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Preface

High-resolution signal processing is encountered in a wide range of applications,
which include in particular localization of objects in certain medium. The medium
could be space, air, land, water, or even living tissues. The importance of high-
resolution signal processing is indeed recognized in such fields as astronomy, radar,
sonar, seismology, and biomedical engineering. High-resolution signal processing
aims to retrieve desired information with high accuracy from often very limited
data. This is an area closely related to statistical signal processing and spectral
analysis. Its mathematical foundation consists mainly of statistics and linear alge-
bra.
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Chapter 1

EEG/MEG
SPATIO-TEMPORAL DIPOLE
SOURCE ESTIMATION AND

SENSOR ARRAY DESIGN

Aleksandar Dogandžić, Iowa State University
Arye Nehorai, University of Illinois

1.1 Introduction

The non-invasive techniques of electroencephalography (EEG) and magnetoen-
cephalography (MEG) are necessary for understanding both spatial and temporal
behavior of the brain. Arrays of EEG and MEG sensors measure electric potential
on the scalp and magnetic field around the head, respectively. This electromagnetic
field is generated by neuronal activity in the brain, and provide information about
both its spatial distribution and temporal dynamics. This is in contrast to other
brain imaging techniques that measure anatomical information (MRI, CT), blood
flow or blood volume (fMRI, SPECT), or metabolism of oxygen or sugar (PET).
Furthermore, the temporal resolution of EEG/MEG is far superior to that achieved
by other modalities [3].

A significant amount of work has been done on the analysis of brain temporal
activity (see [42] and references therein). The most widely used estimator is the
sample mean of an ensemble of single evoked responses timelocked to the instant of
stimulus application. The mean signal is then fitted to a parametric model. Though
exploiting the good temporal resolution of EEG and MEG, these methods do not
utilize their spatial resolution.

Spatio-temporal EEG/MEG data analysis is based on modeling a source of brain
activity by a primary current distributed over a certain region of the cortex. Evoked
responses are used to study sensory and cognitive processing in the brain [51], and
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394 EEG/MEG Spatio-Temporal Dipole Source Estimation and Sensor Array Design Chapter 1

are applied to clinical diagnosis in neurology and psychiatry. A current dipole is
often used as an equivalent source for a uni-directional primary current that may
extend over a few square centimeters of cortex. It is justified when the source
dimensions are relatively small compared with the distances from the source to the
measurement sensors [30] as is often satisfied for sources evoked in response to a
given sensory stimulus: auditory, visual etc. The dipolar response of the MEG array
was first revealed in a study of somatosensory evoked fields [8].

In [54], spatio-temporal measurements are incorporated using the common
dipoles-in-a-sphere model. The dipoles are assumed to have fixed locations and
orientations, whereas their strengths are allowed to change in time according to a
parametric model. De Munck [13] extends the above model by allowing the dipole
strengths to change arbitrarily. In [55], only the dipole position is fixed and the
orientation and amplitude are allowed to vary in time according to a parametric
model.

In all the above models, the noise is assumed to be spatially uncorrelated. As
a result, these (and most other) localization procedures are based on minimizing
a sum of squared errors. Such a residual function is appropriate only if the brain
background noise, which is a major source of noise in EEG/MEG, shows no corre-
lation across the scalp at different electrodes. However, since the background noise
arises mostly in the cortex, it is expected to be strongly correlated in space. For
example, regular rhythms in spontaneous brain activity, such as alpha waves, are
not only large in amplitude but also correlated between neighboring sensors [7].
The correlated-noise problem is important in EEG because of the bipolar nature
of the potential field recordings, i.e. the noise at the reference electrode spreads to
all other channels [32]. In MEG, environmental noise is an additional important
source of spatial correlation [57], especially in an unshielded environment.

One of the first attempts to tackle the problem of correlated noise was by Sek-
ihara et al. [57], who assumed known spatial noise covariance. The localization
in [57] is performed using a generalized least squares (GLS) method (see also Sec-
tion 1.3.2) and measurements at only one point in time. In [15], detection algo-
rithms are derived for known spatial noise covariance and multiple time snapshots
whereas the temporal evolutions of the dipole moments are allowed to vary arbi-
trarily. Lütkenhöner has analyzed the GLS method for multiple time snapshots and
applied it to both simulated and real data in [39] and [40]. The algorithm in [13]
is extended in [75] and [76] to account for stationary noise correlated in both space
and time. However, the noise covariance of such a process has an extremely large
number of parameters that need to be determined. It is often estimated from the
baseline measurements, i.e. data containing only noise collected before the stimulus
is applied, assuming that statistically it does not differ between the baseline and a
particular time point of interest. This method is suboptimal, since it does not use
the data containing the response for estimating the noise covariance. Furthermore,
there are indications that utilizing baseline data may not be justified, since it is
hypothesized that the noise covariance changes due to dependence on the state of
the subject or visual stimulation [32], [14], [71]. Thus, the noise covariance may
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need to be estimated only from the data containing the response. A major goal of
this chapter is to develop algorithms that solve this problem in an efficient way.

