often correlated.

In this section, we obtain the ML estimates of nonparametric Unless suitably constrained, the ML estimatBsare not
basis functions (i.e = veq BT) with certain identifiability unique. However, in Appendix C, we show that regardless of
constraints; see discussion below), where only their nurhiser which ML estimate ofB is chosen, the concentrated likelihood
specified; here] equals the rank of the moment signal matrixunction and the estimated dipole moment temporal evolu-
and is a measure of the level of correlation between the moméoh Q = XB are unique. The orthonormal set of the ML
components; see below. This method exploits multiple trials apdtimates of the basis functions can be constructed from the
the linearity of the dipole moments to compute closed-form sabove ML estimates a8..., = [BBY]|~/2B. Here, H'/2
lutions for the basis function estimates. As a result, the cormenotes a symmetric square root of a symmetric mafrixand
sponding concentrated likelihood function becomes a functidh—/2 = (H'/2)~1; this notation will be used throughout the
of @ only. The disadvantage of this method is thahay con- paper.
tain a large number of parameters compared with a suitable non€onsider now the case where the data set of each trial con-
linear parametrization that may utilize prior information on th&ins a part with baseline data. Thdg, = [Yix, Yar|, £ =
temporal evolutions and improve the estimation accuracy of the- - -, K, whereY;;, is a spatiotemporal data matrix of size
dipole moments. However, the use of nonparametric basis fume-x N; containing the background noise only, wheréags
tions does not deteriorate the asymptotic accuracy of dipole Is-of sizem x N, containing the evoked response modeled
cation, as shown in Section VI. This result is also confirmed kgs A(@) X B, corrupted by noise. The statistical properties of
simulation results; see Section VIII. the noise, which are described in Section lll, are assumed to

Note that the nonparametric basis functions require usibg the same for both7;, andYs,. Thus,B = [0, By], N =
multiple trials or known signal corrupted by noise (i.e., trainindV; + No, andY = [Y;, Y»]. A simple extension of the above
data, e.g., baseline), or both, as shown below. Otherwise, tlesults shows that the concentrated likelihood function G)R
concentrated likelihood function would go to infinity; seas the product of thé largest generalized eigenvaluesiaf, —
Appendix C. (1/NYYTW(0)Y, andly, — (1/N)YTR~'Y, (see Appendix

IV. NONPARAMETRIC BASIS FUNCTIONS
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C). This GLR can be viewed as an extension of the detectors inf the data sets contain parts with baseline data (see also Sec-
[37] and [38]. tion V), Y in (5.1) would simply need to be substituted By.

It is also possible to estimate a nonparametric array response
matrix A if the basis functiond? are known (or possibly para-
metric); see [38, p. 25] and [39]. Note that in this problem, only
the rank ofA needs to be Specified’ and it is not necessary toThe FIM can be viewed as a measure of the intrinsic accuracy
use multiple trials or training data. This model has been usetia distribution [27]. Its inverse is the CRB, which is a lower

in radar array processing for the robust estimation of range apund on the covariance matrix of any unbiased estimator. It is
velocity; see [29] and [30]. achieved asymptotically by the ML estimator; see (3.7).

Denote the Kronecker product (which is also known as the
direct product) between two matrices 8y see [16, p. 11] for
the definition and some properties. In [18, App. D], we derive

We propose a scheme to obtain initial estimates of the dipalee FIM for the above model as
locations by “scanning” the evoked response data with the
likelihood function for a single dipole with fixed (in time) Lsignal(7) 0
unknown orientation using the above concentrated likelihood I(y) = { 0 Inoise('(/)):| 6.1)
function for nonparametric basis functions. In the EEG/MEG
literature, scanning has often been performed using the MUSMbere
cost function [40]. However, MUSIC does not perform well

