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Blind X-Ray CT Image Reconstruction From
Polychromatic Poisson Measurements
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Abstract—We develop a framework for reconstructing images
that are sparse in an appropriate transform domain from poly-
chromatic computed tomography (CT) measurements under the
blind scenario where the material of the inspected object and
incident-energy spectrum are unknown. Assuming that the object
that we wish to reconstruct consists of a single material, we
obtain a parsimonious measurement-model parameterization by
changing the integral variable from photon energy to mass atten-
uation, which allows us to combine the variations brought by
the unknown incident spectrum and mass attenuation into a
single unknown mass-attenuation spectrum function; the result-
ing measurement equation has the Laplace-integral form. The
mass-attenuation spectrum is then expanded into basis func-
tions using B-splines of order one. We consider a Poisson noise
model and establish conditions for biconvexity of the correspond-
ing log-likelihood (NLL) function with respect to the density-
map and mass-attenuation spectrum parameters. We derive a
block-coordinate descent algorithm for constrained minimiza-
tion of a penalized NLL objective function, where penalty terms
ensure non-negativity of the mass-attenuation spline coefficients
and non-negativity and gradient-map sparsity of the density-
map image, imposed using a convex total-variation (TV) norm;
the resulting objective function is biconvex. This algorithm alter-
nates between a Nesterovs proximal-gradient (NPG) step and
a limited-memory Broyden–Fletcher–Goldfarb–Shanno with box
constraints (L-BFGSB) iteration for updating the image and
mass-attenuation spectrum parameters, respectively. We prove the
Kurdyka–Łojasiewicz property of the objective function, which is
important for establishing local convergence of block-coordinate
descent schemes in biconvex optimization problems. Our frame-
work applies to other NLLs and signal-sparsity penalties, such as
lognormal NLL and �1 norm of 2-D discrete wavelet transform
(DWT) image coefficients. Numerical experiments with simulated
and real X-ray CT data demonstrate the performance of the
proposed scheme.

Index Terms—X-ray CT, statistical model-based iterative recon-
struction (MBIR), beam-hardening correction.

I. INTRODUCTION

X -RAY computed tomography (CT) measurement sys-
tems are important in modern nondestructive evaluation

(NDE) and medical diagnostics. The past decades have seen
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great progress in CT hardware and (reconstruction) software
development. CT sees into the interior of the inspected object
and gives 2D and 3D reconstruction at a high resolution. It is
a fast, high-resolution method that can distinguish density dif-
ferences as small as 1%. As it shows the finest interior detail,
it has been one of the most important techniques in medical
diagnosis, material analysis and characterization, and NDE [1],
[2]. Thanks to recent computational and theoretical advances,
such as graphics processing units (GPUs) and sparse signal
reconstruction theory and methods, it is now possible to design
iterative reconstruction methods that incorporate accurate non-
linear physical models into sparse signal reconstructions from
significantly undersampled measurements.

Due to the polychromatic nature of the X-ray source and the
fact that mass attenuation generally decreases as a function of
photon energy, the center of the spectrum shifts to higher energy
as X-rays traverse the object, an effect known as “hardening”
[3]. This effect destroys the linearity between the attenuation
coefficient and the logarithm of the noiseless measurements.
Therefore, linear reconstructions such as filtered backprojec-
tion (FBP) exhibit beam-hardening artifacts, e.g., cupping and
streaking [4, Ch. 7.6], which limit the quantitative analysis of
the reconstruction. In medical CT applications, severe artifacts
can look similar to certain pathologies and further mislead the
diagnosis [4, Sec. 7.6.2]. Fulfilling the promise of compressed
sensing and sparse signal reconstruction in X-ray CT depends
on accounting for the polychromatic measurements, in addition
to other effects such as ring artifacts, metal artifacts in medical
applications, X-ray scatter, and detector crosstalk and afterglow
[5], [6]. It is not clear how aliasing and beam-hardening arti-
facts interact, and our experience is that we cannot achieve great
undersampling when applying sparse linear reconstruction to
polychromatic measurements. Indeed, the error caused by the
model mismatch may well be larger than the aliasing error that
we wish to correct using sparse signal reconstruction.

Beam-hardening correction methods can be categorized into
pre-filtering, linearization, dual-energy, and post-reconstruction
approaches [7]. Reconstruction methods have recently been
developed in [8]–[10] that aim to optimize nonlinear objec-
tive functions based on the underlying physical model; [8],
[9] assume known incident polychromatic source spectrum
and imaged materials, whereas [10] considers a blind scenario
for a lognormal measurement model with unknown incident
spectrum and imaged materials, but employs a photon-energy
discretization [11, eq. (2)], [4, Sec. 8.4] with an excessive
number of parameters (which leads to permutation and scaling
ambiguities; see [11] for details) and suffers from numerical
instability [12]. The methods in [10] do not impose sparsity
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Fig. 1. (a) Mass-attenuation spectrum ι(κ) obtained by combining the mass attenuation κ(ε) and incident spectrum ι(ε) and (b) its B1-spline expansion, with
κ-axis in log scale.

of the reconstructed density-map image, only its nonnegativ-
ity, and they have been tested in [10] using real and noiseless
simulated data.

It is often expensive to determine the X-ray spectrum and the
materials of the object. X-ray spectrum measurements based
on semiconductor detectors are usually distorted by charge
trapping, escape events, and other effects [13], and the cor-
responding correction requires a highly collimated beam and
special procedures [14]. Even after measuring the spectrum, it
is not feasible to scan different objects with fixed scanning con-
figurations, e.g., X-ray tube voltage, current, prefiltrations, and
scanning time. Knowing the mass-attenuation function can be
challenging as well when the inspected material is unknown or
the inspected object is made of a compound or a mixture with
an unknown percentage of each constituent.

In this paper (see also [11], [12], [15]), we adopt the non-
linear measurement scenario resulting from the polychromatic
X-ray source and formulate a parsimonious measurement-
model parameterization by exploiting the relationship between
the mass-attenuation coefficients, X-ray photon energy, and
incident spectrum; see Fig. 1a. This simplified model allows
blind density-map reconstruction and estimation of the com-
posite mass-attenuation spectrum ι(κ) in the case for which
both the mass attenuation and incident spectrum are unknown.
We develop a blind sparse density-map reconstruction scheme
from measurements corrupted by Poisson noise, where the sig-
nal sparsity in the density-map domain is enforced using a TV
norm penalty. The Poisson noise model is appropriate for mea-
surements from photon-counting detectors and a good approxi-
mation for the more precise compound Poisson distribution for
measurements from energy-integrating detectors [16], [17].

Although we focus on Poisson noise and gradient-map image
sparsity in this paper, our framework is general and easy to
adapt to, for example, lognormal noise and image sparsity in
a 2D DWT domain; see [12], [15].

We introduce the notation: IN , 1N×1, and 0N×1 are the
identity matrix of size N and the N × 1 vectors of ones and
zeros, respectively (replaced by I,1, and 0 when the dimen-
sions can be inferred easily); |·|, ‖·‖p, and “T ” are the absolute
value, �p norm, and transpose, respectively. Denote by �x� the
smallest integer larger than or equal to x ∈ R. For a vector

α = [α1, . . . , αp]
T ∈ R

p, define the nonnegativity indicator
function

I[0,+∞)(α) �
{
0, α � 0

+∞, otherwise
(1)

where “�” and “�”are the elementwise versions of “≥” and
“>”, respectively. Furthermore, aL(s) �

∫
a(κ)e−sκdκ is the

Laplace transform of a vector function a(κ) and

((−κ)ma)
L
(s) =

∫
(−κ)ma(κ)e−sκdκ =

dmaL(s)

dsm
(2)

is the mth derivative of aL(s). Define also the set of nonnega-
tive real numbers as R+ = [0,+∞), the elementwise logarithm
ln◦ x = [lnx1, . . . , lnxN ]T where x = [x1, x2, . . . , xN ]T , and

Laplace transforms aL
◦(s) =

(
aL(sn)

)N
n=1

and (κa)L
◦(s) =(

(κa)L(sn)
)N
n=1

obtained by stacking aL(sn) and (κa)L(sn)

columnwise, where s = [s1, s2, . . . , sN ]T . We define the prox-
imal operator for function r(α) scaled by λ [18]:

proxλra = argmin
α

1
2‖α− a‖22 + λr(α). (3)

Finally, supp(ι(·)) is the support set of a function ι(·),
dom(f) = {x ∈ R

n |f(x) < +∞} is the domain of function
f(·), and diag(x) is the diagonal matrix with diagonal elements
defined by the corresponding elements of vector x.

A. Polychromatic X-Ray CT Model

We review the standard noiseless polychromatic X-ray CT
measurement model.

