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Abstract—We study the performance of various beamformers
for estimating a current dipole source at a known location
using electroencephalography (EEG) and magnetoencephalog-
raphy (MEG). We present our beamformers in the form of the
generalized sidelobe canceler (GSC). Under this structure, the
beamformer can be solved by finding a filter that achieves the
minimum mean-squared error (MMSE) between the mainbeam
response and filtered observed signal. We express the MMSE as a
function of the filter’s rank and use it as a criterion to evaluate the
performance of the beamformers. We do not make any assump-
tions on the rank of the interference-plus-noise covariance matrix.
Instead, we treat it as low-rank and derive a general expression
for the MMSE. We present numerical examples to compare the
MSE performance of beamformers commonly studied in the
literature: principal components (PCs), cross-spectral metrics
(CSMs), and eigencanceler (EIG) beamformers. Our results show
that good estimates of the dipole source signals can be achieved
using reduced-rank beamformers even for low signal-to-noise
ratio (SNR) values.

Index Terms—Beamforming, dipole source signal, electroen-
cephalography, low-rank covariance matrix, magnetoencephalog-
raphy, sensor array processing.

I. INTRODUCTION

BEAMFORMING techniques have been used to solve
various problems of analyzing neuroelectric and neuro-

magnetic signals, such as the localization of brain activity
sources using electroencephalography (EEG) and magneto-
encephalography (MEG) sensor arrays, as well as source signal
reconstruction and interference cancellation [1]. Specifically,
methods based on linearly constrained minimum variance
(LCMV) beamforming, eigenvalue decomposition, and prin-
cipal component (PC) selection have been proposed to remove
the interference and recover the dipole moments for the case of
known source position [2].
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In [3] we proposed a beamformer based on the cross-spectral
metrics (CSM) for the case when the assumption of sources
of neural activity being distinctly characterized in the spectral
decomposition of the covariance matrix by a few large eigen-
values does not hold. This may happen under the presence
of interference with localized biological origins, such as eye
blinking, cardiac sources, or background brain activity (e.g.,

rhythm) [4]–[6]. The CSM beamformer offers a solution to
this problem by characterizing the neural activity sources not
according to the magnitude of their corresponding eigenvalues,
but based on their cross-spectral content [7]. Furthermore, the
CSM beamformer makes it possible to find a reduced-rank
subspace such that the beamformer is approximated by a few
eigenvalues without significant loss of performance in terms of
the signal to interference-plus-noise ratio (SINR) [8]. Hence, in
this paper we revisit the problem of reduced-rank beamformers
in order to establish a measure of performance for LCMV
spatial filters when estimating a current dipole source at a
known location using EEG/MEG data.

The low-rank nature of our problem is not only a result of
the distinctly characterized few large eigenvalues, but also be-
cause of the interference-plus-noise covariance matrix being un-
known. In this case, an estimate of such matrix must be used.
Typically, the interference-plus-noise covariance matrix is as-
sumed to be of full rank even when its estimate is singular.
Here, as in [9], we consider a general case where the interfer-
ence-plus-noise covariance matrix has arbitrary rank, thus al-
lowing for low-rank interference. We distinguish two scenarios
for which low-rank interference-plus-noise covariance matrix is
of interest: 1) available training data is insufficient to obtain a
full-rank estimate of the covariance matrix of interference and
noise 2) we consider the low-rank covariance matrix of inter-
ference only, i.e., the noise term is neglected (as in, e.g., [10]).
The majority of current methods deal with these problems by
using diagonal loading [11], which results in suboptimal solu-
tions. We approach the problem in a different way: instead of
forcing the covariance matrix of the interference-plus-noise to
be nonsingular, we assume that it is singular and generalize the
beamforming problem under this low-rank condition.

We first write the constrained beamformer in an equivalent
unconstrained form based on the generalized sidelobe canceler
(GSC) [12]. This unconstrained structure allows us to derive
a general expression for the filter that achieves the minimum
mean-squared error (MMSE) between the mainbeam response
and filtered observed signal. We use the MMSE as measure
of performance because it is directly related to the SINR
within the low-rank subspace spanned by the reduced-rank
eigen-basis [13].
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In Section III, we pose the beamforming problem of esti-
mating the current source dipole signals at known positions
in the form of a GSC. Under these conditions, we derive the
MMSE as a function of the rank. In Section III-C we present
different reduced-rank beamformers: PCs, CSMs, and eigen-
canceler (EIG). These beamformers are defined in terms on
the structure of the interference-plus-noise covariance matrix.
Then, we analyze the robustness and MMSE optimality of
these well-known beamformers to establish the conditions
under which they can improve the brain source analysis using
reduced-rank techniques.

