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Estimating Evoked Dipole Responses in Unknown
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Abstract—We present maximum likelihood (ML) methods for
estimating evoked dipole responses using electroencephalography
(EEG) and magnetoencephalography (MEG) arrays, which allow
for spatially correlated noise between sensors with unknown co-
variance. The electric source is modeled as a collection of current
dipoles at fixed locations and the head as a spherical conductor.
We permit the dipoles’ moments to vary with time by modeling
them as linear combinations of parametric or nonparametric
basis functions. We estimate the dipoles’ locations and moments
and derive the Cramér–Rao bound for the unknown parameters.
We also propose an ML-based method for scanning the brain
response data, which can be used to initialize the multidimensional
search required to obtain the true dipole location estimates. Nu-
merical simulations demonstrate the performance of the proposed
methods.

Index Terms—Cramér–Rao bound, dipole source, EEG, evoked
responses, maximum likelihood parameter estimation, MEG,
sensor array processing, unknown noise covariance.

I. INTRODUCTION

T HE NONINVASIVE techniques of electroencephalog-
raphy (EEG) and magnetoecephalography (MEG) are

necessary for understanding both spatial and temporal behavior
of the brain. Arrays of EEG and MEG sensors measure electric
potential on the scalp and magnetic field around the head,
respectively. These two fields are generated by neuronal
activity in the brain and provide information about both its
spatial distribution and temporal dynamics. This is in contrast
with other brain imaging techniques that measure anatomical
information (MRI, CT), blood flow or blood volume (fMRI,
SPECT), or metabolism of oxygen or sugar (PET). Further-
more, the temporal resolution of EEG/MEG is far superior to
that achieved by other modalities.

Spatiotemporal EEG/MEG data analysis is based on mod-
eling a source of brain activity by a primary current distributed
over a certain region of the cortex. Evoked responses are used
to study sensory and cognitive processing in the brain [1] and
are applied to clinical diagnosis in neurology and psychiatry. A
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current dipole is often used as an equivalent source for a uni-
directional primary current that may extend over a few square
centimeters of cortex. It is justified when the source dimensions
are relatively small compared with the distances from the source
to the measurement sensors [2] as is often satisfied for sources
evoked in response to a given sensory stimulus: auditory, visual,
etc.

In [3], spatiotemporal measurements are incorporated
using the common dipoles-in-a-sphere model. The dipoles
are assumed to have fixed locations and orientations, whereas
their strengths are allowed to change in time according to a
parametric model. De Munck [4] extends the above model by
allowing the dipole strengths to change arbitrarily. In [5], only
the dipole position is fixed, and the orientation and amplitude
are allowed to vary in time according to a parametric model.

In all the above models, the noise is assumed to be spatially
uncorrelated. As a result, these (and most other) localization
procedures are based on minimizing a sum of squared errors.
Such a residual function is appropriate only if the brain back-
ground noise, which is a major source of noise in EEG/MEG,
shows no correlation across the scalp at different electrodes.
However, since the background noise arises mostly in the cortex,
it is expected to be strongly correlated in space. For example,
regular rhythms in spontaneous brain activity, such as alpha
waves, are not only large in amplitude but also correlated be-
tween neighboring sensors [6]. The correlated-noise problem is
important in EEG because of the bipolar nature of the potential
field recordings, i.e., the noise at the reference electrode spreads
to all other channels [7]. In MEG, environmental noise is an ad-
ditional important source of spatial correlation [8], especially in
an unshielded environment.

One of the first attempts to tackle the problem of correlated
noise was by Sekiharaet al. [8], who assumed known spatial
noise covariance. The localization in [8] is performed using a
generalized least squares (GLS) method (see also Section III-B)
and measurements at only one point in time. In [9], detection
algorithms are derived for known spatial noise covariance and
multiple time snapshots, whereas the temporal evolutions of the
dipole moments are allowed to vary arbitrarily. Lütkenhöner has
analyzed the GLS method for multiple time snapshots and ap-
plied it to both simulated and real data in [10] and [11]. The
algorithm in [4] is extended in [12] and [13] to account for
stationary noise correlated in both space and time. However,
the noise covariance of such a process has an extremely large
number of parameters that need to be determined. It is often es-
timated from the baseline measurements, i.e., data containing
only noise collected before the stimulus is applied, assuming
that, statistically, it does not differ between the baseline and a
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Fig. 1. Dipole in a sphere.

particular time point of interest. However, this method is sub-
optimal since it does not use the data containing the response
for estimating the noise covariance. Furthermore, there are in-
dications that utilizing baseline data may not be justified since
it is hypothesized that the noise covariance changes due to de-
pendence on the state of the subject or visual stimulation [7],
[14], [15]. Thus, the noise covariance may need to be estimated
only from the data containing the response. A major goal of this
paper is to develop algorithms that solve this problem in an ef-
ficient way.