Assume that the incident intensity I in of a polychromatic
X-ray source spreads along photon energy ε following the
density ι(ε) ≥ 0:

I in =

∫
ι(ε)dε; (4a)

see Fig. 1a, which shows a typical ι(ε). The noiseless mea-
surement collected by an energy-integrating detector upon
traversing a straight line � = �(x, y) in a Cartesian coordinate
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system has the superposition-integral form [3, Ch. 4.1], [5,
Sec. 6]:

Iout =

∫
ι(ε) exp

[
−
∫
�

μ(x, y, ε)d�

]
dε

=

∫
ι(ε) exp

[
−κ(ε)

∫
�

α(x, y)d�

]
dε, (4b)

where we model the attenuation coefficients μ(x, y, ε) of
the inspected object consisting of a single material using the
following separable form [5, Sec. 6]:

μ(x, y, ε) = κ(ε)α(x, y). (5)

Here, κ(ε) > 0 is the mass-attenuation coefficient of the
material, a function of the photon energy ε (illustrated in
Fig. 1a), and α(x, y) ≥ 0 is the density-map of the object. For
a monochromatic source at photon energy ε, ln[I in(ε)/Iout(ε)]
is a linear function of α(x, y), which is a basis for traditional
linear reconstruction. However, X-rays generated by vacuum
tubes are not monochromatic [3], [4], and we cannot transform
the underlying noiseless measurements to a linear model unless
we know perfectly the incident energy spectrum ι(ε) and mass
attenuation of the inspected material κ(ε).

In Section II, we introduce our parsimonious parameter-
ization of the measurement model (4b) tailored for signal
reconstruction. In Section III, we define the parameters to be
estimated and discuss their identifiability. Section IV presents
the measurement model and establishes biconvexity of the
underlying NLL function with respect to the density-map and
mass-attenuation parameters. Section V introduces the penal-
ized NLL function that incorporates the parameter constraints,
establishes its properties, and describes a block coordinate-
descent algorithm for its minimization. In Section VI, we
show the performance of the proposed method using simu-
lated and real X-ray CT data. Concluding remarks are given
in Section VII.

II. MASS-ATTENUATION PARAMETERIZATION

Since the mass attenuation κ(ε) and incident spectrum den-
sity ι(ε) are both functions of ε (see Fig. 1a), we combine the
variations of these two functions and write (4a) and (4b) as inte-
grals of κ rather than ε, seeking to represent our model using
two functions ι(κ) (defined below) and α(x, y) instead of three
(ι(ε), κ(ε), and α(x, y)); see also [11]. Hence, we rewrite (4a)
and (4b) as (see Appendix A)

I in = ιL(0) (6a)

Iout = ιL
(∫

�

α(x, y)d�

)
, (6b)

where ιL(s) =
∫
ι(κ)e−sκdκ is the Laplace transform of the

mass-attenuation spectrum ι(κ), which represents the density
of the incident X-ray energy at attenuation κ; here, s > 0, in
contrast with the traditional Laplace transform where s is gen-
erally complex. For invertible κ(ε) with differentiable inverse
function ε(κ),

ι(κ) � ι(ε(κ))|ε′(κ)| ≥ 0 (7)

with ε′(κ) = dε(κ)/dκ. In Fig. 1a, the area ι(εj)Δεj depict-
ing the X-ray energy within the Δεj slot is the same as area
ι(κj)Δκj , the amount of X-ray energy attenuated within the
corresponding Δκj slot. In Appendix A, we generalize (7) to
non-invertible κ(ε) with K-edges.

The mass-attenuation spectrum ι(κ) is nonnegative for all
κ; see (7) and its generalization (A1) in Appendix A. Due to
its nonnegative support and range, ιL(s) is a decreasing func-
tion of s. Here, s > 0, in contrast with the traditional Laplace
transform where s is generally complex. The function (ιL)−1

maps the noiseless measurement Iout in (6), which is a nonlin-
ear function of the density-map α(x, y), into a noiseless linear
“measurement”

∫
�
α(x, y)d�. The (ιL)−1 ◦ exp(−·) mapping

corresponds to the linearization function in [19] (where it was
defined through (4b) rather than the mass-attenuation spectrum)
and converts −ln Iout into a noiseless linear “measurement”∫
�
α(x, y)d�.
The mass-attenuation spectrum depends on the measurement

system (through the incident energy spectrum) and inspected
object (through the mass attenuation of the inspected material).
In the blind scenario with unknown inspected material and inci-
dent signal spectrum, parameterization (6) allows us to estimate
two functions: ι(κ) and α(x, y) rather than three: ι(ε), κ(ε), and
α(x, y). This blind scenario is the focus of this paper.

III. DISCRETE PARAMETER DEFINITION AND AMBIGUITY

We first define the discrete density map and mass-attenuation
spectrum parameters and then discuss their identifiability.

A. Density-Map Discretization and Mass-Attenuation
Spectrum Basis-Function Expansion

Upon spatial-domain discretization into p pixels, approxi-
mate the integral

∫
�
α(x, y)d� with φTα:∫

�

α(x, y)d� = φTα, (8)

where α � 0 is a p× 1 vector representing the 2D image that
we wish to reconstruct and φ � 0 is a p× 1 vector of known
weights quantifying how much each element of α contributes to
the X-ray attenuation on the straight-line path �. An X-ray CT
scan consists of hundreds of projections with the beam inten-
sity measured by thousands of detectors for each projection.
Denote by N the total number of measurements from all projec-
tions collected at the detector array. For the nth measurement,
define its discretized line integral as φT

nα. Stacking all N such
integrals into a vector yields Φα, where

Φ =
[
φ1 φ2 · · · φN

]T ∈ R
N×p (9)

is the projection matrix, also known as the Radon transform
matrix in a parallel-beam X-ray tomographic imaging system.
We call the corresponding transformation, Φα, the monochro-
matic projection of α.

Approximate ι(κ) with a linear combination of J (J � N )
basis functions:

ι(κ) = b(κ)I, (10a)
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where

I � [I1, I2, . . . , IJ ]T � 0 (10b)

is the J × 1 vector of corresponding basis-function coefficients,
and the 1× J row-vector function

b(κ) � [b1(κ), b2(κ), . . . , bJ (κ)] (11)

consists of B-splines [20] of order one (termed B1 splines, illus-
trated in Fig. 1b). In this case, the decomposition (10a) yields
nonnegative elements of the spline coefficients I (based on (7))
and thus allows us to impose the physically meaningful nonneg-
ativity constraint (10b) when estimating I . Substituting (8) and
(10a) into (6a)–(6b) for each of the N measurements yields the
following expressions for the incident energy and the N × 1
vector of noiseless measurements:

I in(I) = bL(0)I (12a)

Iout(α,I) = bL
◦(Φα)I (12b)

where, following the notation introduced in Section I, bL
◦(s) =(

bL(sn)
)N
n=1

is an output basis-function matrix obtained by
stacking the 1× J vectors bL(sn) columnwise, and s = Φα
is the monochromatic projection. Since the Laplace transform
of (11) (see also (13b)) can be computed analytically, bL(s) has
a closed-form expression.

1) Spline Selection: We select the spline knots from a
growing geometric series (κj)

J+1
j=0 with κ0 > 0:

κj = qjκ0 (13a)

and common ratio q > 1, which yields the B1 splines

bj(κ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

κ− κj−1

κj − κj−1
, κj−1 ≤ κ < κj

−κ+ κj+1

κj+1 − κj
, κj ≤ κ < κj+1

0, otherwise

(13b)

that satisfy the q-scaling property:

bj(κ) = bj+1 (qκ) (13c)

see also Fig. 1b. The geometric-series knots (13a) appear uni-
formly spaced in Fig. 1b because the κ-axis in this figure is
shown in the log scale. When computing bL

j (φ
T
nα), larger j

implies exponentially smaller e−φT
nακ terms within the inte-

gral range [κj−1, κj+1). The geometric-series knot selection
(13a) compensates for larger j with a geometrically wider
integral range [κj−1, κj+1), which results in a more effective
approximation of (6). In particular, this knot selection leads

to
(
bL
j (φ

T
nα)

)J
j=1

with similar values for different values of

j, which allows us to balance the weight of each (Ij)Jj=1 in

bL(φT
nα)I . Furthermore, the geometric-series knots (13a) span

a range from κ0 to κJ+1, which can be made wide with a
moderate number of knots J .

The common ratio q determines the resolution of the B1-
spline approximation. Here, we select q and J so that the range
of κ spanning the mass-attenuation spectrum is constant:

κJ+1

κ0
= qJ+1 = const. (13d)

In summary, the following three tuning constants define our B1-
spline basis functions b(κ):

(q, κ0, J). (13e)

B. Density-Map and Mass-Attenuation Spectrum Ambiguities

By noting (13c) and the κ-scaling property of the Laplace
transform,

bj (qκ)
L→ 1

q
bL
j

(
s

q

)
, q > 0 (14)

we conclude that selecting basis functions [b0(κ), b1(κ),
. . . , bJ−1(κ)] that are q times narrower than those in b(κ) and
density-map and spectral parameters q times larger than α and
I: qα and qI , yields the same mean output photon energy.
Consequently,

Iout (α, [0, I2, . . . , IJ ]T
)
= Iout (qα, q[I2, . . . , IJ , 0]T

)
.