An iteratively reweighted generalized least squares (IRGLS) procedure [72, pp.
298–300] is proposed in [32] to estimate the noise covariance matrix and fit the
dipole locations at a particular time point utilizing multiple trials. It is a two-stage
procedure yielding estimates which, if the noise is Gaussian, converge to the maxi-
mum likelihood (ML) estimates. This method, however, does not include temporal
evolution. In this chapter (see also [16] and [19]), we allow temporal evolutions of
all dipole moment components by modeling them as linear combinations of basis
functions, assuming spatially correlated noise with unknown covariance. The basis
functions may be chosen to exploit prior information on the temporal evolutions of
the dipole moments, thus improving their estimation accuracy. If such information
is not available, we propose and analyze a nonparametric basis functions method
which exploits repeated trials and the linear dependence of the evoked responses
on the dipole moments to estimate the basis functions. In this case, only the num-
ber of basis functions needs to be specified. This number is equal to the rank of
the moment signal matrix, indicating the level of correlation between the moment
components.

We first derive closed-form expressions for the ML estimates when the dipole
locations and basis functions are known and then a concentrated likelihood function
to be optimized when the dipole locations and basis functions are unknown. Under
statistical normality, this technique gives the ML estimates of the dipole locations
and moments, requiring only a one-stage iterative procedure with computational
complexity comparable to the ordinary least-squares (OLS) methods widely used in
the EEG/MEG literature (see e.g. [54] and [13]). Both the ML and OLS methods
are consistent if the noise is spatially correlated; however, we show that the ML
is asymptotically more efficient. In Section 1.4, we derive the concentrated likeli-
hood for the nonparametric basis functions which is a function only of the dipole
locations and number of basis functions. Then, in Section 1.5, we derive ML-based
methods for scanning the brain response data, which can be used directly for imag-
ing the brain’s electromagnetic activity, or to initialize the multi-dimensional search
required for obtaining the dipole location estimates.

In Section 1.7 we discuss goodness-of-fit measures which account for spatially
correlated noise. We derive the Fisher information matrix (FIM) and Cramér-Rao
bound (CRB) for the proposed model in Section 1.6. We then use the CRB to
construct methods for EEG/MEG array optimization. The proposed optimization
methods are applicable to sensor array optimization in general; for application to
radar, see [20].

Finally, in Section 1.9, we compare the estimation accuracy of the ML, GLS,
OLS, and scanning methods for simulated data and apply the ML methods to real
auditory evoked MEG responses.
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Symbol List

For readers’ convenience, symbols used in this chapter are listed below.

m Total number of sensors.
n Number of dipoles.
r Number of detectable moment components per dipole;

r = 3 except when only MEG sensors are employed (r = 2).
K Number of trials.
N Number of snapshots per trial.
l Number of basis functions.
Yk An m×N spatio-temporal data matrix collected in the kth trial,

k = 1, . . . ,K.
Wk An m×N noise matrix in the kth trial, k = 1, . . . ,K.
Σ An m×m spatial noise covariance matrix.
A(θ) An m× nr array response matrix.
θ Vector of dipole location parameters.
s(t) Vector of dipole moment components at time t, t = 1, . . . , N .
X An nr × l matrix of basis-function coefficients.
Φ(η) An l ×N basis-function matrix.
η Vector of basis-function parameters.
a.s.→ Almost sure convergence.
d→ Convergence in distribution.

1.2 Source and Measurement Models

1.2.1 Source Model

We model the head as a spherically symmetric conductor locally fitted to the head
curvature. This model is used in most clinical and research applications of EEG and
MEG. It is often a reasonably good approximation, particularly for MEG, which
is less sensitive than EEG to modeling inaccuracies, see e.g. [3]. (Note that the
source estimation algorithms presented in this chapter can be applied to realistic
head models as well.)

Let p be the position of a current dipole source relative to the center of the
sphere

p = p [sinϑ cosϕ, sinϑ sinϕ, cosϑ]T , (1.2.1)

where

• ϑ is the dipole’s elevation,

• ϕ its azimuth, and

• p its distance from the center; see Figure 1.1.
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Thus, p is fully described by
θ = [ϑ, ϕ, p]T . (1.2.2)

The vectors

uϑ = [cosϑ cosϕ, cosϑ sinϕ, − sinϑ]T ,

uϕ = [− sinϕ, cosϕ, 0]T ,

up = p/p (1.2.3)

form an orthonormal basis (see also [31]). Using this basis, the dipole moment can
be written as sϑ uϑ + sϕ uϕ + sp up. We define the vector of moment parameters
s = [sϑ, sϕ, sp]

T .

1.2.2 Measurement Model

Consider a bimodal array of mE EEG and mB MEG sensors. The subscripts E and
B refer to the EEG and MEG sensors, respectively. Let m = mE +mB. Then, the
m-dimensional measurement vector of this array is

y = A(θ)s + w, (1.2.4)

where y = [yT
B
, yT

E
]T , A(θ) is the m×3 array response matrix and w = [wT

B
, wT

E
]T

is additive noise. The array response matrix is derived using the quasistatic ap-
proximation of Maxwell’s equations and spherical head model (see [30], [77], and
references therein). The quasistatic approximation is justified by the fact that the
useful frequency spectrum for electrophysiological signals in EEG/MEG is typically
below 1 kHz. As a consequence

• the capacitive component of the tissue impedance is negligible [56], and

• electromagnetic wave effects in the head can be neglected, i.e. the signals are
assumed to propagate effectively at infinite velocity and the currents every-
where in the head depend only on the sources at that instant of time (and are
independent of previous history).