An iteratively reweighted generalized least squares (IRGLS)
procedure [16, pp. 298–300] is proposed in [7] to estimate the
noise covariance matrix and fit the dipole locations at a partic-
ular time point utilizing multiple trials. It is a two-stage pro-
cedure yielding estimates that, if the noise is Gaussian, con-
verge to the maximum likelihood (ML) estimates. This method,
however, does not include temporal evolution. In this paper (see
also [17] and [18]), we allow temporal evolutions of all dipole
moment components by modeling them as linear combinations
of basis functions, assuming spatially correlated noise with un-
known covariance. The basis functions may be chosen to ex-
ploit prior information on the temporal evolutions of the dipole
moments, thus improving their estimation accuracy. If such in-
formation is not available, we propose and analyze anonpara-
metricbasis functions method that exploits repeated trials and
the linear dependence of the evoked responses on the dipole
moments to estimate the basis functions. In this case, only the
number of basis functions needs to be specified. This number
is equal to the rank of the moment signal matrix, indicating the
level of correlation between the moment components.

We first derive closed-form expressions for the ML estimates
when the dipole locations and basis functions are known and
then a concentrated likelihood function to be optimized when
the dipole locations and basis functions are unknown (for
references and relationship to previous work in statistics and

signal processing, see Section III). Under statistical normality,
this technique gives the ML estimates of the dipole locations
and moments, requiring only a one-stage iterative procedure
with computational complexity comparable with the ordinary
least-squares (OLS) methods widely used in the EEG/MEG
literature (see e.g., [3] and [4]). Both the ML and OLS methods
are consistent if the noise is spatially correlated; however, we
show that the ML is asymptotically more efficient. In Section
IV, we derive the concentrated likelihood for the nonparametric
basis functions which is a function only of the dipole locations
and number of basis functions. Then, in Section V, we derive an
ML-based method for scanning the brain response data, which
can be used to initialize the multidimensional search required
to obtain the true dipole location estimates.

We derive the Fisher information matrix (FIM) and
Cramér–Rao bound (CRB) for the proposed model in Section
VI (see also [18]) and discuss computational issues in Section
VII. Finally, in Section VIII, numerical simulations are used to
compare the estimation accuracy of the ML, GLS, OLS, and
scanning methods.

II. SOURCE AND MEASUREMENTMODELS

A. Source Model

We model the head as a spherically symmetric conductor lo-
cally fitted to the head curvature. Letbe the position of a cur-
rent dipole source relative to the center of the sphere

(2.1)

where
dipole’s elevation;
azimuth;
distance from the center; see Fig. 1.

Thus, is fully described by . The vectors

(2.2)

form an orthonormal basis (see also [19]). Using this basis, the
dipole moment can be written as . We define
the vector of moment parameters .

B. Measurement Model

Consider a bimodal array of EEG and MEG sensors.
The subscripts and refer to the EEG and MEG sensors,
respectively. Let . Then, the -dimensional
measurement vector of this array is

(2.3)

where , is the array response matrix,
and is additive noise. The array response matrix
is derived using the quasistatic approximation of Maxwell’s
equations and spherical head model (see [2], [20], and ref-
erences therein). The radial component of a dipole produces
no external magnetic field in the spherical head model [2];
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therefore, the last column of the MEG response matrix is zero.
Thus, , , where
and are the MEG and EEG response matrices with
dimensions and , respectively. The symbol

denotes the vector with zero entries. Define
rank ; usually, , except when only MEG

sensors are employed .
For distinct dipoles, (2.3) holds with , , and sub-

stituted with , , and
, respectively. Note that in this case,and are -

and -dimensional vectors, respectively. Since the dipoles are
at distinct locations, we assume that has full rank equal to

.
The noise vector is assumed to be zero-mean with unknown

spatial covariance, whereas the source moment signal is deter-
ministic. Thus, the mean and covariance matrix of the snapshot

are and , respectively. The noise is predominantly
due to background activity in neurons. An assumption of Gaus-
sianity, which is often used in EEG/MEG literature, may be jus-
tified by the additive nature of the noise and the large number
of neurons normally active throughout the brain and has been
validated in [21]. Tests for the normality of background EEG
signals have also been developed in [22].

III. M AXIMUM LIKELIHOOD ESTIMATION

A. Simultaneous Estimation of the Dipole Parameters and
Noise Covariance

We assume that the evoked field is a result of brain electrical
activity that is well modeled by dipoles at unknown fixed
locations with time-varying moments. As is commonly done
in analyzing evoked responses, the experiment is repeated
times to improve the signal-to-noise ratio (SNR). The activated
dipoles are assumed to have the same locations and temporal
patterns in each experiment, i.e., the evoked responses areho-
mogeneous(this is a strong assumption that may need to be val-
idated in practice. Homogeneity tests for the evoked responses
have been derived in [23]). In theth trial ( ),
temporal data vectors (snapshots) are
collected. We refer to the matrix as the
spatiotemporal data matrix. We assume that the temporal evo-
lutions of the dipoles’ moment components can be described by
linear combinations of a set of basis functions ,
where is a matrix of unknown coefficients with dimensions

for the function representation described by the basis
vectors , and the parameter vectoris unknown in gen-
eral. This parametrization allows us to exploit prior information
on evoked response temporal evolutions and reduce the number
of unknown parameters, thus improving the moment estimation
accuracy. The measurement model is then