(15)

We refer to this property as the shift ambiguity of the mass-
attenuation spectrum, which allows us to rearrange leading or
trailing zeros in the mass-attenuation coefficient vector I and
position the central nonzero part of I .

C. Rank of bL
◦(Φα) and Selection of the Number of Splines J

If bL
◦(Φα) does not have full column rank, then I is not

identifiable even if α is known; see (12b). The estimation of I
may be numerically unstable if bL

◦(Φα) is poorly conditioned
and has small minimum singular values. We can think of the
noiseless X-ray CT measurements as bL(s)I sampled at differ-
ent s = φT

nα ∈
[
0,maxn(φ

T
nα)

]
. If we could collect all s ∈

[0, a], a > 0 (denoted s), the corresponding bL
◦(s) would be a

full-rank matrix; see [12, Lemma 1 in Sec. II-B]. If our data col-
lection system can sample over

[
0,maxn(φ

T
nα)

]
sufficiently

densely, we expect bL
◦(Φα) to have full column rank.

As the number of splines J increases for fixed support
[κ0, κJ+1] (see (13d)), we achieve better resolution of the mass-
attenuation spectrum, but bL

◦(Φα) becomes poorly conditioned
with its smallest singular values approaching zero. To estimate
this spectrum well, we should choose a J that provides both
good resolution and sufficiently large smallest singular value
of bL

◦(Φα). Fortunately, we focus on the reconstruction of α,
which is affected by I only through the function bL(s)I , and
bL(s)I is stable as we increase J . Indeed, we observe that when
we choose a J significantly larger than the rank of bL

◦(Φα), the
estimation of α will be good and bL(s)I stable, even though
the estimation of I is poor due to its non-identifiability. The
increase of J will also increase the computational complexity
of signal reconstruction under the blind scenario for which the
mass-attenuation spectrum is unknown.
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IV. MEASUREMENT MODEL AND ITS PROPERTIES

For an N × 1 vector E of independent Poisson measure-
ments, the NLL in the form of generalized Kullback-Leibler
divergence [21] is (see also (12b))

L(α,I) = 1T
[Iout(α,I)− E]− ∑

n,En �=0

En ln I
out
n (α,I)
En .

(16)

In the following, we express the NLL (16) as a function of α
with I fixed and vice versa, and derive conditions for its con-
vexity under the two scenarios. These results will then be used
to establish biconvexity conditions for this NLL.

NLL of α. Recall (10a) and define

ιL◦(Φα) = bL
◦(Φα)I (17)

obtained by stacking
(
ιL(φT

nα)
)N
n=1

columnwise. The NLL of
α for fixed I is

Lι (α) = 1T
[
ιL◦(Φα)− E]− ∑

n,En �=0

En ln
ιL
(
φT

nα
)

En , (18)

which corresponds to the Poisson generalized linear model
(GLM) with design matrix Φ and link function equal to the
inverse of ιL(·). See [22] for an introduction to GLMs.

To establish convexity of the NLL (18), we enforce mono-
tonicity of the mass-attenuation spectrum ι(κ) in low- and
high-κ regions and also assume that the mid-κ region has higher
spectrum than the low-κ region. Note that we do not require
here that ι(κ) satisfy the basis-function expansion (10a); how-
ever, (10a) will be needed to establish the biconvexity of the
NLL in (16). Hence, we define the three κ regions using the
spline parameters (13e) as well as an additional integer constant

j0 ≥ �(J + 1)/2�. (19)

In particular, κJ+1−j0 and κj0 partition the range [κ0, κJ+1]
into the low-, mid-, and high-κ regions: Klow, Kmid, and Khigh,
respectively, see Fig. 1b.

Assumption 1: The mass-attenuation spectrum satisfies

A =

{
ι : [κ0, κJ+1] → R+ | ι non-decreasing in Klow,

non-increasing in Khigh, and

ι(κ) ≥ ι (κJ+1−j0) ∀κ ∈ Kmid

}
.

(20a)

If the basis-function expansion (10a) holds, (20a) reduces to

A =

{
I ∈ R

J
+

∣∣ I1 ≤ I2 ≤ · · · ≤ IJ+1−j0 , Ij0 ≥ · · · ≥ IJ ,

and Ij ≥ IJ+1−j0 , ∀j ∈ [J + 1− j0, j0]

}
. (20b)

Here, the monotonic low- and high-κ regions each contain
J − j0 knots, whereas the central region contains 2j0 − J knots
in the B1-spline representation.

In practice, the X-ray spectrum ι(ε) starts at the lowest effec-
tive energy that can penetrate the object, vanishes at the tube
voltage (the highest photon energy), and has a region in the cen-
ter higher than the two ends; see Fig. 1a. When the support of

ι(ε) is free of K-edges (see the discussion in Appendix A), the
mass-attenuation coefficient κ(ε) is a monotonic function of ε;
thus ι(κ) as a function of κ has similar shape as ι(ε) as a func-
tion of ε, which justifies Assumption 1. If a K-edge is present
within the support of ι(ε), it is difficult to infer the shape of
ι(κ). In most cases, Assumption 1 holds.

For the approximation of ι(κ) using a B1-spline basis expan-
sion, as long as [κ0, κJ+1] is sufficiently large to cover the range
of κ(ε) with ε ∈ supp(ι(ε)), we can always meet Assumption 1
by the appropriate selection of j0.

Multiple different (α,I) share the same noiseless output
Iout(α,I) and thus the same NLL; see Section III-B. In par-
ticular, equivalent (α,I) can be constructed by left- or right-
shifting the mass attenuation spectrum and properly rescaling it
and the density-map; see (15).

Lemma 1: Provided that Assumption 1 holds, the Poisson
NLLLι(α) is a convex function of α over the following region:{

α
∣∣ιL◦(Φα) � (1− V )E , α ∈ R

p
+

}
(21a)

where

V � 2qj0

q2j0 + 1
. (21b)

Proof: See Appendix B. �
Note that (21a) is only a subset of the region where Lι(α)

is convex and that Lemma 1 does not assume a basis-function
expansion of the mass-attenuation spectrum, only that it satis-
fies (20a).

The condition in (21a) corresponds to lower-bounding
Iout
n (α,I)/ En by 1− V for all n. The constant V is a func-

tion of qj0 , which is the ratio of the point where ι(κ) starts to
be monotonically decreasing to the point where the support of
ι(κ) starts; see Fig. 1b.

NLL of I . The NLL of I for fixed α reduces to a Poisson
GLM with design matrix

A = bL
◦(Φα) (22a)

all of whose elements are positive, and the identity link
function:

LA(I) = 1T (AI − E)−
∑

n,En �=0

En ln [AI]n
En . (22b)

We now prove the convexity of LA(I).
Lemma 2: The NLL LA(I) in (22b) is a convex function of

I for all I ∈ R
J
+.

Proof: The Hessian of the NLL in (22b)

∂2LA(I)
∂I∂IT

= AT diag(E)diag−2(AI)A (23)

is positive semidefinite. Thus, LA(I) is convex on R
J
+. �

The Hessian expression in (23) implies that LA(I) in (22b)
is strongly convex if the design matrix A has full rank.
Combining the convexity results in Lemmas 1 and 2 yields the
biconvexity region for the NLL L (α,I) in (16).
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Theorem 1 (Biconvexity of the NLL): Suppose that
Assumption 1 in (20b) holds. Then, the Poisson NLL (16) is
biconvex [23] with respect to α and I in the following set:

P =
{
(α,I) ∣∣Iout(α,I) � (1− V )E ,I ∈ A ,α ∈ R

p
+

}
,

(24)

which bounds Iout
n (α,I)/ En from below by 1− V for all n;

see also (21b).

Proof: We first show the convexity of P with respect to
each variable (α and I) with the other fixed. We then show the
convexity of the NLL (16) for each variable.

Region A in (20b) is a subspace, thus a convex set. Since
Iout in (12b) is a linear function of I , the inequalities compar-
ing Iout to constants specify a convex set. Therefore, Pα =
{I |(α,I) ∈P } is convex for fixed α ∈ R

p
+, for it is the

intersection of the subspace A and a convex set via Iout. Since

bj(κ) ≥ 0,
(
bL
j (s)

)J
j=1

=
∫ κj+1

κj−1
bj(κ)e−sκdκ are decreasing

functions of s, which, together with the fact that I � 0, implies
that bL(s)I is a decreasing function of s. Since the linear
transform Φα preserves convexity, PI = {α |(α,I) ∈P } is
convex with respect to α for fixed I ∈ A . Therefore, P is
biconvex with respect to I and α.