. FISHER INFORMATION MATRIX AND CRAMER—RAO BOUND

V. SCANNING

when the sources are correlated [31], [41], the noise is spatially Tow Iy, Igw

correlated [42], or both. Zogna(7) = | Zow Tos I, (6.2)
When there is only one dipole with unknown fixed moment Lyw Iye ZLim

orientation, we can recast the array response matrix by incor-

porating this orientation, which gives a response veet®),

wheref is a(3++— 1) x 1 parameter vector consisting of three

location and- — 1 orientation parameters. Then= 1, and the Lo = KB(n)B(n)" © A(0)"S " A(6) (6.3a)

ML estimate of 3 becomes a row ve_ctd}, which can be ob- o, =KD s(60)'[XB(n)B(n)* @ S71A(0)] (6.3b)
tained in a closed form (see Appendix C) and the concentrated I, = KDp(@0T[B(n)T © XTAG)TE1A(0)] (6.3c)
)

likelihood function (in the form of GLR) becomes
( : Tyo = KDA(0) (X B(q) Bn) " X" ©X7]D.4(6)

GLRO) =1+ — ~ a@)TR'T (6.3d)
Na(6)TR—a(6) ‘ T,6 = KDp(0)"[B(m) X7 @ XTA0)TS 711D 4(0)
Clorpas] vrpe (6.3e)
Iv-g¥ RY| Y RE7a6) (1) Ty =KDp(@) Iy @ XTA@)TL 1 A(0)X]Dp(6)
(6.3)

which equals the concentrated likelihood fBr = I, Ived A(6))
observed in Section IV, see also Section A of Append|x C. D4(0) = ——F+—
This GLR is a function of? only; we use it to scan the evoked o0

response data and choose parameter ve@&dia which it whereas thei, j)th entry of Zocie () is [32] , [46]
achieves peak values as initial estimates in optimizing the
concentrated likelihood function for multiple dipoles. The

, Dg(0)= o (6.39)

scanning procedure requires only3+ r — 1)-D search over [Zaoise($)],; = NK [E 1 9% y-1 9% } (6.4)
the dipole location and orientation parameters. T2 P Ip;

Observe that the above expression has a Capon-like struc- . i .
ture [43], [44] in the denominator. In the scalar case, i.e., foHrther leto™" = [o¥/] and ¥ = [o;;]; then, the following
a(0) = e andN = 1, and after a linear transformation, the GLRImple formula solves (6.4):
expressmn (5.1) reduces to the familiatest: 72/s®, where
7 = [T/ y®l/K, 8 = Y5 [y(t) - 7. This scanning i[5t 9% gos OF }
is a reasonable method: It evaluates the likelihood of a dipole 0opq doy.s
for particular location and orientation while simultaneously es- 20T o +0PT0%), pEq T #S
timating the unknown noise covariance, which accounts for the ={ 207797, p#tq r=s (6.5)
sources of brain activity at other locations. (aP™)2, p=gq, =35

To further reduce the dimensionality of the search to 2-D, it
is possible to use the anatomic constraints [45], i.e., assume tivherep, ¢, v, s € {1, ---, m}.

sources can lie only on the surface of the cortex with momentsAs expected, the information increases linearly with the
orthogonal to the cortex. However, such a method relies on thember of trialsK. The information on noiS€,,s. (1) in-
validity of the above constraints and would require using pareases linearly witlv as well. In the sequel, we use the same
tient-specific MRI images to extract the necessary informatioblock partitioning of the CRB as for the above FIM matrix.
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Due to the block-diagonal structure #fthat separates the VII. COMPUTATIONAL ISSUES
signal and noise parts, its inverse is computed by simply in-
verting the two diagonal blocks. Thus, CRB.i(y) for the
unknown noise covariance equals the corresponding CRB
known noise covariance. Therefore, the ML method and GLS NK R
with correctly specified> (see Section I1I-B) have the same (0, m) = ——— In |%(0, m)| (7.1)
asymptotic covariance.