(3.1)

for and . Here, denotes the
noise, which is assumed to be zero mean with unknown spatial
covariance and uncorrelated in time and between trials. In
reality, the noise is likely to be correlated in time (within a trial)
but uncorrelated between trials. The noise covariance matrix
is assumed to be positive definite and constant in time and across

all trials. If , and and are known, the above model
is known as the generalized multivariate analysis of variance
(GMANOVA), which was first addressed in [24] (see also [25],
[26, ch. 6.4], and [16, ch. 5]). In statistics, it is usually applied
to fitting growth curves and thus is also called the growth-curve
model [24]–[26].

Define and
. The projection matrix on the row

space of is then . In Appendix A (see
also [17] and [18]), we extend the GMANOVA equations to
multiple trials, i.e., we show that for knownand , if the noise

is normal, the ML estimates of and are

(3.2a)

and

(3.2b)

where

(3.3a)

(3.3b)

(3.3c)

(3.3d)

(3.3e)

and denotes the identity matrix of size. Note that and
are functions of only, and and are functions of both

and . To simplify the notation, we omit these dependencies
throughout this paper. For the above model (and under the Gaus-
sianity assumption), the sufficient statistics areand . If the
matrices become scalars, i.e., and , we ob-
tain the well–known results from univariate statistics

and .
If is known, the ML estimate of is simply

(3.4)

as can easily be shown by differentiating the log-like-
lihood function (see Appendix A) using the identity

tr [27, p. 72].
If and are not known (in addition to and ), their ML

estimates and are obtained by maximizing the concentrated
likelihood function (see Appendix A)

(3.5)

where is the ML estimate of for known and , which
is defined in (3.2b). To find the ML estimates of and , sub-
stitute and in (3.2a) and (3.2b) by and . If is modeled
as a linear combination ofbasis functions without any prior on
their shape (i.e., nonparametric basis functions), we can con-
centrate (3.5) with respect to vec as well, as shown in
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Section IV. Here, the vec operator stacks the columns of a ma-
trix below one another into a single column vector.

The case of and unknown was first addressed in [28],
where a concentrated likelihood function of a similar form was
obtained and applied to direction-of-arrival (DOA) estimation.
In addition, a signal subspace fitting (SSF) criterion approxi-
mating this likelihood function was proposed. Here (see also
[17] and [18]), we consider a more general model with mul-
tiple trials (suitable for analyzing evoked responses), multirank
(vector) source moment signals, and parametric and nonpara-
metric basis functions. This formulation also includes as special
cases the ML radar array processing methods in [29] and [30].
In Section VII, we show how to maximize the function in (3.5)
with respect to both and in a computationally efficient way.
For a discussion on identifiability of the unknown parameters,
see [18, App. B].

Modeling the dipole moments by linear combinations of para-
metric basis functions allows us to exploit prior information
on the temporal evolutions of the evoked responses, which im-
proves the moment estimation accuracy. Since the temporal evo-
lutions can be described with a small number of parameters, the
parametric basis function models may also be used as feature
extractors in a pattern recognition scheme. However, their dis-
advantage is that the likelihood function often needs to be max-
imized with respect to the nonlinear basis parameters, in ad-
dition to the unknown dipole location parameters. This can be
avoided by using nonparametric basis functions; see Section IV.

The above estimators have good asymptotic properties even
when the noise is not Gaussian: Theorem 1 in the following sec-
tion states that regardless of the noise distribution, the covari-
ance of these estimators asymptotically achieves the CRB cal-
culated under normality. In the sequel, we do not restrict our-
selves to a particular distributional assumption, except when
discussing the FIM and CRB, which is justified by the above
comment. Thus, we slightly abuse the terminology by refering
to these estimators as the ML estimators. Having a similar ter-
minology problem, some authors refer to these methods as ex-
tended least squares (ELS).

B. Ordinary and Generalized Least Squares

The (nonlinear) ordinary least squares method [16, pp.
447–448] applied to the above model gives the residual sum of
squares tr
as a cost function to be minimized with respect toand . This
expression is easily derived by substituting and
identities (3.4), (A.4a), and (A.4b) from Appendix A into the
likelihood function in (A.1b); thus, the OLS is ML for Gaussian
spatially uncorrelated noise. Obviously, the OLS method does
not account for the spatial correlation in the noise covariance.
Further, the OLS estimates are not based on the sufficient
statistics since does not affect the above minimization. If

and , i.e., is an arbitrary vector at each
time point , this method coincides with the
deterministic maximum likelihood in, e.g., [31].

The GLS method [16, pp. 448–449] is the ML method for spa-
tially correlated Gaussian noise with known spatial covariance

. It is a simple extension of OLS since it reduces to applying

OLS to the spatially prewhitened data. Detection methods for
this case with are derived in [9].