The radial component of a dipole produces no external magnetic field in the spherical
head model [30], so the last column of the MEG response matrix is zero. Thus,

A(θ) = [[AB(θ),0mB×1]
T , AE(θ)T ]T , (1.2.5)

where AB(θ) and AE(θ) are the MEG and EEG response matrices with dimensions
mB×2 and mE×3, respectively. The symbol 0mB×1 denotes the mB×1 vector with
zero entries. Define r = rank(A(θ)); usually r = 3 except when only MEG sensors
are employed (r = 2).

The following model is used for n distinct dipoles:

y = [A(θ1) · · ·A(θn)][sT
1 · · · sT

n ]T + w, (1.2.6)
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Figure 1.1. Dipole in a sphere.
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where A(θi), θi, and si, i = 1, 2, . . . , n, are the array response matrix, vector of
location parameters, and moment vector of the ith dipole, respectively. Observe
that the above equation is a special case of (1.2.4) with A(θ), θ, and s substituted
with [A(θ1) · · ·A(θn)], θ = [θT

1 · · ·θT
n ]T , and s = [sT

1 · · · sT
n ]T , respectively. Note

that in this case, θ and s are 3n- and nr-dimensional vectors, respectively. Since
the dipoles are at distinct locations, we assume that A(θ) has full rank equal to nr.

The noise vector w is assumed to be zero-mean with unknown spatial covari-
ance Σ , whereas the source moment signal is deterministic. Thus, the mean and
covariance matrix of the snapshot y are A(θ)s and Σ , respectively. The noise is
predominantly due to background activity in neurons. An assumption of Gaussian-
ity, often used in EEG/MEG literature, may be justified by the additive nature
of the noise and the large number of neurons normally active throughout the brain
and has been validated in [25]. Tests for the normality of background EEG signals
have also been developed in [43].

1.3 Maximum Likelihood Estimation

1.3.1 Simultaneous Estimation of the Dipole Parameters and
Noise Covariance

We assume that the evoked field is a result of brain electrical activity that is well
modeled by n dipoles at unknown fixed locations with time-varying moments. As is
commonly done in analyzing evoked responses, the experiment is repeated K times
to improve the signal-to-noise ratio (SNR). The activated dipoles are assumed to
have the same locations and temporal patterns in each experiment, i.e. the evoked
responses are homogeneous [this is a strong assumption which may need to be val-
idated in practice: homogeneity tests for the evoked responses have been derived
in [44]]. In the kth trial (k = 1, . . . ,K), N temporal data vectors (snapshots)
yk(1),yk(2), . . . ,yk(N) are collected. We refer to the matrix

Yk = [yk(1) · · ·yk(N)] (1.3.1)

as the spatio-temporal data matrix. We assume that the temporal evolutions of the
dipoles’ moment components can be described by linear combinations of a set of
basis functions

s(t) = Xφ(t,η), (1.3.2)

where X is a full-rank matrix of unknown coefficients with dimensions nr × l for
the function representation described by the l × 1 basis vectors φ(t,η), and the
parameter vector η is unknown in general. This parametrization allows us to exploit
prior information on evoked response temporal evolutions and reduce the number
of unknown parameters, thus improving the moment estimation accuracy. In the
above model, the number of basis functions l should be smaller than the number of
snapshots N ; otherwise, we could simply choose Φ = IN , see also Section 1.4. The
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measurement model is then

yk(t) = A(θ)Xφ(t,η) + wk(t), t = 1, . . . , N, k = 1, . . . ,K, (1.3.3)

where the noise vectors wk(t) are assumed to be zero mean with unknown spatial
covariance Σ , and uncorrelated in time and between trials. In reality, the noise is
likely to be correlated in time (within a trial), but uncorrelated between trials. The
noise covariance matrix Σ is assumed to be positive definite and constant in time
and across all trials. If K = 1 and θ and η are known, the above model is known
as the generalized multivariate analysis of variance (GMANOVA), which was first
addressed in [50] (see also [36], [58, chapter 6.4], and [72, chapter 5]). In statistics,
it is usually applied to fitting growth curves and thus is also called the growth-curve
model [50]–[58].

Equations (1.3.3) can be written compactly as

Yk = A(θ)XΦ(η) +Wk, k = 1, . . . ,K, (1.3.4)

where Wk = [wk(1) wk(2) · · ·wk(N)] is the noise matrix and

Φ(η) = [φ(1,η) φ(2,η) · · ·φ(N,η)] (1.3.5)

is the basis-function matrix. Define the projection matrix onto the row space of
Φ(η) as

ΠΦ(η) = Φ(η)T [Φ(η)Φ(η)T ]−1Φ(η). (1.3.6)

In Appendix 1.A, we extend the GMANOVA equations to multiple trials. We show
that, for known θ and η and Gaussian noise wk(t), the ML estimates of X and Σ
are

X̂ = [A(θ)TS−1A(θ)]−1A(θ)TS−1Y Φ(η)T [Φ(η)Φ(η)T ]−1, (1.3.7a)

Σ̂ (θ,η) = S + (1/N) · (Im − TS−1)YΠΦ(η)Y
T
(Im − TS−1)T , (1.3.7b)

where

Y =
1

K

K∑

k=1

Yk, (1.3.8a)