Using the matrix inversion formula [16, result vi, p. 8], it carand its derivatives with respect tband»n. The maximization
be shown that of (7.1) can be split into a two-step procedure: with respect to

0 with 5 fixed, and vice versa. For each case, we suitably de-

CRByy = — {DA(Q)T[ BmBnp)xTeoxpt-xt compose the expression in (7.1) and apply QR decompositions,

as suggested in [49]. For a general discussion on the use of

In this section, we derive a computationally efficient method
;or computing the concentrated log-likelihood function

x AB)(AB) =71 A(9)) Cholesky and QR decompositions for regression calculations,
x A@)TEDA@) ! (6.6a) see [49] and [50]. A QR decomposition of a matfixof size
1 "X s(r>s)is
CRB,,, = = Dis(n)"[lIx ~ Pr(n) etz

® XTAB) TS L A(0)X]Dp(n)} ™" (6.6b) L=0k=0 [ﬂ _ QR 7.2)

and

whereQ) is anr x  orthogonal matrix, and is zero below the

CRBy,, = 0. (6.6c) main diagonal. Thusy consists of the first columns ofQ, and

R consists of the first rows of R (and is upper triangular).
The expression in (6.6a) implies that CRBs independent of ~ Assume first tha is fixed. Then, the concentrated log-like-
the choice of basis functions as long as the dipole moment telihood depends only o and can be rewritten as [using (3.2b)]
poral evolutions can be expressed exactly as their linear com-
bination, i.e..Q = XB(n) = [g(1) --- ¢(N)]. (Note that this 1(0) =
condition is satisfied for a trivial choice of basis functions in the
form of Dirac pulses, i.e.B = Iy; then@ = X.) After substi- _ ﬁ In |LTL| (7.3)
tuting @ = X B(n) andK = 1, (6.6a) equals the deterministic
CRB for knownX: [31], [47].

Of course, the choice of basis functions is important for the
asymptotic accuracy of e;nmaudg andn,, thus, it affects th'e p_ YBT(BBT)_I/Q/\/N
accuracy of estimating dipole moments’ temporal evolutions.

The fact that the CRB submatrix férand is block diagonal ndL? = [SY/2, (I, — TS—1)P] = [Li¥, L(8)"]. Observe

[see (6.6¢)] is a generalization of similar results in [29] and [30 hatL; = 51/2 does not depend o whereas the dependence
where it was shown for a particular choice of a basis functlor}L 8) ondis only throughl” = T(8). The QR decomposition
2
sugablfhfor radar arraytprogessln? . th . aof Lis L = QR, where@} is of size(m + 1) x m, andR is
or the nonparametric basis functions, the expression | per triangular of sizex x m. It easily follows (see also [49]
n = veq BT), we need to restrict the parameter space; of NK
to achieve identifiability, as discussed in more detail in [18, () = ———In (|R|2) =—-NKln
App. B]. Thus, we need to compute the constrained CRB.
andé;; is the Kronecker delta symbol These constraints cdye have
be written in vector form as(n) = 0, wherec(n) is of size dl
I[(1+1)/2 x 1. Define the gradient matrix of the constraints as — = -NK(LY!' = -NKQ(R*)™* (7.6)
the matrix/ whose columns form a basis for the nullspacgasny computed ak* = R~1QT. Further, the gradient d{6)
of C(n). Following [48], the constrained CRB on the signaj,|ows from
parameters is then

111 |S+( m TS )PPT(Im - TS_I)T|

where

(7.4)

ﬁ Iy

=1

(6.6a) remains valid, but we need to be careful in handlin d [50]) that
the CRB expressions related tpdue to the fact that when

) 75)
For simplicity, we may choose the orthonormality constraints,
ie. bTb = 8j,4,j=1,2,---,1, whereB = [b, --- b7, whereR;; is theith diagonal entry of2. Now, following [49],
Cln) = 9e(0)/9pT = [0, 9c(8)/98"], where 0 is a matrix of aL
zeros of dimensiod(l + 1)/2 x (rnl + 3n). Further, define \,porar+ — (LTL)" lLT is a pseudo-inverse df, which is