C. ML Versus OLS

In this section, we show consistency and asymptotic nor-
mality of the ML estimates, as well as consistency of the OLS
estimates. We then show that the ML estimates are asymptoti-
cally more efficient than the OLS estimates.

Define vec and vech . Here,
the vech operator creates a single column vector by stacking the
elements below the main diagonal columnwise.

The vector of all unknown parameters is . As-
sume that the true values of the parameter vectorsand are

vec and , respec-
tively.

Let be the Fisher information matrix [31] of the
signal parameters. The exact expression will be given in Sec-
tion VI; see (6.2) and (6.3). To establish asymptotic properties
of the ML and OLS methods, we need the following regularity
conditions:

R1) The parameter space ofis compact, and the true pa-
rameter value is an interior point.

R2) The noise vectors
are independent, identically distributed

(i.i.d.) with zero mean and arbitrary positive-definite
covariance .

R3) and are continuous and have continuous
first and second partial derivatives with respect toand
.

R4) The matrix is nonsingular.
R5) tr

if and only if .

The regularity condition R5) is essentially an identifiability con-
dition for , requiring uniqueness of the mean response corre-
sponding to the true value of the parameter vector(see also
[18, App. B]). Observe that the above conditions do not require
specific distributional assumptions on the noise vectors .

Theorem 1: Under the regularity conditions R1)–R5), the
ML estimate of satisfies (as )

a.s. (3.6a)

(3.6b)

and

d (3.7)

wherea.s.indicates almost sure convergence, andd indicates
convergence in distribution.

Proof: The proof follows from [33, ch. 5.6], [34], where
it is shown for a more general case; see also [16, pp. 300–301],
[28], and [35].

Theorem 2: Under the regularity conditions R1)–R5) [where
R4) and R5) should be checked using instead of the
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actual noise covariance], the OLS estimates ofsatisfy (as
)

a.s. (3.8a)

(3.8b)

(3.8c)

where

(3.9)

Here, equals in (6.2) and
(6.3) when .

Proof: See [18, App. C].
If are i.i.d. normal, it can be shown that the ML estimate
is asymptotically efficient in the sense of first-order efficiency

[27, Sec. 5c.2 and 5f.2].
In Appendix B, we prove that under the above regularity con-

ditions, the ML estimate of is asymptotically more efficient
than the OLS estimate, i.e., the difference between the asymp-
totic covariances of the ML and the OLS estimates is negative
semidefinite, where equality is achieved if .

The superior asymptotic performance of the ML compared
with the OLS can be explained by the fact that the OLS esti-
mator does not utilize information contained in the second-order
moment matrix ; see also Section III-B.

IV. NONPARAMETRIC BASIS FUNCTIONS

In this section, we obtain the ML estimates of nonparametric
basis functions (i.e., vec with certain identifiability
constraints; see discussion below), where only their numberis
specified; here, equals the rank of the moment signal matrix
and is a measure of the level of correlation between the moment
components; see below. This method exploits multiple trials and
the linearity of the dipole moments to compute closed-form so-
lutions for the basis function estimates. As a result, the corre-
sponding concentrated likelihood function becomes a function
of only. The disadvantage of this method is thatmay con-
tain a large number of parameters compared with a suitable non-
linear parametrization that may utilize prior information on the
temporal evolutions and improve the estimation accuracy of the
dipole moments. However, the use of nonparametric basis func-
tions does not deteriorate the asymptotic accuracy of dipole lo-
cation, as shown in Section VI. This result is also confirmed by
simulation results; see Section VIII.

Note that the nonparametric basis functions require using
multiple trials or known signal corrupted by noise (i.e., training
data, e.g., baseline), or both, as shown below. Otherwise, the
concentrated likelihood function would go to infinity; see
Appendix C.

In Appendix C, we derive the concentrated likelihood func-
tion for the nonparametric basis functions in the form of a gen-
eralized likelihood ratio (GLR) test statistic [27, p. 418], [36]
for testing H versus H . First, the GLR is
suitably rewritten [see (C.2)] and then maximized with respect
to using the Poincaré separation theorem [27, pp. 64–65]; see
also Appendix C. The resulting GLR is given by the product
of the largest generalized eigenvalues of the matrices

and , where

(4.1)

The rows of the ML estimate are the corresponding general-
ized eigenvectors of the above two matrices. Note that assuming
rank (which holds in most practical applications),
there can be only rank generalized eigenvalues
greater than one (and the rest are equal to one); thus,

; see also (C.7) in Appendix C. If , all the components
of the dipole moments have the same temporal evolution (up to
a scaling factor), and thus, they are fully correlated. On the other
hand, allows as many basis functions as the number of
moment components, in which case, the concentrated likelihood
is simply
(which follows from the fact that the determinant of a matrix
equals to the product of its eigenvalues). Further, this expres-
sion is equal to the GLR for known basis functions in the form of
Dirac pulses, i.e., [see (C.2) in Appendix C]. Thus, mo-
ment components can be completely uncorrelated. The choice
of allows us to specify the level of correlation between the mo-
ment components, ranging from fully correlated ( ) to un-
correlated ( ). This is a useful property since the sources
of evoked responses are often correlated.