S = R̂− 1
N ·YΠΦ(η)Y

T
, (1.3.8b)

R̂ =
1

NK

K∑

k=1

YkYk
T , (1.3.8c)

T = A(θ)
[
A(θ)TS−1A(θ)

]−1
A(θ)T , (1.3.8d)

and Im denotes the identity matrix of size m. Note that S is a function of η only,
and T and X̂ are functions of both θ and η. To simplify the notation, we omit
these dependencies throughout this chapter. For the above model (and under the
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Gaussianity assumption), the sufficient statistics are Y and R̂. If the matrices Yk

become scalars, i.e. Yk = yk and A(θ) = a, we obtain the well known results from

univariate statistics Σ̂ = S = 1/K
∑K

k=1(yk − y)2 and X̂ = y/a.
If Σ is known, the ML estimate of X is simply

X̂ =
[
A(θ)T Σ−1A(θ)

]−1
A(θ)T Σ−1Y Φ(η)T [Φ(η)Φ(η)T ]−1, (1.3.9)

as can easily be shown by differentiating the log-likelihood function (see Appendix
1.A) using the identity ∂

∂X tr(PTXQ) = PQT [52, p. 72].

If θ and η are not known (in addition to X and Σ ), their ML estimates θ̂ and
η̂ are obtained by maximizing the concentrated likelihood function (see Appendix
1.A)

lML(θ,η) =
R̂

|Σ̂ (θ,η)|
(1.3.10a)

=

∣∣Φ(η)[IN − (1/N)Y
T
Q(θ)Y ]Φ(η)T

∣∣
∣∣Φ(η)[IN − (1/N)Y

T
R̂−1Y ]Φ(η)T

∣∣
(1.3.10b)

=
|A(θ)TS−1A(θ)|
|A(θ)T R̂−1A(θ)|

, (1.3.10c)

where

Q(θ) = R̂−1 − R̂−1A(θ)
[
A(θ)T R̂−1A(θ)

]−1
A(θ)T R̂−1 (1.3.11)

and | · | denotes the determinant. The above concentrated likelihood function is
written in the form of a generalized likelihood ratio (GLR) test statistic (see e.g.
[69] and [52, p. 418] for the definition of GLR) for testing H0 : X = 0 versus
H1:X 6= 0. To find the ML estimates of X and Σ , substitute θ and η in (1.3.7a)

and (1.3.7b) by θ̂ and η̂. Efficient methods for computing (1.3.10) are derived in
[19, sec. VII].

If s(t) is modeled as a linear combination of l basis functions without any prior
on their shape (i.e. nonparametric basis functions, where Φ(η) = Φ is completely
unknown), we can concentrate (1.3.10) with respect to Φ as well, as shown in
Section 1.4. Here, the vec operator stacks the columns of a matrix below one
another into a single column vector.

The case of K = 1 and unknown θ was first addressed in [70], where a concen-
trated likelihood function of a similar form was obtained and applied to direction-
of-arrival (DOA) estimation. Also, a signal subspace fitting (SSF) criterion approx-
imating this likelihood function was proposed. Here (see also [19], [16]), we consider
a more general model with multiple trials (suitable for analyzing evoked responses),
vector source signals, and parametric and nonparametric basis functions. This for-
mulation also includes as special cases the ML radar array processing methods in
[59] and [18]. For a discussion on identifiability of the unknown parameters, see
Appendix 1.B.
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Modeling the dipole moments by linear combinations of parametric basis func-
tions allows us to exploit prior information on the temporal evolutions of the evoked
responses, which improves the moment estimation accuracy. Since the temporal evo-
lutions can be described with a small number of parameters, the parametric basis
function models may also be used as feature extractors in a pattern recognition
scheme. However, their disadvantage is that the likelihood function often needs to
be maximized with respect to the non-linear basis parameters η, in addition to the
unknown dipole location parameters θ. This can be avoided by using nonparametric
basis functions, see Section 1.4.

The above estimators have good asymptotic properties even when the noise
is not Gaussian: Theorem 7.1 in Subsection 1.3.4 states that, regardless of the
noise distribution, the covariance of these estimators asymptotically achieves the
CRB calculated under normality. In the sequel we do not restrict ourselves to a
particular distributional assumption, except when discussing the FIM and CRB,
which is justified by the above comment. Thus, we slightly abuse the terminology
by referring to these estimators as the ML estimators. Having a similar terminology
problem, some authors refer to these methods as extended least squares (ELS).

1.3.2 Ordinary and Generalized Least Squares

The (nonlinear) ordinary least squares method [72, pp. 447–448] applied to the
above model gives the residual sum of squares

lOLS(θ,η) = tr
{
R̂− 1

NA(θ)
[
A(θ)TA(θ)

]−1
A(θ)TYΠΦ(η)Y

T}
(1.3.12)

as a cost function to be minimized with respect to θ and η. This expression is easily
derived by substituting Σ = σ2Im and identities (1.3.9), (1.A.4a), and (1.A.4b)
into the likelihood function in (1.A.1); thus the OLS is ML for Gaussian spatially
uncorrelated noise. Obviously, the OLS method does not account for the spatial
correlation in the noise covariance. Further, the OLS estimates are not based on
the sufficient statistics, since R̂ does not affect the above minimization. If K = 1
and Φ = IN , i.e. s(t) is an arbitrary vector at each time point t = 1, . . . , N, this
method coincides with the deterministic maximum likelihood in e.g. [60].