2m m
al(8 OLi;
CCRBiignal = UTUT Zoignaa(7)U] 0T (6.7) aek = - NKY > L)
=1 j=1

where Zigna1(vy) is computed using (6.2) and (6.3) with = _ + 0L
ved BT). = _—NKtr|L 30, (7.7)
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The above expression can be simplified by observing that  If n = veq BT, there is a closed-form solution for optimizing
Il(n), as shown in Section IV.

aL
== (7.8a)
9 VIII. N UMERICAL SIMULATIONS
OLx(0) o(PT — PTS—Y/2[1§Y/2) '
88, 90, In this section, we compare the localization accuracy of the
_ _ prg-(/2 [y g1/ (7.8b) ML, GLS, OLS, and scanping methods when spatially corre-
- a0, : lated noise is added to a simulated evoked response. Our simu-

lations confirm the theoretical results presented in Sections Ill
wherell = S—1/27'S-1/2 js a projection matrix, and thus (seeand VI.

e.g., [28]) The simulation was performed for an MEG configuration of
37 radial magnetometers located on a spherical helmet of ra-
ou =1l + II¥ (7.93) dius» = 10 cm with a single sensor at the pole of the cap
aoy. and three rings at elevation anglesnofi2, 7/6, and /4 rad,
[Ty, = (I, — IS~/ 9A(0) [S~(/D A(@)]*. (7.9b) containing, respectively 6, 12, and 18 sensors equally spaced in
m aey, the azimuthal direction. This arrangement is similar to an array
made commercially by Biomagnetic Technologies, Inc. (BTI),
San Diego, CA.

Sincel.; does not depend ah we can decompose itds =

Q. R, and retain onlyR, for further calculation since We generated two coherent dipole sources. The components

gs andgq,, of the first dipole change in time according to
ILTL| =Ly Ly + L(8)" L2(6)]
= |R.T Ry + Ly(8)" L(8)). (7.10) go =15 exp(—(t — 60)*/8?)
— 5 exp(—(t —40)2/17%) [nA - m] (8.1a)
gy =13 exp(—(t — 60)%/12%)
— 3 exp(—(t —40)?/17%) [nA - m] (8.1b)

Therefore, instead of factoring, we can factorl’ = [RT,
Ly(0)"]" = QR/, and then](0) = —NK In(|[[", R};]).
We now fix § and maximize (7.1) with respect #p Using

(C.1), and (C.2) from Appendix C, we rewrite (7.1) as _ _
and the corresponding components of the second dipaig 8s

NK [ T and —g,(t), i.e., the sources are correlated. The dipoles are
I(n) = 5 {ln B(n) <IN N Y WY) B(m) symmetric relative to the midsagittal plane with locatiéns=
1 . [7/6, —7/3, 5 cm| andf; = [x/6, 7/3, 5 cm|.
— In |B(n) <IN - ¥ YTR_lY) Bm*|-1n |R|} . We simulated 50 runs, each consistingtof= 10 trials and