Unless suitably constrained, the ML estimatesare not
unique. However, in Appendix C, we show that regardless of
which ML estimate of is chosen, the concentrated likelihood
function and the estimated dipole moment temporal evolu-
tion are unique. The orthonormal set of the ML
estimates of the basis functions can be constructed from the
above ML estimates as . Here,
denotes a symmetric square root of a symmetric matrix, and

; this notation will be used throughout the
paper.

Consider now the case where the data set of each trial con-
tains a part with baseline data. Thus,

, where is a spatiotemporal data matrix of size
containing the background noise only, whereas

is of size containing the evoked response modeled
as corrupted by noise. The statistical properties of
the noise, which are described in Section III, are assumed to
be the same for both and . Thus, ,

, and . A simple extension of the above
results shows that the concentrated likelihood function GLR
is the product of the largest generalized eigenvalues of

and (see Appendix
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C). This GLR can be viewed as an extension of the detectors in
[37] and [38].

It is also possible to estimate a nonparametric array response
matrix if the basis functions are known (or possibly para-
metric); see [38, p. 25] and [39]. Note that in this problem, only
the rank of needs to be specified, and it is not necessary to
use multiple trials or training data. This model has been used
in radar array processing for the robust estimation of range and
velocity; see [29] and [30].

V. SCANNING

We propose a scheme to obtain initial estimates of the dipole
locations by “scanning” the evoked response data with the
likelihood function for a single dipole with fixed (in time)
unknown orientation using the above concentrated likelihood
function for nonparametric basis functions. In the EEG/MEG
literature, scanning has often been performed using the MUSIC
cost function [40]. However, MUSIC does not perform well
when the sources are correlated [31], [41], the noise is spatially
correlated [42], or both.

When there is only one dipole with unknown fixed moment
orientation, we can recast the array response matrix by incor-
porating this orientation, which gives a response vector ,
where is a parameter vector consisting of three
location and orientation parameters. Then, , and the
ML estimate of becomes a row vector, which can be ob-
tained in a closed form (see Appendix C) and the concentrated
likelihood function (in the form of GLR) becomes

GLR

(5.1)

which equals the concentrated likelihood for , as
observed in Section IV; see also Section A of Appendix C.
This GLR is a function of only; we use it to scan the evoked
response data and choose parameter vectorsfor which it
achieves peak values as initial estimates in optimizing the
concentrated likelihood function for multiple dipoles. The
scanning procedure requires only a -D search over
the dipole location and orientation parameters.

Observe that the above expression has a Capon-like struc-
ture [43], [44] in the denominator. In the scalar case, i.e., for

and , and after a linear transformation, the GLR
expression (5.1) reduces to the familiar-test: , where

, . This scanning
is a reasonable method: It evaluates the likelihood of a dipole
for particular location and orientation while simultaneously es-
timating the unknown noise covariance, which accounts for the
sources of brain activity at other locations.

To further reduce the dimensionality of the search to 2-D, it
is possible to use the anatomic constraints [45], i.e., assume that
sources can lie only on the surface of the cortex with moments
orthogonal to the cortex. However, such a method relies on the
validity of the above constraints and would require using pa-
tient-specific MRI images to extract the necessary information.

If the data sets contain parts with baseline data (see also Sec-
tion IV), in (5.1) would simply need to be substituted by.

VI. FISHERINFORMATION MATRIX AND CRAMÉR–RAO BOUND

The FIM can be viewed as a measure of the intrinsic accuracy
of a distribution [27]. Its inverse is the CRB, which is a lower
bound on the covariance matrix of any unbiased estimator. It is
achieved asymptotically by the ML estimator; see (3.7).

Denote the Kronecker product (which is also known as the
direct product) between two matrices by; see [16, p. 11] for
the definition and some properties. In [18, App. D], we derive
the FIM for the above model as

(6.1)

where

(6.2)

and

(6.3a)

(6.3b)

(6.3c)

(6.3d)

(6.3e)

(6.3f)
vec vec

(6.3g)

whereas the th entry of is [32] , [46]

tr (6.4)

Further, let and ; then, the following
simple formula solves (6.4):

tr

(6.5)

where .
As expected, the information increases linearly with the

number of trials . The information on noise in-
creases linearly with as well. In the sequel, we use the same
block partitioning of the CRB as for the above FIM matrix.
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Due to the block-diagonal structure ofthat separates the
signal and noise parts, its inverse is computed by simply in-
verting the two diagonal blocks. Thus, CRB for the
unknown noise covariance equals the corresponding CRB for
known noise covariance. Therefore, the ML method and GLS
with correctly specified (see Section III-B) have the same
asymptotic covariance.