The generalized least squares indexgeneralized least squares (GLS) (GLS)
method [72, pp. 448–449] is the ML method for spatially correlated Gaussian
noise with known spatial covariance Σ . It is a simple extension of OLS, since it
reduces to applying OLS to the spatially pre-whitened data, yielding the following
cost function:

lGLS(θ,η) = tr
[
Σ−1R̂− 1

N Σ−1A(θ)
[
A(θ)T Σ−1A(θ)

]−1
A(θ)T Σ−1YΠΦ(η)Y

T ]
.

(1.3.13)
Detection methods for this case with Φ = IN are derived in [15].
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1.3.3 Estimated Generalized Least Squares

The estimated generalized least squares (EGLS) method [72, pp. 449–450] (which
is an approximation of the ML method) is obtained by substituting the noise co-
variance Σ in the GLS cost function by its strongly and

√
K-consistent estimator

Σ̃ , i.e. Σ̃ needs to satisfy

Σ̃
a.s.→ Σ , (1.3.14a)

Σ̃ = Σ +Op(K−1/2), (1.3.14b)

where
a.s.→ indicates almost sure convergence and Op(K−1/2) denotes a sequence of

random variables that is bounded in probability by K−1/2, see also the discussion
in Section 1.3.4. Therefore, the EGLS cost function is

lEGLS(θ,η) = tr
[
Σ̃−1R̂− 1

N Σ̃−1A(θ)
[
A(θ)T Σ̃−1A(θ)

]−1
A(θ)T Σ̃−1YΠΦ(η)Y

T ]
.

(1.3.15)
For example, a good choice for an estimator of Σ is

Σ̃ = R̂− 1
N Y Y

T
, (1.3.16)

which is strongly and
√
K-consistent, provided that the noise wk(t) has finite fourth-

order moments. Based on [24, chapter 5.6], it follows that ML and EGLS are
asymptotically equivalent, provided that the measurement model (1.3.3) is correct.
Differences between ML and EGLS approaches arise for small sample sizes and when
modeling inaccuracies occur: ML incorporates these inaccuracies into the estimated
spatial noise covariance whereas EGLS does not. Consequently, we adopt the ML
approach in this chapter. (It is particularly important to use the ML approach for
deriving the scanning methods in Section 1.5, since these methods are based on an
inaccurate, single-dipole model.)

If η is known, it is possible to exploit information contained in Φ and choose
Σ̃ = S [see (1.3.8b)] as an estimator of Σ [assuming finite fourth-order moments
of wk(t)]. For a single trial (K = 1), N → ∞ is needed to study the asymptotic
properties, and it is easy to show that S is a strongly and

√
N -consistent estimator

of Σ . This EGLS estimator results in the SSF method in [70] (where its asymptotic
equivalence with the ML method was also shown).

1.3.4 ML versus OLS

In this section we show consistency and asymptotic normality of the ML estimates,
as well as consistency of the OLS estimates. In Appendix 1.D, we show that the
ML estimates are asymptotically more efficient than the OLS estimates.

Define ρ = [vec(X)T ,θT ,ηT ]T and ψ = vech(Σ ). Here, the vech operator
creates a single column vector by stacking the elements below the main diagonal
columnwise. Then, the vector of all unknown parameters is γ = [ρT ,ψT ]T . Also,
let us assume that the true values of the parameter vectors ρ and γ are ρ0 =
[vec(X0)

T ,θ0
T ,η0

T ]T and γ0 = [ρ0
T ,ψ0

T ]T , respectively.



404 EEG/MEG Spatio-Temporal Dipole Source Estimation and Sensor Array Design Chapter 1

Let Isignal(γ) be the Fisher information matrix of the signal parameters ρ. The
exact expression will be given in Section 1.6, see equations (1.6.2) and (1.6.3). To
establish asymptotic properties of the ML and OLS methods we need the following
regularity conditions:

R1) The parameter space of ρ is compact and the true parameter value ρ0 is an
interior point,

R2) The noise vectors wk(t), k = 1, . . . ,K, t = 1, . . . , N are independent, iden-
tically distributed (i.i.d.) with zero mean and arbitrary positive definite
covariance Σ ,

R3) A(θ) and Φ(η) are continuous and have continuous first and second partial
derivatives with respect to θ and η,

R4) The matrix Isignal(γ) is non-singular,

R5) tr
{
Σ−1

[
A(θ)XΦ(η)−A(θ0)X0Φ(η0)

][
A(θ)XΦ(η)−A(θ0)X0Φ(η0)

]T}
= 0

if and only if ρ = ρ0.

The regularity condition R5) is essentially an identifiability condition for ρ, re-
quiring uniqueness of the mean response corresponding to the true value of the
parameter vector ρ0 (see also Appendix 1.B). Observe that the above conditions
do not require specific distributional assumptions on the noise vectors wk(t).

Before proceeding with the asymptotic results, let us introduce some notation:

zn = Op(an) (1.3.17)

denotes that a sequence of random variables {zn} is bounded in probability by a
sequence of positive real numbers {an} (see e.g. [72, p. 34]). Also,

zn = op(an) (1.3.18)

implies that zn/an converges to zero in probability.