N = 100 snapshots per trial. To approximate realistic spatially
correlated noise, we generated 400 random dipoles uniformly
distributed on a sphere with a radius of 5 cm (for a discussion
on random dipole modeling of spontaneous brain activity, see
[14]). For each noise dipole, we assumed that its two tangen-
tial moment components were uncorrelated and distributed as
NK N(0, 02)). Foro,, = 1 nA - m, the total noise standard devia-
i(n) = 35 [hl (|LW(7I)TLW(77)|) tion at the sensors was approximately 110 fT, which is consistent
N with 25 fT /+/Hz one-sided white noise spectral density ban-
— (|La(m) Lam) - [R]]. (712) giriedto éo Hz. We justify this choice by the fact that typically
recorded background noise spectral density is 20-40,ffz
where Ly (n) = Mg B(m)*, andLr(n) = MzB(m*. We pelow 20 Hz [2]. The peak value of the signal at the sensor with
then proceed in a similar manner as before; find ¢h& de-  ne |argest response was around 270 T, which is consistent with
compositionsLy = Qw Rw andLr = QrRr (WhereQw  typical values measured in practical applications.
andQr are of sizeV x I, andRy andRr are upper triangular | the EEG/MEG literature, several parametric models
of sizel x [). Then, it easily follows that have been used to model temporal evolution of the evoked
o) OLo oL responses: decaying _sinusoids (see [51]); double Gaussian
Y =NK [tr <L§ W ) —tr <L;_R>} (7.13) (see [52]); or Hermite wavelets (see [53]). In this ex-
I I I ample, we choose a combination of Gaussian and harmonic
terms, i'e'v¢(t7 ”7) = [exp(_(t - Tl)Q/O—%)v exp(—(t -
m)%/03), 1, sin(wt), sin(2wt), sin(3wt), cos(wt), cos(2wt),
OLw OB(n)T cos(3wt)]*. Hence, _the _unknown parameter vector describing
= M (7.14a) the temporal evolution ig = [ry, o1, T2, 02, w]¥. The two
O O Gaussian functions were used to model peaks in the response,
OLp +0B(m)” and the sine and cosine terms model the low-pass signal
— =My . (7.14b) oAl
O O component. Such components are typical in evoked responses.

(7.11)

SinceW does not depend omp, we can do the following de-
compositions only once in this stepy — (1/N)Y'WY =
MwME andl — (1/N)YTR™YY = MpM}, which yields

whereL{, = Ryt QY L = R3'Q%, and
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6-D search for the two-dipole fit). Note that for small values of
om, the OLS algorithms perform better than scanning because
they fit the exact noiseless response (two dipoles in this case),
which becomes more important than the noise correlation when
the noise level is small.

In this example, we have used a very small number of trials
(K = 10). As K — oo, both the ML and OLS estimates con-

! P verge to the true parameters, as shown in Theorems 1 and 2. In
' some real data applications, the number of trial&’is- 100 or
more; then, the ML and OLS results may differ only by a few
millimeters [54].

IX. CONCLUDING REMARKS

AVERAGE LOCATION ERROR PER DIPOLE (cm)

We proposed maximum likelihood methods for estimating
evoked dipole responses using a combination of EEG and
MEG arrays, assuming spatially correlated noise with unknown
covariance. To exploit prior information on the shapes of the
evoked responses and improve the estimation of the dipole mo-
ments, we modeled them as linear combinations of parametric
basis functions. Utilizing multiple trials, we also derived the
estimation method for nonparametric basis functions, which
allows for computation of the concentrated likelihood function
that depends only on the dipole locations (but needs many
) o ) parameters to describe the moment evolutions). We further

In Fig. 2, we compare the localization accuracies of the Mighg\wed how to obtain initial estimates of the dipole locations
GLS, OLS, and scanning methods by showing the mean locgling scanning. We presented a computationally efficient
ization errors per dipol€l/2)([[p, — p.[I* + B2 — Pol*)*"*  method for implementing the ML estimation. Cramér—Rao
(averaged over the 50 runs) as functionsgf Here,|| - || de- 5 nqs for the proposed model were derived. We also showed
notes the Euclidean norm, apd p,, andp, , p, are the location 4t the proposed estimators are asymptotically more efficient
vectors of the two dipoles and the corresponding ML ESt'mat%%mpared with the nonlinear OLS estimators.
see also (2.1). The standard deviation of the localization error, presented numerical simulations demonstrating the per-

curves is the largest for OLS with parametric basis functions,mance of the ML and scanning methods. The ML and OLS

(up to 0.3 mm). _ , methods were compared; the ML was more accurate and robust,
It is interesting to note that as,, increases, the dipole 10- cnfirming the theoretical results in Section |lI.