Observe that P in (24) is the intersection of the regions spec-
ified by Assumption 1 and Lemmas 1 and 2. Thus, within P ,
the Poisson NLL (16) is a convex function of α for fixed I and
a convex function of I for fixed α, respectively.

By combining the above region and function convexity
results, we conclude that (16) is biconvex within P . �

In [12], we establish conditions for biconvexity of the NLL
under the lognormal noise model.

V. PARAMETER ESTIMATION

Our goal is to compute penalized maximum-likelihood
estimates of the density-map and mass-attenuation spectrum
parameters (α,I) by solving the following minimization
problem:

min
α,I

f(α,I) (25a)

where

f(α,I) = L(α,I) + ur(α) + I[0,+∞)(I) (25b)

r(α) =

p∑
i=1

√∑
j∈Ni

(αi − αj)2 + I[0,+∞)(α) (25c)

are the penalized NLL objective function and the density-map
regularization term that enforces nonnegativity and sparsity of
the image α; u > 0 is a scalar tuning constant. We impose the
nonnegativity of the mass-attenuation coefficients (10b) using
the indicator-function term in (25b). Here, Ni is the index set
of neighbors of αi, where the elements of α are arranged to
form a 2D image: Each set Ni consists of two pixels at most,
with one on the top and the other on the right of the ith pixel, if
possible [24].

A. Properties of the Objective Function f(α,I)
Since r(α) in (25c) and I[0,+∞)(I) in (25b) are convex

functions of α and I for all α � 0 and I � 0, the following
holds:

Corollary 1: The objective f(α,I) in (25b) is biconvex
with respect to α and I under the conditions specified by
Theorem 1.

Although the NLL may have multiple local minima of the
form q�α̂ with integer � (see Section III-B), those with large
� can be eliminated by the regularization penalty, see the
discussion in [12, Sec. IV-A].

We now show that the objective function (25b) satisfies the
Kurdyka-Łojasiewicz (KL) property [25], which is important
for establishing local convergence of block-coordinate schemes
in biconvex optimization problems. The KL property [25] reg-
ularizes the (sub)gradient of a function through its value at a
certain point or over the whole domain and also ensures the
steepness of the function around the optimum so that the length
of the gradient trajectory is bounded.

Theorem 2 (KL Property): The objective function f(α,I)
satisfies the KL property in any compact subset C ⊆ dom(f).

Proof: See Appendix C. �
Note that all (α,I) that lead to positive noiseless mea-

surements, i.e. Iout(α,I) � 0, are in the domain of f , which
excludes the case I = 0 when no incident X-ray is applied; see
also (12b).

B. Minimization Algorithm

The parameters that we wish to estimate are naturally divided
into two blocks, α and I . The large size of α prohibits effective
second-order methods under sparsity regularization, whereas
I has much smaller size and only nonnegative constraints,
thus allowing for more sophisticated solvers, such as the quasi-
Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) approach
[26, Sec. 4.3.3.4] that we adopt here. In addition, the scal-
ing difference between α and I can be significant, so that
the joint gradient method for α and I together would con-
verge slowly. Therefore, we adopt a block coordinate-descent
algorithm to minimize f(α,I) in (25b), where the NPG
[27], [28] and limited-memory BFGS with box constraints (L-
BFGS-B) [29] methods are employed to update estimates of
the density-map and mass-attenuation spectrum parameters,
respectively. The choice of block coordinate-descent optimiza-
tion is also motivated by the related alternate convex search
(ACS) and block coordinate-descent schemes in [23] and [30],
respectively, both with convergence guarantees under certain
conditions.

We minimize the objective function (25b) by alternatively
updating α and I using Steps 1 and 2, respectively, where
Iteration i proceeds as follows:

1) (NPG) Set the mass-attenuation spectrum ι(κ) =

b(κ)I(i−1), treat it as known1, and descend the regular-
ized NLL function f(α,I(i−1)) = Lι(α) + ur(α) by
applying an NPG step for α, which yields α(i):

1This selection corresponds to Lι(α) = L(α,I(i−1)); see also (18).
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θ(i) =
1

2

[
1 +

√
1 + 4

(
θ(i−1)

)2]
(26a)

α(i) = α(i−1) +
θ(i−1) − 1

θ(i)

(
α(i−1) −α(i−2)

)
(26b)

α(i) = proxβ(i)ur

(
α(i) − β(i)∇Lι(α

(i))
)

(26c)

where the minimization (26c) is computed using an inner
iteration that employs the TV-based denoising method in
[24, Sec. IV], and β(i) > 0 is an adaptive step size chosen
to satisfy the majorization condition:

Lι(α
(i)) ≤ Lι(α

(i)) + (α(i) −α(i))T∇Lι(α
(i))

+
1

2β(i)
‖α(i) −α(i)‖22 (26d)

using an adaptation scheme [31] that aims at finding the
largest β(i) that satisfies (26d):

i) • if there have been no step-size backtracking
events or increase attempts for consecutive iter-
ations (i− to i− 1), start with a larger step size

β
(i)

= β(i−1)/ξ where ξ ∈ (0, 1) is a step-size
adaptation parameter;

• otherwise start with β
(i)

= β(i−1);
ii) (backtracking search) select

β(i) = ξtiβ
(i)

(27a)

where ti ≥ 0 is the smallest integer such that (27a) sat-
isfies the majorization condition (26d); backtracking
event corresponds to ti > 0.

We select the initial step size β
(0)

using the Barzilai-
Borwein (BB) method [32]. We also apply the function
restart [33] to restore the monotonicity and improve
convergence; see the following discussion.

2) (BFGS) Set the design matrix A = bL
◦
(
Φα(i)

)
, treat it

as known2, and minimize the regularized NLL function
f
(
α(i),I) with respect to I; i.e.,

I(i) = argmin
I�0
LA(I) (28)

using the inner L-BFGS-B iteration, initialized by I(i−1).

Iterate between Steps 1 and 2 until the relative distance of
consecutive iterates of the density map α does not change
significantly:

‖α(i) −α(i−1)‖2 < ε‖α(i)‖2, (29)

where ε > 0 is the convergence threshold. The convergence cri-
teria for the inner TV-denoising and L-BFGS-B iterations in
Steps 1 and 2 are chosen to trade off the accuracy and speed of
the inner iterations and provide sufficiently accurate solutions
to (26c) and (28); see [12, Sec. IV-B2] for details.

We refer to the iteration between Steps 1 and 2 as the
NPG-BFGS algorithm: it is the first physical-model–based
image reconstruction method for simultaneous blind sparse

2This selection corresponds to LA(I) = L (
α(i),I)

; see also (22b).

image reconstruction and mass-attenuation spectrum estimation
from polychromatic measurements; see also our preliminary
work in [11]. In [11], we approximated Laplace integrals with
Riemann sums, used a smooth approximation of the nonneg-
ativity penalties in (25c), and did not employ signal-sparsity
regularization.

If the mass-attenuation spectrum ι(κ) is known and we iterate
Step 1 only to estimate the density-map image α, we refer to
this iteration as the NPG algorithm (known ι(κ)).

If we do not apply the Nesterov’s acceleration (26a)–(26b)
and use only the proximal-gradient (PG) step (26c) to update
the density-map iterates α, i.e., assign (31c) instead of (26b) in
every iteration, we refer to the corresponding iteration as the
PG-BFGS algorithm.

Scale-and-shift adjustment of the NPG-BFGS and PG-
BFGS estimates. Denote by Î and α̂ the mass-attenuation
spectrum parameter and density-map image estimates upon
convergence of the NPG-BFGS iteration. To emphasize the
dependence of the objective function (25b) on u, we denote
it here by fu(α,I). If the last element ÎJ of Î is zero, we
can trivially improve this objective function by using the shift
ambiguity: remove this zero element by circularly shifting
Î and divide Î and α̂ by q; after this adjustment, we would
need to continue the NPG-BFGS iteration and seek the new
local minimum. However, we can avoid additional iteration
and simply adjust the regularization constant u as well as
α̂ and Î by assigning new values to them: (u, α̂, Î)←(
qu, α̂/q, [0, Î1, . . . , ÎJ−1]

T /q
)

. Apply this adjustment

sequentially until the last element of the new Î is nonzero,
which yields a local minimum (α̂, Î) of the new objective func-
tion fu (α,I) that is not possible to improve on by a simple
shift adjustment. Our empirical experience is that scale-and-
shift adjustment is either not needed (no zero elements at the
end of Î) or minor (very few zero elements): it slightly changes
the grid of u over which we search for the best reconstructions,
see also Section VI for discussion on selection of u.