Using the matrix inversion formula [16, result vi, p. 8], it can
be shown that

CRB

(6.6a)

CRB

(6.6b)

and

CRB (6.6c)

The expression in (6.6a) implies that CRBis independent of
the choice of basis functions as long as the dipole moment tem-
poral evolutions can be expressed exactly as their linear com-
bination, i.e., . (Note that this
condition is satisfied for a trivial choice of basis functions in the
form of Dirac pulses, i.e., ; then .) After substi-
tuting and , (6.6a) equals the deterministic
CRB for known [31], [47].

Of course, the choice of basis functions is important for the
asymptotic accuracy of estimating and ; thus, it affects the
accuracy of estimating dipole moments’ temporal evolutions.
The fact that the CRB submatrix forand is block diagonal
[see (6.6c)] is a generalization of similar results in [29] and [30],
where it was shown for a particular choice of a basis function
suitable for radar array processing.

For the nonparametric basis functions, the expression in
(6.6a) remains valid, but we need to be careful in handling
the CRB expressions related todue to the fact that when

vec , we need to restrict the parameter space of
to achieve identifiability, as discussed in more detail in [18,
App. B]. Thus, we need to compute the constrained CRB.
For simplicity, we may choose the orthonormality constraints,
i.e., , where ,
and is the Kronecker delta symbol. These constraints can
be written in vector form as , where is of size

. Define the gradient matrix of the constraints as
, where 0 is a matrix of

zeros of dimension . Further, define
the matrix whose columns form a basis for the nullspace
of . Following [48], the constrained CRB on the signal
parameters is then

CCRB (6.7)

where is computed using (6.2) and (6.3) with
vec .

VII. COMPUTATIONAL ISSUES

In this section, we derive a computationally efficient method
for computing the concentrated log-likelihood function

(7.1)

and its derivatives with respect toand . The maximization
of (7.1) can be split into a two-step procedure: with respect to

with fixed, and vice versa. For each case, we suitably de-
compose the expression in (7.1) and apply QR decompositions,
as suggested in [49]. For a general discussion on the use of
Cholesky and QR decompositions for regression calculations,
see [49] and [50]. A QR decomposition of a matrixof size

( ) is

(7.2)

where is an orthogonal matrix, and is zero below the
main diagonal. Thus, consists of the first columns of , and

consists of the first rows of (and is upper triangular).
Assume first that is fixed. Then, the concentrated log-like-

lihood depends only on and can be rewritten as [using (3.2b)]

(7.3)

where

(7.4)

and . Observe
that does not depend on, whereas the dependence
of on is only through . The QR decomposition
of is , where is of size , and is
upper triangular of size . It easily follows (see also [49]
and [50]) that

(7.5)

where is the th diagonal entry of . Now, following [49],
we have

(7.6)

where is a pseudo-inverse of, which is
easily computed as . Further, the gradient of
follows from

tr (7.7)
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The above expression can be simplified by observing that

(7.8a)

(7.8b)

where is a projection matrix, and thus (see,
e.g., [28])

(7.9a)

(7.9b)

Since does not depend on, we can decompose it as
and retain only for further calculation since

(7.10)

Therefore, instead of factoring, we can factor
, and then, .

We now fix and maximize (7.1) with respect to. Using
(C.1), and (C.2) from Appendix C, we rewrite (7.1) as

(7.11)

Since does not depend on, we can do the following de-
compositions only once in this step:

and , which yields

(7.12)

where , and . We
then proceed in a similar manner as before; find the de-
compositions and (where
and are of size , and and are upper triangular
of size ). Then, it easily follows that

tr tr (7.13)

where , , and

(7.14a)

(7.14b)

If vec , there is a closed-form solution for optimizing
, as shown in Section IV.

VIII. N UMERICAL SIMULATIONS

In this section, we compare the localization accuracy of the
ML, GLS, OLS, and scanning methods when spatially corre-
lated noise is added to a simulated evoked response. Our simu-
lations confirm the theoretical results presented in Sections III
and VI.

The simulation was performed for an MEG configuration of
37 radial magnetometers located on a spherical helmet of ra-
dius cm with a single sensor at the pole of the cap
and three rings at elevation angles of , , and rad,
containing, respectively 6, 12, and 18 sensors equally spaced in
the azimuthal direction. This arrangement is similar to an array
made commercially by Biomagnetic Technologies, Inc. (BTI),
San Diego, CA.

We generated two coherent dipole sources. The components
and of the first dipole change in time according to

nA m (8.1a)

nA m (8.1b)

and the corresponding components of the second dipole as
and , i.e., the sources are correlated. The dipoles are
symmetric relative to the midsagittal plane with locations

cm and cm .
We simulated 50 runs, each consisting of trials and

snapshots per trial. To approximate realistic spatially
correlated noise, we generated 400 random dipoles uniformly
distributed on a sphere with a radius of 5 cm (for a discussion
on random dipole modeling of spontaneous brain activity, see
[14]). For each noise dipole, we assumed that its two tangen-
tial moment components were uncorrelated and distributed as

. For nA m, the total noise standard devia-
tion at the sensors was approximately 110 fT, which is consistent
with 25 fT Hz one-sided white noise spectral density ban-
dlimited to 20 Hz. We justify this choice by the fact that typically
recorded background noise spectral density is 20–40 fTHz
below 20 Hz [2]. The peak value of the signal at the sensor with
the largest response was around 270 fT, which is consistent with
typical values measured in practical applications.