cation estimates obtained by the OLS methods move toward thg,, [55], we extended the above method to solve the problem of

center of,the_ head. Thus, the error values become comparablgjif|es having fixed orientations in time, whereas their strengths
the head's dimensions for largg, (as shown in Fig. 2), whereas,yere modeled by a linear combination of basis functions.

the ML estimation errors remain very small, showing the robust-yq applied the proposed algorithms to real EEG/MEG
ness of the ML method. A similar trend was also observed [j}15.  gee [18] (some results are also available at

[10] and [11]. . ) _ http://www.eecs.uic.edu/~nehorai/MEG.html). Further research
The average location error is approximately the same for thg) include

ML methods with parametric and nonparametric basis functions . .

S ! : .~ » analysis of the proposed methods in the presence of more
and the GLS method, which is consistent with the asymptotic realistic noise and signal models (e.g., temporally corre-
results in Section VI, where we show that the ML and GLS . 9 i G- P y
methods have the same asymptotic accuracy of the signal pa- Iated.n0|se, Igtengyptters, etc.);

« tracking moving dipoles [56], [57];

rametersp (due to the block-diagonal structure of the FIM for classifying evoked responses for diagnostic purposes:

signal and noise) and the parf_;\metrlc and nqnparametnc ML, optimal design of EEG/MEG sensor arrays [55] and novel
have the same asymptotic location accuracy (since £ RBn- s
performance measures [19], [58];

dependent of the choice of basis functions as long as the dipole o . .
: e more realistic array response modeling (e.g., incorpo-
moment temporal evolutions can be expressed exactly as their . - . . :
rating a realistic patient-specific head model obtained

linear combination). from MRI scans in source estimation and performance
We have applied the scanning algorithm in Section V, which analysis following [57] and [59]):

requires a 4-D search (3-D for the location and 1-D for orien- more extensive applications to real data
tation). As shown in Fig. 2, this algorithm is robust to the in- '
crease in the noise level},, because it acounts for spatially cor-
related noise. Further, for larger valuesaxf, it outperforms
the OLS algorithms, which do not account for the correlation
in the noise. This is an important result since scanning is com-We derive the ML estimates of the matrix of basis function
putationally simpler than OLS (OLS witlB = Iy requires a coefficientsX and noise covariance for knowhandn. Then,

10 1 L 1 L L L ' 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
S (nA-m)

Fig. 2. Average location error per dipole as a function of the noise leyel
for (a) ML method with parametric basis functions. (b) ML method Wita 2n
nonparametric basis functions. (c) GLS wih= I . (d) OLS with parametric
basis functions. (e) OLS witB = I . (f) Scanning with unknown fixed dipole
orientation.

APPENDIX A
ML ESTIMATION
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we present the concentrated likelihood function that should beAssume that the regularity conditions R1)—R5) hold. The-
maximized wherd andn are unknown to obtain their ML esti- orem 1 implies that the asymptotic covariance matri’ & K p
mates. is (see also [18, App. D])

Stack all the measurement matrices into one malfix=
[Y1, Y5 - Y] of sizem x NK. Similarly, putk basis func-
tion matricesB into a matrixB = [B --- B] of sizel x NK.

The likelihood function for this model is Cs = NK [I 1(9)]—1
ML — s1gna.
1\;g -1
F 5y = 1 =NK |>_ D(t, p)"S7' D(t, p)
J(X, %) = (27r)(1/2)mNK|E|(1/2)NK t=1
. . . _ -1
xexp{—ttr [NV -AXB)(Y - AxB)T] }. =NK [D"§™D] (8.1)

where
(A.1b) I(AO)X (¢, m)