C. Function Restart and Monotonicity

If f(α,I(i−1)) is a convex function of α, apply [28,
Lemma 2.3] to establish that the iterate α(i) attains lower (or
equal) objective function than the intermediate signal α(i)

f(α(i),I(i−1)) ≤ f(α(i),I(i−1))− 1

2β(i)
‖α(i) −α(i)‖22,

(30)

where we have used the fact that step size β(i) satisfies the
majorization condition (26d). However, (30) does not guaran-
tee monotonicity of Step 1. We apply the function restart [33]
to ensure this monotonicity and improve convergence. In partic-
ular, we apply the function restart as follows: if monotonicity of
Step 1 is violated in Iteration i, i.e., if

f(α(i),I(i−1)) > f(α(i−1),I(i−1)) (restart cond.)
(31a)
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set

θ(i−1) = 1 (31b)

and repeat Step 1 using this selection. In this repeated step, the
momentum term θ(i−1)−1

θ(i)

(
α(i−1) −α(i−2)

)
in (26b) becomes

zero, and

α(i) = α(i−1) (31c)

holds. Consequently, the new Step 1 is monotonic:

f(α(i),I(i−1)) ≤ f(α(i−1),I(i−1)), (31d)

which follows by substituting (31c) into (30).
Once we can guarantee the monotonicity of Step 1 in every

Iteration i, it is easy to establish the monotonicity of the entire
NPG-BFGS iteration:

Remark 1 (Monotonicity): Under condition (24) of
Theorem 1, the NPG-BFGS iteration with function restart is
monotonically non-increasing:

f(α(i),I(i)) ≤ f(α(i−1),I(i−1)) (32)

for all i.

Proof: Under condition (24), f (α,I) is a convex func-
tion of α. In this case, we have established that (31d)
holds and Step 1 is monotonic. By Step 2, f(α(i),I(i−1)) ≥
f(α(i),I(i)) and (32) follows. �

Clearly, PG-BFGS and NPG (for known ι(κ)) are monotonic
as well under the convexity condition (24). To derive the mono-
tonicity results, we have used only the fact that step size β(i)

satisfies the majorization condition (26d), rather than using any
specific details of the step-size selection.

In the following, we show that our PG-BFGS algorithm
converges to a critical point of the objective function; inter-
estingly, this convergence analysis does not require convexity
of the objective function with respect to α. Unfortunately,
these theoretical convergence properties do not carry over to
the NPG-BFGS iteration, which empirically outperforms the
PG-BFGS method; see Figs. 5 and 10 in Section VI.

D. Convergence Analysis of the PG-BFGS Iteration

We analyze the convergence of the PG-BFGS iteration using
arguments similar to those in [30]. Although NPG-BFGS con-
verges faster than PG-BFGS empirically, it is not easy to
analyze its convergence due to NPG’s Nesterov’s accelera-
tion step and adaptive step size. In this section, we denote the
sequence of PG-BFGS iterates by {(α(i),I(i))}∞i=0.

We have established the monotonicity of the PG-BFGS iter-
ation for step sizes β(i) that satisfy the majorization condition,
which includes the above step-size selection as well.

Since our f(α,I) are lower bounded (which is easy to
argue; see Appendix C), the sequence f(α(i),I(i)) con-
verges. It is also easy to conclude that the sequence ai �∥∥α(i) −α(i−1)

∥∥2
2
/β(i) is Cauchy by showing

∑∞
i=0 ai < +∞

according to (30) when (31c) holds. Thus α(i) converges if
{β(i)}∞i=1 is upper bounded.

A better result
∑∞

i=0

∥∥α(i) −α(i+1)
∥∥
2
< +∞ [30] can be

established because f(α,I) satisfies the KL property. This
property has been first used in [25] to establish the critical-
point convergence for an alternating proximal-minimization
method, which is then extended in [30] to the more gen-
eral block coordinate-descent method. Using the analysis in
[25], [34] shows the convergence of the alternating proximal-
minimization algorithm by applying the KL property to a
biconvex objective function.

Next, we make the following claim on the convergence of the
PG-BFGS iteration.

Theorem 3: Consider the sequence {(α(i),I(i))}∞i=0 of PG-
BFGS iterates, with step size β(i) satisfying the majorization
condition (26d). Assume

1) bounded step size: there exist positive β+ > β− > 0 such
that β(i) ∈ [β−, β+] for all i,

2) L(α,I) is a strongly convex function of I , and
3) the gradient of L(α,I) with respect to (α,I) is

Lipschitz continuous.
Then (α(i),I(i)) converges to one of the critical points

(α�,I�) of f(α,I) and

∞∑
i=1

‖α(i+1) −α(i)‖2 < +∞,

∞∑
i=1

‖I(i+1) − I(i)‖2 < +∞.

(33)

Proof: We apply [30, Lemma 2.6] to establish the conver-
gence of {(α(i),I(i))}+∞

i=1 . Since r(α) in (25c) and I[0,+∞)(I)
are lower-bounded, we need to prove only that (16) is lower-
bounded. By using the fact that lnx ≤ x− 1, we have

L(α,I) ≥0. (34)

According to the assumption, f(α,I) is strongly convex over
I and the step size β(i) is bounded. Hence, there exist constants
0 < � < L < +∞ such that

f(α(i+1),I(i))− f(α(i+1),I(i+1)) ≥ �

2
‖I(i) − I(i+1)‖22

(35a)

L ≥ 1

β(i)
≥�. (35b)

In addition, f(α,I) satisfies the KL property according to
Theorem 2. We have now verified all conditions of [30,
Lemma 2.6]. �

The conditions for strong convexity of L (α,I) as a function
of I are discussed in Section IV; see also Section III-C. The
KL property can provide guarantees on the convergence rate
under additional assumptions; see [25, Theorem 3.4]. The con-
vergence properties of NPG-BFGS are of great interest because
NPG-BFGS converges faster than PG-BFGS; establishing these
properties is left as future work.

VI. NUMERICAL EXAMPLES

We now evaluate the proposed algorithms using simulated
and real-data examples.
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Fig. 2. (a) Density-map image used to generate the sinogram, and (b) mass
attenuation and incident X-ray spectrum as functions of the photon energy ε.

We construct the fan-beam X-ray projection transform matrix
Φ and its adjoint operator ΦT directly on GPU with circular
masks [35]; the multi-thread version on CPU is also available;
see https://github.com/isucsp/imgRecSrc, which also contains
Matlab implementation of the proposed algorithms.

A. Simulation Example

Consider the reconstruction of the 512 × 512 image in
Fig. 2a of an iron object with density-map αtrue. We generated
a fan-beam polychromatic sinogram, with distance from the X-
ray source to the rotation center equal to 2000 times the pixel
size, using the interpolated mass attenuation κ(ε) of iron [36]
and the incident spectrum ι(ε) from tungsten anode X-ray tubes
at 140 keV with 5% relative voltage ripple [37]; see Fig. 2b.
The mass-attenuation spectrum ι(κ) is constructed by combin-
ing κ(ε) and ι(ε) and shown in Fig. 1b, see also Fig. 1a. Our
simulated approximation of the noiseless measurements uses
130 equi-spaced discretization points over the range 20 keV
to 140 keV. We simulated independent Poisson measurements
(En)Nn=1 with means (EEn)Nn=1 = Iout(α,I). We mimic real
X-ray CT system calibration by scaling projection matrix Φ
and spectrum ι(ε) so that the maximum and minimum of the
noiseless measurements (EEn)Nn=1 are 216 and 20, respectively.
Here, the scale of Φ corresponds to the real size that each image
pixel represents, and the scale of ι(ε) corresponds to the current
of the electrons hitting the tungsten anode as well as the overall
scanning time.

Our goal is to reconstruct a 512× 512 density-map using the
measurements from an energy-integrating detector array of size
512 for each projection.

Since the true density-map is known, we adopt relative
square error (RSE) as the main metric to assess the performance
of the compared algorithms:

RSE{α̂} = 1−
(

α̂Tαtrue

‖α̂‖2‖αtrue‖2

)2

(36)

where αtrue and α̂ are the true and reconstructed signals, respec-
tively. Note that (36) is invariant to scaling α̂ by a nonzero
constant, which is needed because the magnitude level of α
is not identifiable due to the ambiguity of the density-map and
mass-attenuation spectrum; see Section III-B.

We compare
• the traditional FBP methods

– without linearization [3, Ch. 3] (termed FBP) and

– with linearization to correct for the polychromatic
source [19] (linearized FBP)

based on the ‘data’

y = −ln◦ E (without linearization) (37a)

y =
(
ιL
)−1

◦ (E) (with linearization) (37b)

respectively;

• linearized basis pursuit denoising (linearized BPDN),
which applies the NPG approach to solve the analy-
sis BPDN problem [24]: minα

1
2‖y − Φα‖22 + u′r(α),

where y are the linearized measurements in (37b) and the
penalty r(α) has been defined in (25c);
• our

– NPG-BFGS algorithm with the B1-spline tuning
constants (13e) chosen to satisfy

qJ = 103, κ�0.5(J+1)	 = 1, J = 30 (38)

– NPG (known ι(κ)) algorithm for estimating α
with = 4; see Section V-B.