In the EEG/MEG literature, several parametric models
have been used to model temporal evolution of the evoked
responses: decaying sinusoids (see [51]); double Gaussian
(see [52]); or Hermite wavelets (see [53]). In this ex-
ample, we choose a combination of Gaussian and harmonic
terms, i.e.,

. Hence, the unknown parameter vector describing
the temporal evolution is . The two
Gaussian functions were used to model peaks in the response,
and the sine and cosine terms model the low-pass signal
component. Such components are typical in evoked responses.
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Fig. 2. Average location error per dipole as a function of the noise level�

for (a) ML method with parametric basis functions. (b) ML method withl = 2n

nonparametric basis functions. (c) GLS withB = I . (d) OLS with parametric
basis functions. (e) OLS withB = I . (f) Scanning with unknown fixed dipole
orientation.

In Fig. 2, we compare the localization accuracies of the ML,
GLS, OLS, and scanning methods by showing the mean local-
ization errors per dipole
(averaged over the 50 runs) as functions of. Here, de-
notes the Euclidean norm, and, , and , are the location
vectors of the two dipoles and the corresponding ML estimates;
see also (2.1). The standard deviation of the localization error
curves is the largest for OLS with parametric basis functions
(up to 0.3 mm).

It is interesting to note that as increases, the dipole lo-
cation estimates obtained by the OLS methods move toward the
center of the head. Thus, the error values become comparable to
the head’s dimensions for large (as shown in Fig. 2), whereas
the ML estimation errors remain very small, showing the robust-
ness of the ML method. A similar trend was also observed in
[10] and [11].

The average location error is approximately the same for the
ML methods with parametric and nonparametric basis functions
and the GLS method, which is consistent with the asymptotic
results in Section VI, where we show that the ML and GLS
methods have the same asymptotic accuracy of the signal pa-
rameters (due to the block-diagonal structure of the FIM for
signal and noise) and the parametric and nonparametric ML
have the same asymptotic location accuracy (since CRBis in-
dependent of the choice of basis functions as long as the dipole
moment temporal evolutions can be expressed exactly as their
linear combination).

We have applied the scanning algorithm in Section V, which
requires a 4-D search (3-D for the location and 1-D for orien-
tation). As shown in Fig. 2, this algorithm is robust to the in-
crease in the noise level because it acounts for spatially cor-
related noise. Further, for larger values of , it outperforms
the OLS algorithms, which do not account for the correlation
in the noise. This is an important result since scanning is com-
putationally simpler than OLS (OLS with requires a

6-D search for the two-dipole fit). Note that for small values of
, the OLS algorithms perform better than scanning because

they fit the exact noiseless response (two dipoles in this case),
which becomes more important than the noise correlation when
the noise level is small.

In this example, we have used a very small number of trials
( ). As , both the ML and OLS estimates con-
verge to the true parameters, as shown in Theorems 1 and 2. In
some real data applications, the number of trials is 100 or
more; then, the ML and OLS results may differ only by a few
millimeters [54].

IX. CONCLUDING REMARKS

We proposed maximum likelihood methods for estimating
evoked dipole responses using a combination of EEG and
MEG arrays, assuming spatially correlated noise with unknown
covariance. To exploit prior information on the shapes of the
evoked responses and improve the estimation of the dipole mo-
ments, we modeled them as linear combinations of parametric
basis functions. Utilizing multiple trials, we also derived the
estimation method for nonparametric basis functions, which
allows for computation of the concentrated likelihood function
that depends only on the dipole locations (but needs many
parameters to describe the moment evolutions). We further
showed how to obtain initial estimates of the dipole locations
using scanning. We presented a computationally efficient
method for implementing the ML estimation. Cramér–Rao
bounds for the proposed model were derived. We also showed
that the proposed estimators are asymptotically more efficient
compared with the nonlinear OLS estimators.

We presented numerical simulations demonstrating the per-
formance of the ML and scanning methods. The ML and OLS
methods were compared; the ML was more accurate and robust,
confirming the theoretical results in Section III.

In [55], we extended the above method to solve the problem of
dipoles having fixed orientations in time, whereas their strengths
were modeled by a linear combination of basis functions.

We applied the proposed algorithms to real EEG/MEG
data; see [18] (some results are also available at
http://www.eecs.uic.edu/~nehorai/MEG.html). Further research
will include

• analysis of the proposed methods in the presence of more
realistic noise and signal models (e.g., temporally corre-
lated noise, latency jitters, etc.);

• tracking moving dipoles [56], [57];
• classifying evoked responses for diagnostic purposes;
• optimal design of EEG/MEG sensor arrays [55] and novel

performance measures [19], [58];
• more realistic array response modeling (e.g., incorpo-

rating a realistic patient-specific head model obtained
from MRI scans in source estimation and performance
analysis following [57] and [59]);

• more extensive applications to real data.