Theorem 1.3.1: Under the regularity conditions R1)–R5), the ML estimate of ρ
satisfies (as K → ∞)

ρ̂
a.s.→ ρ0, (1.3.19a)

ρ̂ = ρ0 +Op(K−1/2), (1.3.19b)

and √
NK (ρ̂− ρ0)

d→ N (0, NKIsignal(γ0)
−1), (1.3.20)

where
d→ indicates convergence in distribution.

Proof: The proof follows from [24, chapter 5.6] and [27], where it is shown for a
more general case, see also [70], [72, pp. 300–301], [23].
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Theorem 1.3.2: Under the regularity conditions R1)–R5) (where R4) and R5)
should be checked using Σ = Im instead of the actual noise covariance) the OLS
estimates of ρ satisfy (as K → ∞)

ρ̂
OLS

a.s.→ ρ0, (1.3.21a)

ρ̂
OLS

= ρ0 +
[
K

N∑

t=1

D(t,ρ0)
TD(t,ρ0)

]−1

×
K∑

k=1

N∑

t=1

D(t,ρ0)
T wk(t) + op(K−1/2), (1.3.21b)

= ρ0 +Op(K−1/2), (1.3.21c)

where

D(t,ρ) =
∂(A(θ)Xφ(t,η))

∂ρT
. (1.3.22)

Here K
∑N

t=1D(t,ρ)TD(t,ρ) equals Isignal(γ) in equations (1.6.2) and (1.6.3) when
Σ = Im.

Proof: See Appendix 1.C.

If wk(t) are i.i.d. normal, it can be shown that the ML estimate ρ̂ is asymptot-
ically efficient in the sense of first-order efficiency [52, Sections 5c.2 and 5f.2].

In Appendix 1.D we prove that, under the above regularity conditions, the
ML estimate of ρ is asymptotically more efficient than the OLS estimate, i.e. the
difference between the asymptotic covariances of the ML and the OLS estimates is
negative semidefinite, where equality is achieved if Σ = σ2Im.

The superior asymptotic performance of the ML compared with the OLS can be
explained by the fact that the OLS estimator does not utilize information contained
in the second-order moment matrix R̂, see also Subsection 1.3.2.

1.4 Nonparametric Basis Functions

In this section, we present ML estimation for nonparametric basis function model

Yk = A(θ)XΦ +Wk, k = 1, . . . ,K, (1.4.1)

where both X and Φ are unknown matrices of full rank l. This is equivalent to
assuming that the spatio-temporal dipole moment matrix [s(1) s(2) · · · s(N)] = XΦ
is unknown with rank l. Hence, l is a measure of the level of correlation between the
moment components, see below. We exploit multiple trials and the linearity of the
dipole moments to compute closed-form solutions for the basis function estimates.
As a result, the corresponding concentrated likelihood function becomes a function
of θ only. The disadvantage of this method is that unknown Φ may contain a
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large number of parameters compared with a suitable nonlinear parametrization
that may utilize prior information on the temporal evolutions and improve the
estimation accuracy of the dipole moments. However, the use of nonparametric
basis functions does not deteriorate the asymptotic accuracy of dipole location,
as shown in Section 1.6. This result is also confirmed by simulation results, see
Section 1.9, Example 7.1.

Note that the nonparametric basis functions require using multiple trials or
known signal corrupted by noise (i.e. training data, e.g. baseline), or both, as shown
below. Otherwise, the concentrated likelihood function would go to infinity, see
Appendix 1.E.

In Appendix 1.E, we derive the concentrated likelihood function for the nonpara-
metric basis functions by maximizing (1.3.10b) with respect to Φ using the Poincaré
separation theorem [52, pp. 64–65]. The resulting concentrated likelihood function
is given by the product of the l largest generalized eigenvalues of the matrices

IN − (1/N) ·Y T
Q(θ)Y and IN − (1/N) ·Y T

R̂−1Y , where Q(θ) is defined in (1.3.11).

The rows of an ML estimate Φ̂ are the corresponding generalized eigenvectors of the
above two matrices. Assuming nr ≤ N (which holds in most practical applications),
there can be only rank[A(θ)] = nr generalized eigenvalues greater than one (and
the rest are equal to one), thus 1 ≤ l ≤ nr, see also (1.E.10) in Appendix 1.E. If
l = 1 all the components of the dipole moments have the same temporal evolution
(up to a scaling factor), thus they are fully correlated. On the other hand l = nr
allows as many basis functions as the number of moment components, in which case
the concentrated likelihood is simply

lML(θ) =
|IN − (1/N) · Y T

Q(θ)Y |
|IN − (1/N) · Y T

R̂−1Y |
, (1.4.2)

which follows from the fact that the determinant of a matrix equals to the product
of its eigenvalues. Further, this expression is equal to the concentrated likelihood
function for known basis functions in the form of Dirac pulses, i.e. Φ = IN [see
(1.3.10b)]. Thus, moment components can be completely uncorrelated. The choice
of l allows us to specify the level of correlation between the moment components,
ranging from fully correlated (l = 1) to uncorrelated (l = nr). This is a useful
property, since the sources of evoked responses are often correlated.