The linearizing transform (37b) assumes knowledge of
the mass-attenuation spectrum ι(κ) and, in the absence of
noise, leads to the linear model y = Φα under the general
polychromatic-source scenario. In contrast, the standard loga-
rithm transformation of the X-ray measurements (37a) ignores
the hardening effect and can possibly lead to the linear model
only for monochromatic X-ray sources. If the X-ray source is
monochromatic, (37a) and (37b) coincide up to a known addi-
tive constant, and the two FBP methods are identical; in this
case, linearized BPDN also coincides with the standard analysis
BPDN approach applied to X-ray CT data.

For all methods that use sparsity and nonnegativity regular-
ization (NPG-BFGS, NPG, and linearized BPDN), the regular-
ization constants u and u′ have been tuned manually for the best
average RSE performance for each number of projections using
a 9-point grid spanning 9 orders of magnitude.

All iterative algorithms employ the convergence criterion
(29) with the threshold ε = 10−6 and the maximum number
of iterations set to 4000. We initialize iterative reconstruction
schemes with or without linearization using the corresponding
FBP reconstructions; see also [12, Sec. IV-B4] for details on
NPG-BFGS initialization.

Here, the non-blind linearized FBP, NPG (known ι(κ)), and
linearized BPDN methods assume known ι(κ) (which requires
knowledge of the incident spectrum of the X-ray machine
and mass attenuation (material)), computed using (10a), with
I equal to the exact sampled ι(κ) and J = 100 spline basis
functions spanning three orders of magnitude.

Neither FBP nor NPG-BFGS assumes knowledge of
the mass-attenuation spectrum ι(κ): FBP ignores the
polychromatic-source effects whereas NPG-BFGS corrects
blindly for these effects without knowledge of ι(κ).

Figs. 3 and 4 show the reconstructed density-map images
and profiles of different methods from 60 equi-spaced fan-
beam projections with spacing 6◦, using one realization of
noisy Poisson measurements. Fig. 5 shows the RSEs of several
methods as functions of the iteration index i and demon-
strates that RSE of NPG-BFGS decreases significantly faster
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Fig. 3. Reconstructions from 60 projections.

Fig. 4. (a)–(b) Reconstruction profiles of different methods from 60 projections and (c) the polychromatic measurements as function of the monochromatic
projections and corresponding fitted inverse linearization curves.

Fig. 5. The RSEs as functions of the iteration index i.

with increasing i than the RSE of PG-BFGS; NPG-BFGS
also converges faster than PG-BFGS. The FBP reconstruction
in Fig. 3a is corrupted by both aliasing and beam-hardening
(cupping and streaking) artifacts. Linearized FBP removes the
beam-hardening artifacts but retains the aliasing artifacts and
enhances noise due to the zero-forcing nature of linearization;
see Fig. 3b. Linearized BPDN enforces the signal nonnegativity
and sparsity constraints and achieves a smooth reconstruction
in Fig. 3d with a 0.55% RSE. Thanks to the superiority of the
proposed model that accounts for both the polychromatic X-ray
source and Poisson noise, NPG-BFGS and NPG achieve the
best (and nearly the same) reconstructions; see Fig. 3e.

We also show in Fig. 3c the reconstruction by the NPG-
BFGS method with very small u (labeled NPG-BFGS0), which

effectively removes the signal sparsity constraint and imposes
only the signal nonnegativity constraint; consequently, Step 1
in NPG-BFGS0 iteration has a closed form and reduces to
simple nonnegativity thresholding. Hence, NPG-BFGS0 is a
maximumlikelihood (ML) approach that aims at minimizing
the NLL (16) subject to the physical parameter constraints
α � 0 and I � 0. As NPG-BFGS0 iterates, its RSE decreases,
reaches a minimum, and then increases; see Fig. 5. This is a
common behavior for unregularized ML image reconstruction
approaches [38]. Fig. 3c shows this method’s reconstruction at
iteration step i = 500, which gives the best RSE; see also Fig. 5.
Since it terminates early and has a simple Step 1, NPG-BFGS0

running only 500 iterations is roughly 8 times faster than
NPG-BFGS. The NPG-BFGS0 method can be thought of as
an improved version of [11], which also imposes only signal
nonnegativity. A comparison of NPG-BFGS0 and NPG-BFGS
shows the benefit of signal-sparsity regularization.

Figs. 4a and 4b show the reconstruction profiles of the 250th
column, indicated by the red line in Fig. 3a. Recall that NPG-
BFGS cannot identify the magnitude level of the density-map
image α, which explains the corresponding magnitude discrep-
ancy between NPG-BFGS, NPG-BFGS0, and the non-blind
methods in Fig. 4b. We have corrected this discrepancy man-
ually in Fig. 3 because we wish to show visual quality and
ability of different methods to remove artifacts and suppress
noise, rather than the trivial difference in image contrast.

In Fig. 4c, we show the scatter plots with 1000 randomly
selected points representing FBP and NPG-BFGS reconstruc-
tions from 60 fan-beam projections. Denote by (α̂, Î) the
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Fig. 6. Average RSEs as functions of the number of projections.

estimate of (α,I) obtained upon convergence of the NPG-
BFGS iteration. The y-coordinates in the scatter plots in Fig. 4c
are the noisy measurements in log scale −ln En, and the cor-
responding x-coordinates are the monochromatic projections
φT

n α̂FBP (red) and φT
n α̂ (green) of the estimated density-maps.

−ln
[
bL(·)Î

]
is the inverse linearization function that maps

monochromatic projections to fitted noiseless polychromatic
projections −ln Iout

n (α̂, Î). Since FBP assumes a linear rela-
tion between −ln◦ Iout and Φα, its scatter plot (red) can be
fitted by a straight line y = x, as shown in Fig. 4c. A few points
in the FBP scatter plot with ln En = 0 and positive monochro-
matic projections indicate severe streaking artifacts. Observe
relatively large residuals with bias, which remain even when
more sophisticated linear models, e.g. iterative algorithms with
sparsity and nonnegativity constraints, were adopted, thereby
necessitating the need for accounting for the polychromatic
source. The nonnegativity constraints on α are particularly
important for good estimation of bL(·)I .

Fig. 6 shows the average RSEs (over 5 Poisson noise real-
izations) of different methods as functions of the number of
fan-beam projections in the range from 0◦ to 359◦. Average
RSEs of the methods that do not assume knowledge of the
mass-attenuation spectrum ι(κ) are shown using solid lines;
dashed lines represent non-blind methods that assume known
mass-attenuation spectrum ι(κ). Red color represents methods
that employ both signal-sparsity regularization and nonnega-
tivity image constraints, black is for the method that employs
the nonnegativity image constraints only, and blue marks the
methods that apply neither signal-sparsity regularization nor
nonnegativity image constraints.

FBP ignores the polychromatic nature of the measurements;
consequently, it performs poorly and does not improve as
the number of projections increases. Linearized FBP, which
assumes perfect knowledge of the mass-attenuation spectrum,
performs much better than FBP, as shown in Fig. 6. Thanks to
the signal nonnegativity and sparsity that it imposes, linearized
BPDN achieves up to 20 times smaller RSEs compared with
the linearized FBP. However, due to its zero-forcing nature,
linearized BPDN enhances noise and breaches the Poisson
measurement model, which explains its inferior performance
compared with NPG (known ι(κ)).

As expected, NPG (known ι(κ)) performs slightly better than
NPG-BFGS because it uses perfect knowledge of ι(κ). NPG
(known ι(κ)) and NPG-BFGS attain RSEs that are 24% to 37%
of that achieved by linearized BPDN, which can be attributed
to optimal statistical processing by these methods, in contrast
with the suboptimal linearization. It is remarkable that the blind
NPG-BFGS method effectively matches the performance of
NPG (known ι(κ)).

B. Real-Data Examples

We compare the NPG-BFGS and linear FBP methods by
applying them to reconstruct two industrial objects containing
defects, labeled C−I and C−II, from real fan-beam projec-
tions. Here, NPG-BFGS achieves visually good reconstructions
for u = 10−5, presented in Fig. 7, where we also show its
reconstruction for u = 10−4.

The C−I data set consists of 360 equi-spaced fan-beam pro-
jections with 1◦ separation collected using an array of 694
detectors, with X-ray source to rotation center distance equal
to 3492 times the detector size. Figs. 7a and 7b show 512×
512 density-map image reconstructions of object C−I using
the FBP and NPG-BFGS methods, respectively. The linear
FBP reconstruction, which does not account for the polychro-
matic nature of the X-ray source, suffers from severe streaking
and cupping artifacts, whereas the NPG-BFGS reconstruction
removes these artifacts by accounting for the polychromatic
X-ray source.