Then, according to [25] and [26, ch. 6.4], the ML estimates of p
X and¥ are D =[D(1, p)" --- DN, p)"T" (B.2b)
S=Iy®% (B.2c)

o Teo—1 —1 AT o1y DT rppT\—1
SIS A A S TYBHBE ) T (A28) - yich can be further simplified [see (6.2) and (6.3)]
E=8S+{In—-TS )51 —T5) (A.2b)  The asymptotic covariance matrix ofN K p; ¢ is (see The-

orem 2)
where - _
Cis=NK [D"D] ' D'SD[D'D]”".  (B.3)
K . . .
N T | T Let 7; be an arbitrary full-rank matrix such that its columns
k= NK yy© = NK Z Vi Yy (A-3a) span the space orthogonal to the column spacé®pthus,
k=1 T
S_fh_g (A3b) D'T; = 0. Then
T e ' Ty(T] STy '] =S 1 —87'D
T = A(6) [A(6)" S~ A(0)] - A(@T.  (A.3d) whichis Lemma 1 in [25] (see also [27, p. 77]). It follows that
[D"s D] = [D"D] " D*SD [DTD]”"
Observe that - [DTD] B D ST, [TJSTd] - Ty
x SD[D"D] ™ (B.5)
BBY —kBBT (A.4a) andthusCyy — CGig < 0. Note that equality holds i =
2
K a Im.
BY" =" BY =KBY" (A.4b)
k=1
directly yields (3.3). Substituting the above estimates into the APPENDIX C
likelihood function (A.1b), we obtain the concentrated likeli- NONPARAMETRIC BASIS FUNCTIONS

hood function . _ .
To maximize the concentrated likelihood with respect to non-

parametric basis functions, we express it as a functiokl of-

RS 1 1 stead ofS (sinceS is a function ofB) by repeatedly applying
J&, 2) = (27r)(1/2)mNK|i|(1/2)NK exp [ 2 mNK} the matrix inversion lemma, see [38, pp. 26—28]
(A.5)
which is proportional to the expression in (3.5). GLR(#, n) = |fg| - IvL(, 77)2//\”"
_ IR
APPENDIX B 132(0, n)l
ML V ERSUSOLS . 1 - 2\ -
) ) ) ) ‘B <INR — YTW(G)Y> BT

We show that the ML estimates pfderived in this paper are NK

asymptotically more efficient than the OLS estimates, i.e., the a(1 1
difference in their asymptotic variances is negative semidefinite. NK
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whereW (0) is defined in (4.1). Compared with;1.(@, n), the columns ofA, which are the eigenvectors corresponding to the
above concentrated likelihood function is normalized®yand largest! eigenvalues oE(#). Then, (C.2) reduces to
represents an expression for the GLR test for testipg M =
0. T T

Using the lemma in (B.4), we can compu#é(#) in the fol- GLR(8, n) = w
lowing alternative waytV' (8) = T,,(T'T RT,)~'T,, whereT}, is _|CC |
an arbitrary full-rankn x (mm—mns) matrix such thatt(6)7' T, = _ |Cdiag{A, -+, AN}CT]
0 [assuming thati(8) is full-rank], i.e., 7, spans the space or- |CCT|
thogonal to the column space 4{6). o

The matrix in the denominatdiyx — 1/(NK)Y*R™'Y is  which is maximized fo’ = H -[1,, 0], whereH is an arb|trary

a projection matrix with rankV K’ —m. Thus, for fixedp and it 7 x 7 matrix of full rank, and the maximum is equalf§’,_,
NK —m —1 > 0, the denominator of the above expression ighs

nonzero with probability one. Note also that f&r = 1, the

GLR in (C.1) would go to infinity if we choose the rows of 1 —1/2

B = B from the row space of =Y. B=HAT <IN -5 YTR_17> . (C.6)
Using (C.1), (A.4a), and (A.4b), we get

(C.5)

For H = I, the rows ofB are the generalized eigenvectors of
the matriced y — (1/N)YTW(0)Y andIy — (1/N)YTR-1Y
that correspond to the largdgjeneralized eigenvalues of these
(C.2) t\l_/[v? matrices; the product of these eigenvalues is GLR=
Aj
1