APPENDIX A
ML ESTIMATION

We derive the ML estimates of the matrix of basis function
coefficients and noise covariance for knownand . Then,
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we present the concentrated likelihood function that should be
maximized when and are unknown to obtain their ML esti-
mates.

Stack all the measurement matrices into one matrix
of size . Similarly, put basis func-

tion matrices into a matrix of size .
The likelihood function for this model is

tr

(A.1b)

Then, according to [25] and [26, ch. 6.4], the ML estimates of
and are

(A.2a)

(A.2b)

where

(A.3a)

(A.3b)

(A.3c)

(A.3d)

Observe that

(A.4a)

(A.4b)

directly yields (3.3). Substituting the above estimates into the
likelihood function (A.1b), we obtain the concentrated likeli-
hood function

(A.5)

which is proportional to the expression in (3.5).

APPENDIX B
ML V ERSUSOLS

We show that the ML estimates ofderived in this paper are
asymptotically more efficient than the OLS estimates, i.e., the
difference in their asymptotic variances is negative semidefinite.

Assume that the regularity conditions R1)–R5) hold. The-
orem 1 implies that the asymptotic covariance matrix of
is (see also [18, App. D])

(B.1)

where

(B.2a)

(B.2b)

(B.2c)

which can be further simplified [see (6.2) and (6.3)].
The asymptotic covariance matrix of is (see The-

orem 2)

(B.3)

Let be an arbitrary full-rank matrix such that its columns
span the space orthogonal to the column space of; thus,

. Then

(B.4)

which is Lemma 1 in [25] (see also [27, p. 77]). It follows that

(B.5)

and thus, . Note that equality holds if
.

APPENDIX C
NONPARAMETRIC BASIS FUNCTIONS

To maximize the concentrated likelihood with respect to non-
parametric basis functions, we express it as a function ofin-
stead of (since is a function of ) by repeatedly applying
the matrix inversion lemma, see [38, pp. 26–28]

GLR

(C.1)
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where is defined in (4.1). Compared with , the
above concentrated likelihood function is normalized byand
represents an expression for the GLR test for testing H
.
Using the lemma in (B.4), we can compute in the fol-

lowing alternative way: , where is
an arbitrary full-rank matrix such that

[assuming that is full-rank], i.e., spans the space or-
thogonal to the column space of .

The matrix in the denominator is
a projection matrix with rank . Thus, for fixed and if

, the denominator of the above expression is
nonzero with probability one. Note also that for , the
GLR in (C.1) would go to infinity if we choose the rows of

from the row space of .
Using (C.1), (A.4a), and (A.4b), we get

GLR (C.2)

Further, can also be computed as a function ofinstead of
as

(C.3)

where is defined in (7.4). Equation (C.3) follows from (3.2a)
and

(C.4)

which is obtained by using the matrix inversion lemma.
Consider the basis function matrix of the form

, where is an matrix
of full rank , and is the matrix whose columns are the (nor-
malized) eigenvectors of

that are
ordered to correspond to the eigenvalues of (which are de-
noted by ) sorted in nonincreasing order, i.e.,

. Thus, diag .
In addition, denote by the matrix containing the first

columns of , which are the eigenvectors corresponding to the
largest eigenvalues of . Then, (C.2) reduces to

GLR

diag
(C.5)

which is maximized for , where is an arbitrary
matrix of full rank, and the maximum is equal to .

Thus

(C.6)

For , the rows of are the generalized eigenvectors of
the matrices and
that correspond to the largestgeneralized eigenvalues of these
two matrices; the product of these eigenvalues is GLR

.
Note that can be written as

(C.7)

The second term in (C.7) is a positive semidefinite sym-
metric matrix with rank rank , which equals
rank in most practical applications.

We now show that although is not unique, the moment
temporal evolution is. Using (3.2a), we get

(C.8)

where , which is the projection matrix on the row space of
, is independent of because it cancels out. Sincedepends

on only through [see (3.3)], is also independent of .
Substituting

into (C.6), we get orthonormal basis functions, i.e., .
When , where contains

baseline data and contains the evoked response, the (C.2)
becomes

GLR (C.9)
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The concentrated likelihood function GLR is the product of
largest eigenvalues of

. Thus, the
result in Section IV follows.

A. Scanning

For a single source with fixed orientation, i.e., when
, reduces to a row vector , and (C.2) becomes

GLR

(C.10)

Application of the Cauchy–Schwartz inequality [27, p. 54] to
the above expression gives the ML estimate of

(C.11)

and the GLR in (5.1), which can also be obtained by substituting
and into (C.2) and using the formula for

the determinant of a partitioned matrix, see, e.g., [16, result v,
p. 8].
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