The C−II data set consists of 360 equi-spaced fan-beam
projections with 1◦ separation collected using an array of
1380 detectors, with X-ray source to rotation center distance
equal to 8696 times the detector size. Figs.7c–7e show 1024×
1024 density-map image reconstructions of object C−II by
the FBP, NPG-BFGS0, and NPG-BFGS methods, respectively.
The NPG-BFGS and NPG-BFGS0 reconstructions do not have
streaking and cupping artifacts exhibited by FBP. NPG-BFGS0

terminates after 500 iterations and is 2 to 3 times faster than
NPG-BFGS.

Figs. 7g–7i show the FBP, NPG-BFGS0 (terminated at i =
500 iterations), and NPG-BFGS reconstructions from a down-
sampled C−II data set with 120 equi-spaced fan-beam pro-
jections with 3◦ separation. The FBP reconstruction in Fig. 7g
exhibits both beam-hardening and aliasing artifacts. In contrast,
the NPG-BFGS reconstruction in Fig. 7i does not have these
artifacts because it accounts for the polychromatic X-ray source
and employs signal-sparsity regularization in (25c). Indeed, if
we reduce regularization constant u sufficiently, the aliasing
effect will occur in the NPG-BFGS reconstruction in Fig. 7i
as well. A comparison of NPG-BFGS0 and NPG-BFGS shows
the benefit of signal-sparsity regularization, particularly its abil-
ity to reduce noise. If we run NPG-BFGS0 beyond i = 500
iterations, it will exhibit aliasing artifacts, in addition to noise.

Fig. 8 shows the reconstruction profiles of the 337th and
531th rows highlighted by the red horizontal lines across
Figs. 7c and 7e. Noise in the NPG-BFGS reconstructions can be
reduced by increasing regularization parameter u: Figs. 8c and
8d show the corresponding NPG-BFGS reconstruction profiles
for u = 10−4, which is 10 times that in Figs. 8a and 8b.
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Fig. 7. Real X-ray CT reconstructions of objects C−I and C−II from (a)–(f) 360 and (g)–(h) 120 projections.

Fig. 8. C−II object reconstruction profiles from 360 projections with (a)–(b) u = 10−5 and (c)–(d) u = 10−4 used by the NPG-BFGS method.
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Fig. 9. Polychromatic measurements as functions of monochromatic projec-
tions and corresponding inverse linearization curves.

Fig. 10. Centered objectives as functions of the iteration index i.

The NPG-BFGS reconstructions of C−I and C−II have
higher contrast around the inner region where cracks reside,
which may be due to the detector saturation that leads to mea-
surement truncation, scattering, noise-model mismatch, or the
bowtie filter applied to the X-ray source. We leave further ver-
ification of causes and potential correction of this problem to
future work and note that this issue does not occur in the
simulated-data examples that we constructed; see Section VI-A.

In Fig. 9, we show the scatter plots with 1000 randomly
selected points representing FBP and NPG-BFGS reconstruc-
tions of the C−II object from 360 projections. A few points
in the FBP scatter plot with ln En = 0 and positive monochro-
matic projections indicate severe streaking artifacts, which we
also observed in the simulation example; see Fig. 4c.

We now illustrate the advantage of using Nesterov’s accel-
eration in Step 1 of NPG-BFGS. Fig. 10 shows the centered
objective f(α,I)− fMIN with u = 10−5 as a function of the
iteration index i for the NPG-BFGS and PG-BFGS meth-
ods applied to the C−II reconstruction from 360 projections;
here fMIN = minx f(x). Thanks to the Nesterov’s acceleration
(26b), NPG-BFGS is 2 to 3 times faster than PG-BFGS.

VII. CONCLUSION

We developed a model for single-material beam-hardening
artifact correction that requires no more information than the
conventional FBP method. The proposed model relies on sepa-
rability of the attenuation to combine the variations of the mass
attenuation and X-ray spectrum into the mass-attenuation spec-
trum. Numerical experiments on both simulated and real X-ray

Fig. 11. The mass attenuation coefficients κ of iron versus the photon energy ε
with a K-edge at 7.11 keV.

CT data were presented. Our blind method for sparse X-ray CT
reconstruction matches or outperforms non-blind linearization
methods that assume perfect knowledge of the X-ray source
and material properties. Future work will include extending our
parsimonious polychromatic measurement-model parameteri-
zation to multiple materials [39] and developing corresponding
reconstruction algorithms.

APPENDIX A
MASS-ATTENUATION PARAMETERIZATION

All mass-attenuation functions κ(ε) encountered in practice
can be divided into piecewise-continuous segments, where each
segment is a differentiable monotonically decreasing function
of ε, see [36, Tables 3 and 4] and [40, Sec. 2.3]. The points
of discontinuity in κ(ε) are referred to as K-edges and are
caused by the interaction between photons and K shell elec-
trons, which occurs only when ε reaches the binding energy
of the K shell electron. One example in Fig. 11 is the mass
attenuation coefficient curve of iron with a single K-edge at
7.11 keV.

We define the domain E of ε and partition it into M + 1
intervals ((em, em+1))

M
m=0 with e0 = min(E ) and eM+1 =

max(E ), such that in each interval κ(ε) is invertible and dif-
ferentiable. Here, E is the support set of the incident X-ray
spectrum ι(ε) and (em)Mm=1 are the M K-edges in E . Taking
Fig. 11 as an example, there is only one K-edge at e1, given
that the incident spectrum has its support as (e0, e2). The
range and inverse of κ(ε) within (em, em+1) are (um, vm)
and εm(κ), respectively, with um � infε↗em+1

κ(ε) < vm �
supε↘em κ(ε). Then, the noiseless measurement in (4b) can be
written as

Iout =

∫ M∑
m=0

1(um,vm)(κ)ι(εm(κ)) |ε′m(κ)| e−κ
∫
α(x,y)d�dκ,

and (6b) and (6a) follow by noting that

ι(κ) =

M∑
m=0

1(um,vm)(κ)ι(εm(κ)) |ε′m(κ)| ≥ 0 (A1)

and that Iout equals I in when α(x, y) = 0. Here, 1(um,vm)(κ)
is an indicator function that takes value 1 when κ ∈ (um, vm)
and 0 otherwise. Observe that (A1) reduces to (7) when M = 0.



GU AND DOGANDŽIĆ: BLIND X-RAY CT IMAGE RECONSTRUCTION 163

Fig. 12. Integral region illustration.

APPENDIX B
PROOF OF LEMMA 1

We first introduce a lemma.
Lemma 3: For ι(κ) that satisfy Assumption 1, the following

holds:

w �
∫∫ [

μκ− qj0

(qj0 + 1)2
(μ+ κ)

2

]
ι(κ)ι(μ)h(κ+ μ)dμ dκ

≥ 0 (B1)

for q > 1 and any nonnegative function h : R→ R+.

Proof: In Fig. 12, the (μ, κ) coordinates of P , B and N
are (κ0, 0), (κj0 , 0) and (κJ+1, 0), respectively; the line OS is
defined by κ = μ.

Considering the finite support set of ι(κ), the effective inte-
gral range is [κ0, κJ+1]

2, which is the rectangle RMSJ in
Fig. 12. Using the symmetry between κ and μ in (B1), we
change the integral variables of (B1) by rotating the coordinates
by 90◦:

μ =
μ̄− κ̄√

2
, κ =

μ̄+ κ̄√
2

(B2)

which yields

w =

√
2κJ+1∫

√
2κ0

g(μ̄)∫
0

w̄(μ̄, κ̄)dκ̄ h(
√
2μ̄)dμ̄ (B3a)

where

w̄(μ̄, κ̄) �z(μ̄, κ̄)ι

(
μ̄+ κ̄√

2

)
ι

(
μ̄− κ̄√

2

)
(B3b)

z(μ̄, κ̄) �
(
qj0 − 1

qj0 + 1

)2

μ̄2 − κ̄2 (B3c)

g(μ̄) �

⎧⎨⎩μ̄−√2κ0, μ̄ ≤ 1√
2
(κ0 + κJ+1)

√
2κJ+1 − μ̄, μ̄ > 1√

2
(κ0 + κJ+1)

(B3d)

and (B3a) follows because (B3b) is even-symmetric with
respect to κ̄. Hence, the integration region is reduced to the
triangle RSJ .