Note that’:( ) can be written as

‘B <IN - %YTW(0)7> BT

GLR(8, n) = 1
‘B <IN - ?sz—l?) BT

~ ~ — A~ — 71/2 — A
Further, X can also be computed as a functionfofnstead of ~ Z(8) = Iy + % <_7N _ %yTRqY) YTR™A(6)
S as

X [A(o)sz*lA(o)} T AG)TR

o \"l/2
X =VN [A(O)TR‘IA(O) +AB)TRP xY <IN - %YTR1Y> : (C.7)

1 -1

x [II—PT}?.*P} PT}A?.‘IA(a)} _ _ N o

The second term in (C.7) is a positive semidefinite sym-

metric matrix with rankmin(rank A(#)), N), which equals

rank( A(#)) = nr in most practical applications.

(C.3)  We now show that althougt® is not unique, the moment
temporal evolutior) = X B is. Using (3.2a), we get

A ~ —1
x A(O)TRLP [Il - PTR_IP} (BBT)~1/2

whereP is defined in (7.4). Equation (C.3) follows from (3.2a) R .

and Q=XB=[A0)"S7'40)] ' A40)"ST'YP; (C.8)

R R R R where Py, which is the projection matrix on the row space of
STt=R'+RIP(L-P'RIP)TPTR™ (C4) B isindependent off because it cancels out. Sinfelepends
on B only throughP5; [see (3.3)](Q is also independent df .
SubstitutingH = [AF(Iy — (1/N)YTRT'Y)~tA]~1/2
which is obtained by using the matrix inversion lemma. into (C.6), we get orthonormal basis functions, iB5” = I;.
Consider the basis function matrix of the fori =  WhenYy = [Yii, Y], k =1, ---, K, whereYy; contains
CAT(Ix — (1/NYYTR-1Y)~1/2, whereC is anl x N matrix baseline data ankly; contains the evoked response, the (C.2)
of full rank 7, andA is the matrix whose columns are the (norbecomes
malized) eigenvectors &(6) = (Iy — (1/N)YTR-1Y)~1/2
[In — (1/NYYTW(@O)Y](Iny — (1/N)YTR'Y)~/2 that are
ordered to correspond to the eiger_walue_E@ﬂ) (W_hich are de- ‘Bg <IN2 — —YIW(O)Y, ) BT
noted by);, j =1, ---, N) sorted in nonincreasing order, i.e., GLR(6, 1) = N
AL > A2 -+ > Ay. Thus,Z(0) = Adiag{ )\, ---, An AT,
In addition, denote byA; the matrix containing the first

(C.9)

1 —n . —
‘BQ <IN2 -5 Y§R1Y2) BT
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The concentrated likelihood function GK® is the product of
I largest eigenvalues ¢y, — (1/N)Y TR 1Y) V2 [Iy, —
(1/NYYIW(0)Y2|(In, — (1/N)YYLYR™1Y,)~Y/2. Thus, the
result in Section IV follows.

A.

Scanning

For a single source with fixed orientation, i.e., whé(@) =

a(8), B reduces to a row vectd , and (C.2) becomes

Application of the Cauchy—Schwartz inequality [27, p. 54] to

1
Na(0)T R—1a(0)
(a(0)T R~1Yb)?

b’ <IN - %YTR—lY) b

GLR(6, b) =1 +

(C.10)

the above expression gives the ML estimaté of

BT =[p(1), -+, ()]
-1
=a(@)TR™Y |Iy — %?sz—l?} (C.11)

(71

(8]

9]

(10]

(11]

(12]

(23]

(14]

(15]

(16]

(17]

(18]

(19]

and the GLR in (5.1), which can also be obtained by substitutinézo]

B

= Iy and A(@#) = a(@) into (C.2) and using the formula for

the determinant of a partitioned matrix, see, e.g., [16, result V21l

p.

8.
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