In Section IV we show the applicability of our methods
through numerical examples using simulated MEG data. In
Section V, we discuss the results, limitations, and future work.

II. SOURCE AND MEASUREMENT MODELS

Consider the case of measuring the potentials over the scalp
and the magnetic field outside the head produced by dipole
sources using a bimodal array of EEG and MEG sen-
sors. The subscripts E and B refer to the EEG and MEG sen-
sors, respectively. Assume that the sources change in time, but
remain at the same position during the measurements pe-
riod. This assumption holds in practice for evoked response and
event-related experiments [14]. Then, EEG/MEG data is col-
lected by the array of sensors at time samples

. The spatio-temporal data matrix of this
array at the th trial is

(1)

where , is the array response
matrix, is the matrix of dipole moments, and

is the interference-plus-noise matrix (con-
sidered to be arbitrary, but constant between trials). The array
response matrix is derived using the quasistatic approximation
of Maxwell’s equations and spherical head model (see [15]
and references therein). Using a vector representation, we can
rewrite (1) as .
Define , , ,
and . Then, our measurement model is finally
expressed as

(2)

In the previous model, the dimensions of , , and are, re-
spectively, , , and .

Assume that the measurements are taken in the presence of
zero mean Gaussian noise uncorrelated in time and space be-
tween time samples. Then, we define the covariance matrix of
the interference-plus-noise as . For the case of un-
known , we can obtain a consistent estimate of this covariance
matrix as

(3)

where

(4)

III. THE PROPOSED METHODS

In this section we present various spatial filters whose optimal
weights are defined in a reduced-rank space. We use a minimum
mean-squared filter with the structure of a GSC to evaluate the
performance of these reduced-rank beamformers in the estima-
tion of the dipole signal components at a given location .

A. Generalized Sidelobe Canceler

Consider the following LCMV filtering problem:

(5)

where is the desired matrix response (i.e., the one that defines
the gain of the signals at the location of interest while nullifying
signals from elsewhere), and the optimal weights give solu-
tion to . Equation (5) can be solved using the uncon-
strained structure of the GSC as follows: Assume that can
be decomposed into two orthogonal components and ,
i.e., , where lies in the range space of , and

lies in its null space. Since , if is to satisfy
the constraints we must have

(6)

where denotes the generalized inverse of the matrix.
Furthermore, is a linear combination of the columns of
an matrix whose columns are
orthonormal to , i.e.,

(7)

The choices of and imply that satisfies the constraints
independent of . Then, the LCMV is reduced to the uncon-
strained problem

(8)

where the solution is given by

(9)

The general structure of the GSC is shown in Fig. 1. There,
is the mainbeam response, is the auxiliary

data, and is a filtered version of the observed
signal, where

(10)
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Fig. 1. Structure of the GSC.

B. Minimum Mean-Squared Error

The term can be written as

(11)

where , and
. Equation (11) corresponds to a more general form of

the Wiener-Hopf solution and therefore, our filtering problem
can be seen as that of minimizing the error between and ,
i.e.,

(12)

where is the MMSE between the mainbeam response and fil-
tered observed signal, is the trace, and is
the matrix whose diagonal elements correspond to the expected
power of the mainbeam output for one dipole signal component
at one particular time. Note that the value of will be the same
regardless of the generalized inverse selected. For this reason,
in our following calculations we focus (without loss of gener-
alization) on the Moore–Penrose generalized inverse, which we
denote as . Then, we can rewrite the MMSE in (12) as

(13)

The eigenvalue decomposition of is given by

(14)

where is the reciprocal of the th nonzero eigenvalue of
in decreasing order, for , and are the

orthonormal eigenvectors of corresponding to . Substi-
tuting (14) in (13), we have

(15)

where

(16)

The MMSE in (15) represents the best performance of the
beamformer of rank . However, we can evaluate the MMSE at
a reduced-rank as

(17)

where is a set containing a selection of values of the index
. We next describe the procedure to select the indexes in .

C. Reduced-Rank LCMV Beamformers

In this section we describe different beamformers whose rank
is reduced by selecting eigenvalues to approximate as

(18)

The reduced-rank beamformers described here differ between
each other on the covariance matrix used in each case and the
criterion to select the eigenvalues and corresponding eigen-
vectors in (18).