Note that z(μ̄, κ̄) ≥ 0 in the cone between lines OH and OI ,
[both of which are specified by z(μ̄, κ̄) = 0], which implies
that w̄ (μ̄, κ̄) ≥ 0 within RCE and CSQ; hence, the integrals
of w̄(μ̄, κ̄)h

(√
2μ̄

)
over RCE and CSQ are nonnegative and,

consequently,

w ≥
∫∫
R

w̄(μ̄, κ̄)dκ̄ h(
√
2μ̄)dμ̄. (B4)

Now

R �
{
(μ̄, κ̄)

∣∣∣∣ μ̄− κ̄√
2
∈ [κ0, κj0 ],

μ̄+ κ̄√
2
∈ [κj0 , κJ+1]

}
(B5)

is our new integration region, which is the rectangle ECQJ .
Next, we split the inner integral over κ̄ on the right-hand side

of (B4) for fixed μ̄ into two regions: z(μ̄, κ̄) ≥ 0 and z(μ̄, κ̄) <
0, i.e., trapezoid ECQI and triangle EIJ , and prove that the
positive contribution of the integral over ECQI is larger than
the negative contribution of the integral over the EIJ .

The line OI is specified by z(μ̄, κ̄) = 0, and the (μ, κ)-
coordinate of I in Fig. 12 is thus (κJ+1−j0 , κJ+1). Define

c �
√
2

1 + qj0
(B6)

and note that ECQI ⊆ (Klow ∪Kmid)×Khigh and EIJ ⊆
Klow ×Khigh. We now use Assumption 1 to conclude that the
following hold within R:
• When z(μ̄, κ̄) ≥ 0, i.e., in region ECQI ,

ι(κ)
∣∣∣κ= μ̄+κ̄√

2

≥ι (cqj0 μ̄) (B7a)

ι(μ)
∣∣∣μ= μ̄−κ̄√

2

≥ι (cμ̄) (B7b)

where (B7a) follows because κ = μ̄+κ̄√
2

takes values

between κj0 and cqj0 μ̄ ∈ [κj0 , κJ+1]; i.e., κ ∈ Khigh and
ι(κ) decreases in Khigh. (B7b) follows because μ = μ̄−κ̄√

2

takes values between cμ̄ ∈ [κ0, κJ+1−j0 ] and κj0 ; i.e.,
μ crosses Klow (ι(κ) increasing) and Kmid (ι(κ) high)
regions.
• When z(μ̄, κ̄) < 0, i.e., in region EIJ ,

ι(κ)
∣∣∣κ= μ̄+κ̄√

2

< ι
(
cqj0 μ̄

)
(B7c)

ι(μ)
∣∣∣μ= μ̄−κ̄√

2

< ι (cμ̄) (B7d)

where (B7c) follows because κ = μ̄+κ̄√
2

> cqj0 μ̄, i.e., κ ∈
Khigh, and (B7d) follows because μ = μ̄−κ̄√

2
< cμ̄, i.e.,

μ ∈ Klow.
By combining (B7) and (B4), we have

w ≥
(κJ+1+κJ+1−j0)/

√
2∫

(κ0+κj0)/
√
2

∫
{κ̄ | (μ̄,κ̄)∈R}

z(μ̄, κ̄)dκ̄h̄(μ̄)dμ̄ (B8)

where h̄(μ̄) � ι
(
cqj0 μ̄

)
ι (cμ̄)h

(√
2μ̄

) ≥ 0. It is easy to ver-
ify that

∫
{κ̄ | (μ̄,κ̄)∈R} z(μ̄, κ̄)dκ̄ is an increasing function of μ̄



164 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 2, NO. 2, JUNE 2016

over the range of the outer integral [(κ0 + κj0)/
√
2, (κJ+1 +

κJ+1−j0)/
√
2], and, consequently,∫

{κ̄ | (μ̄,κ̄)∈R}

z(μ̄, κ̄)dκ̄ ≥ 0, (B9)

where the equality is attained for μ̄ = (κ0 + κj0)/
√
2. Finally,

(B1) follows from (B8) and (B9). �
This proof of convexity of Lemma 3 is conservative as we

loosen the positive integrals in regions RCE and CSQ by
replacing them with zeros.

We now use Lemma 3 to prove the convexity of Lι(α)
in Lemma 1. Note that the mass-attenuation spectrum
ι(κ) is considered known in Lemma 1. We define ξ(·) �
ιL(·) and the corresponding first and second derivatives:

ξ̇(s) = (−κι)L
(s) and ξ̈(s) =

(
κ2ι

)L
(s). Observe that Iout =

(Iout
n )

N
n=1 = ξ◦(Φα) =

(
ξ(φT

nα)
)N
n=1

. For notational simplic-
ity, we omit the dependence of Iout on α and I and use Iout

and ξ◦(Φα) interchangeably.
We use the identities

∂ξ◦(Φα)

∂αT
= diag

(
ξ̇◦(Φα)

)
Φ (B10a)

∂ξ(φT
nα)

∂α∂αT
= ξ̈

(
φT

nα
)
φnφ

T
n (B10b)

to compute the gradient and Hessian of the Poisson NLL
in (18):

∂Lι(α)

∂α
= ΦT diag

(
ξ̇◦ (Φα)

) [
1− diag−1

(Iout)E] (B11a)

∂Lι(α)

∂α∂αT
= ΦT diag−2

(Iout) diag (E) diag (x) Φ (B11b)

where the N × 1 vector x = (xn)
N
n=1 is defined as

xn = ξ̇2 (s) + ξ̈ (s) ξ(s)

(Iout
n

En − 1

)∣∣∣∣
s=φT

nα

. (B11c)

Since Iout
n ≥ (1− V )En ≥ 0 according to (21a), we have

Iout
n

En − 1 ≥ −V (B12)

and

xn ≥
∫∫ (

μκ− κ2V
)
ι(μ)ι(κ)e−(μ+κ)φT

nα dκ dμ (B13a)

=

∫∫ (
μκ− μ2 + κ2

2
V

)
ι(μ)ι(κ)e−(μ+κ)φT

nα dκ dμ

(B13b)

≥ (qj0 + 1)2

q2j0 + 1
w ≥ 0 (B13c)

where (B13a) follows by applying inequality (B12) to (B11c),
using the Laplace-transform identity for derivatives (2), and
combining the multiplication of the integrals; and (B13b) is due
to the symmetry with respect to μ and κ. Now, plug (21b) into
(B13b) and apply Lemma 3 with h(κ) = e−κφT

nα to conclude
(B13c). Therefore, the Hessian of Lι(α) in (B11b) is positive
semidefinite.

APPENDIX C
PROOF OF THEOREM 2

According to [30], real-analytic and semialgebraic functions
and their summations satisfy the KL property automatically.
Therefore, the proof consists of showing the following two
parts: (a) the NLL in (16) is a real-analytic function of (α,I)
on C ⊆ dom(f) and (b) both r(α) in (25c) and I[0,+∞)(I) are
semialgebraic functions.

Real-analytic NLL. The NLL in (16) is in the form of
weighted summations of terms bL(φT

nα)I , ln
[
bL(φT

nα)I],
and ln2

[
bL(φT

nα)I] for n = 1, 2, . . . , N . Weighted summa-
tion of real-analytic functions is real-analytic; hence, we need
to prove that 1(t) = bL

(
φT (α+ tγ)

)
(I + tJ ), 2(t) =

ln 1(t), and 3(t) =
2
2(t) are real-analytic functions. Since

( i(t))
3
i=1 are smooth, it is sufficient to prove that the mth

derivatives, (m)
i (t), are bounded for all m, (α,I), (γ,J ), and

t such that (α+ tγ,I + tJ ) ∈ dom(f).
The mth derivative of 1(t) is

(m)

1 = (φTγ)m ((−κ)mb)
L
(α+ tγ) (I + tJ )

+ m(φTγ)m−1
(
(−κ)m−1b

)L
(α+ tγ)J (C1)

which is bounded for any α, I , γ, J , and t such that
(α+ tγ,I + tJ ) is in one of compact subsets C ⊆ dom(f).

For any compact set C ⊆ dom(f), there exists ε > 0 such
that 1(t) ≥ ε for all (α+ tγ,I + tJ ) ∈ C. ln(·) and (·)2 are
analytic on [ε,+∞). Since the compositions and products of
analytic functions are analytic [41, Ch. 1.4], both 2(t) and

3(t) are analytic. Therefore, the NLL in (16) is analytic.
Semialgebraic regularization terms. According to [30],

i) the �2 norm ‖·‖2 is semialgebraic, ii) the indicator func-
tion I[0,+∞)(·) is semialgebraic, iii) finite sums and products of
semialgebraic functions are semialgebraic, and iv) the compo-
sition of semialgebraic functions are semialgebraic. Therefore,
I[0,+∞)(α) and I[0,+∞)(I) are both semialgebraic. Since we
can write √∑

j∈Ni

(αi − αj)2 = ‖Piα‖2 (C2)

for some matrix Pi, using i), iii), and iv) leads to semialge-
braic (C2), thus semialgebraic r(α) in (25c). Finally, according
to [30], the sum of real-analytic and semialgebraic functions
satisfies the KL property. Therefore, f(α,I) satisfies the KL
property on a compact subset of domf(α,I).
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