Unless suitably constrained, the ML estimates Φ̂ are not unique. However,
in Appendix 1.E, we show that, regardless of which ML estimate of Φ is chosen,
the concentrated likelihood function and the estimated dipole moment temporal
evolution X̂Φ̂ = [̂s(1) ŝ(2) · · · ŝ(N)] are unique. The orthonormal set of the ML
estimates of the basis functions can be constructed from the above ML estimates as
Φ̂orth = [Φ̂Φ̂T ]−1/2Φ̂. Here, H1/2 denotes a symmetric square root of a symmetric
matrix H, and H−1/2 = (H1/2)−1; this notation will be used throughout this
chapter.

Consider now the case where the data set of each trial contains a part with
baseline data. Thus, Yk = [Y1k, Y2k], k = 1, . . . ,K, where Y1k is a spatio-temporal
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data matrix of size m × N1 containing the background noise only, whereas Y2k is
of size m×N2 containing the evoked response modeled as A(θ)XΦ2 corrupted by
noise. The statistical properties of the noise, described in Section 1.3, are assumed
to be the same for both Y1k and Y2k. Thus, Φ = [0,Φ2], N = N1 + N2, and
Y = [Y 1, Y 2]. A simple extension of the above results shows that the concentrated
likelihood function lML(θ) is the product of the l largest generalized eigenvalues of

IN2
− (1/N) · Y2

T
Q(θ)Y2 and IN2

− (1/N) · Y2
T
R̂−1Y2 (see Appendix 1.E). This

concentrated likelihood function can be viewed as an extension of the detectors in
[34] and [35].

It is also possible to estimate a nonparametric array response matrix A if the
basis functions Φ are known or parametric, see [35, p. 25] and [61]. Note that
in this problem only the rank of A needs to be specified and it is not necessary
to use multiple trials or training data. This model has been used in radar array
processing for the robust estimation of range and velocity, see [59] and [18], and
in wireless communications for channel estimation and synchronization, see [21].
In this chapter, we apply the nonparametric array model to derive a MUSIC-like
scanning method, which is the first application of this model to EEG/MEG, see the
following section and Appendix 1.F.

1.5 Scanning Methods

Using the ML estimation results in Sections 1.3 and 1.4, we derive two scanning
schemes, based on maximizing suitably chosen functions of the data and the single-
dipole array response, thus reducing the dimensionality of the problem compared
with the multiple-dipole location algorithms. In the EEG/MEG literature, scanning
has often been performed using the MUSIC algorithm [62]. However, MUSIC does
not perform well when the sources are correlated [60], [63] or the noise is spatially
correlated [64], or both. The scanning algorithms proposed here take into account
spatially correlated noise with unknown covariance. The first scheme consists of
maximizing the concentrated likelihood function for a single dipole. The second
scheme is based on matching the estimated column space of the array response
matrix with a single-dipole array response using a MUSIC-like function.

If the dipole moments are assumed to be uncorrelated (Φ = IN), the first scan-
ning scheme reduces to computing

lscan(θ) =
|IN − (1/N) · Y T

Q(θ)Y |
|IN − (1/N) · Y T

R̂−1Y |
(1.5.1a)

=

∣∣A(θ)T
[
R̂− (1/N) · Y Y T ]−1

A(θ)
∣∣

|A(θ)T R̂−1A(θ)|
(1.5.1b)

using the array response A(θ) for a single dipole [see (1.3.10) and (1.4.2)]. Whether
(1.5.1a) or (1.5.1b) should be used for scanning depends on a particular application.
For example, if r < N (which is typically the case), (1.5.1b) is computationally more
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efficient. Expression (1.5.1b) can be viewed as the ratio of the Capon spectral
estimate for location θ using the data Y , and the Capon spectral estimate in the
direction θ using the projection of Y onto the space orthogonal to the row space
of Φ(η). For a source with fixed orientation in time, the dipole moments are fully
correlated, and the rank of the moment matrix is l = 1. Then, the concentrated
likelihood is

lscan(θ) = λMAX

[
IN − (1/N) · Y T

Q(θ)Y , IN − (1/N) · Y T
R̂−1Y

]
, (1.5.2)

where λMAX[·, ·] denotes the largest generalized eigenvalue of the two matrices given
in the parenthesis. In the special case where only one time snapshot is used [i.e.

N = 1, Yk = yk, and Y = y = (1/K)
∑K

k=1 yk], and after a linear transformation,
the concentrated likelihood (1.5.1a) simplifies to

lscan(θ) = yT R̂−1A(θ)
[
A(θ)T R̂−1A(θ)

]−1
A(θ)T R̂−1y. (1.5.3)

The scanning procedures in (1.5.1)–(1.5.3) require only a 3-D search over the space
of dipole location parameters. They are intuitively appealing, since they evaluate
the likelihood of a dipole at a particular location, while simultaneously estimating
the unknown noise covariance, which accounts for the sources of brain activity at
other locations.