1) Principal Components (PC): In this case, is obtained
using the largest eigenvalues, i.e., .

2) Cross-spectral Metrics (CSM): Here, the eigenvalues are
arranged in decreasing order according to their CSM values

, which are obtained as [3]

(19)

Therefore, contains the values of corresponding to
the eigenvalues with largest , which not necessarily cor-
responds to the largest eigenvalues.

3) Eigencanceler (EIG): While the calculations for the case of
PC and CSM beamformers depend on , the EIG is based
on a modified version of the “classical” LCMV solution,
and has the following structure

(20)

where replaces in the classical solution and corre-
sponds to the projection matrix of the received data onto
the null space of the covariance matrix. The projection ma-
trix that characterizes the EIG [10] is given by

(21)

where is the matrix whose columns are the orthonormal
eigenvectors of that correspond to its zero eigenvalues.

IV. NUMERICAL EXAMPLES

We conduct a series of simulations for MEG measurements
using a spherical head model in order to evaluate the perfor-
mance of our reduced-rank beamformers for different rank and
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Fig. 2. Normalized MMSE as a function of the rank for different SNR values. The results are shown for the PC, CSM, and EIG beamformers.

signal-to-noise ratio (SNR) values. In this simulations, we con-
sider that the covariance matrix of the interference-plus-noise is
given by the estimate defined in (3).

We generated MEG data using an array of sensors
located on a sphere of radius 10.5 cm with a single sensor at the
top position and 3 rings at elevation angles of , , and

, containing, respectively 6, 12, and 18 sensors equally
spaced in the azimuthal direction.

To simulate the sources, we used two dipoles located at
and . The dipole source

components are defined as and
, where the magnitudes , , and are al-

lowed to change in time according to

(22.a)

(22.b)

(22.c)

all with units of , and in milliseconds. Similar models
has been used in previous research (see, e.g., [16], [17]) as they
approximate a typical evoked response. Then, we sampled these
signals every 2 ms, thus obtaining samples for our
computer simulations.

To generate the measurements, we used the forward solution
of the MEG spherical radial field described in [15]. Then, to ap-
proximate realistic spatially correlated noise, we generated 400
random dipoles uniformly distributed on a sphere with radius
of 5 cm (for a discussion on random dipole modeling of spon-
taneous brain activity, see [18]). For each noise dipole, we as-

sumed that its components were uncorrelated and distributed as
with ranging from 3.6 to 0.36 in order to

achieve mean SNR values between 0 and 10 dB, respectively.
Note that we defined the SNR as the ratio (in decibels) of the
Frobenious norm of the signal data matrix to that of the noise
matrix. Finally, we repeated this process with independent noise
realizations to obtain trials.

Under these conditions, we developed a series of numer-
ical examples to evaluate for different rank and SNR
values using the different low-rank beamformers described in
Section III-C. The results in terms of the normalized MMSE
are shown in Fig. 2. These results show that, for high SNR
values, the CSM represents the lower bound on the MMSE
performance, while the PC stays very close to this bound.
For low SNR values, the EIG provided the best performance.
Also note that in all cases there was not a significant loss of
performance due to using reduced-rank beamformers and, since
the difference in MMSE between a rank-one and a rank-twenty
beamformer is neglegible, we can use reduced-rank beam-
formers to obtain good source estimates even for low SNR
scenarios.

V. CONCLUDING REMARKS

We proposed a method to analyze the MSE performance of
reduced-rank beamformers for the estimation of dipole source
signals using EEG/MEG data. In our derivations, we did not
make any assumptions on the rank of the covariance matrix of
the interference-plus-noise. Therefore, our results hold for the
case when this matrix is low-rank, which is usually true in prac-
tice when the number of independent experiments is small, or
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when only the covariance matrix of the interference (without the
noise term) is considered.

Using the structure of the GSC, we derived a general expres-
sion for the MMSE as a function of rank. The MMSE is an ap-
propriate measure of performance given that its minimization is
equivalent to SINR maximization for the subset of reduced-rank
processors.

We presented numerical examples demonstrating the per-
formance of the principal components, CSMs, and EIG
beamformers. Even though all of them showed similar perfor-
mance for high SNR, our results showed the reliability of the
EIG for the low SNR case. At high SNR values, the CSM acted
as a lower bound on the performance, while the EIG provided
the best response at low SNR.

Further research in this area will consider a further gener-
alization to other types of beamformers, different interference
conditions, unknown source location, as well as including more
extensive applications to real EEG/MEG data.
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