If a realistic head model is used, we can impose anatomic constraints [12], i.e.
assume that sources can lie only on the surface of the cortex with moments orthog-
onal to the cortex. Then, we can recast the array response matrix by incorporating
the known orientation, which gives a response vector a(θ), where θ is a 2 × 1 pa-
rameter vector describing a location on the surface of the cortex. In this case, the
dimensionality of the search is only 2-D, and the scanning function simplifies to

lscan(θ) = 1 +
1

Na(θ)T R̂−1a(θ)
· a(θ)T R̂−1Y

[
IN − 1

N Y
T
R̂−1Y

]−1
Y

T
R̂−1a(θ)

=
a(θ)T

[
R̂− 1

N · Y Y T ]−1
a(θ)

a(θ)T R̂−1a(θ)
, (1.5.4)

which follows by substituting A(θ) = a(θ) into (1.5.1) and using the formula for
the determinant of a partitioned matrix [72, result v at p. 8]. The performance of
the above scanning method relies on the validity of the above constraints and would
require using patient-specific MRI images to extract the necessary information (e.g.
the surface of the cortex).

We now propose the second scanning scheme based on matching the estimated
subspace of the array response matrix with a single-dipole array response. The
matching is performed using a MUSIC-like function (see Appendix 1.F):

lMUSIC(θ) =
1

λMIN

[
A(θ)T [R̂−1 − UnrUnr

T ]A(θ), A(θ)T R̂−1A(θ)
] , (1.5.5)

where
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• λMIN[·, ·] denotes the smallest generalized eigenvalue of the two matrices given
in the parenthesis,

• A(θ) is a single-dipole array response matrix, and

• Unr is the matrix whose columns are the generalized eigenvectors of

(1/N) ·Y Y T
and R̂, corresponding to their largest nr generalized eigenvalues,

normalized such that Unr
T R̂Unr = Inr.

We can compute Unr as follows: Unr = R̂−1/2Vnr, where Vnr is the matrix whose

columns are the orthonormal eigenvectors of R̂−1/2Y Y
T
R̂−1/2 that correspond to

its nr largest eigenvalues, see Appendix 1.F. Unlike the first scanning scheme, this
method requires specifying the number of sources n. The second scanning scheme
[in (1.5.5)] generally outperforms the first scheme [in (1.5.1)] if the sources are
uncorrelated and if their number is correctly specified.

If the data set contains a part with baseline data (see also Section 1.4), Y in the
above expressions would simply need to be substituted by Y2.

1.6 Fisher Information Matrix and Cramér-Rao Bound

The FIM can be viewed as a measure of the intrinsic accuracy of a distribution
[52]. Its inverse is the Cramér-Rao bound (CRB), which is a lower bound on the
covariance matrix of any unbiased estimator. It is achieved asymptotically by the
ML estimator, see [19, theorem 1].

Denote the Kronecker product between two matrices by ⊗, see [72, p. 11] for the
definition and some properties. In Appendix 1.G, we derive the FIM for the above
model as

I(γ) =

[
Isignal(γ) 0

0 Inoise(ψ)

]
, (1.6.1)

where

Isignal(γ) =




Ixx IT

θx IT

ηx

Iθx Iθθ IT

ηθ

Iηx Iηθ Iηη


 , (1.6.2)

and

Ixx = KΦ(η)Φ(η)T ⊗A(θ)T Σ−1A(θ), (1.6.3a)

Iθx = KDA(θ)T
[
XΦ(η)Φ(η)

T ⊗ Σ−1A(θ)
]
, (1.6.3b)

Iηx = KDΦ(θ)T
[
Φ(η)T ⊗XTA(θ)T Σ−1A(θ)

]
, (1.6.3c)

Iθθ = KDA(θ)T
[
XΦ(η)Φ(η)

T
XT ⊗ Σ−1

]
DA(θ), (1.6.3d)

Iηθ = KDΦ(θ)T
[
Φ(η)TXT ⊗XTA(θ)T Σ−1

]
DA(θ), (1.6.3e)

Iηη = KDΦ(θ)T
[
IN ⊗XTA(θ)T Σ−1A(θ)X

]
DΦ(θ), (1.6.3f)

DA(θ) =
∂vec(A(θ))

∂θT
, DΦ(η) =

∂vec(Φ(η))

∂ηT
, (1.6.3g)
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whereas the (i, j)th entry of Inoise(ψ) is [49]

[
Inoise(ψ)

]

ij
=
NK

2
tr
[
Σ−1 ∂Σ

∂ψi
Σ−1 ∂Σ

∂ψj

]
. (1.6.4)

Further, let Σ−1 = [σij ] and Σ = [σij ], then a simple formula solves (1.6.4):

tr
[
Σ−1 ∂Σ

∂σpq
Σ−1 ∂Σ

∂σrs

]
=





2(σqrσps + σprσqs) p 6= q, r 6= s
2σprσqr p 6= q, r = s,
(σpr)2 p = q, r = s

(1.6.5)

where p, q, r, s ∈ {1, . . . ,m}. As expected, the information increases linearly with
the number of trials K. The information on noise Inoise(ψ) increases linearly with
N as well. In the sequel we use the same block partitioning of the CRB as for the
above FIM matrix.

Due to the block-diagonal structure of I(γ) that separates the signal and noise
parts, its inverse is computed by simply inverting the two diagonal blocks. Thus,
CRBsignal(γ) for the unknown noise covariance is equal to the corresponding CRB
for known noise covariance. Therefore, the ML method and GLS with correctly
specified Σ (see Subsection 1.3.2) have the same asymptotic covariance.

Using the formula for the inverse of a partitioned matrix (see e.g. [29, theorem
8.5.11] and [72, result vi, p. 8]), the CRB for the dipole location and basis-function
parameters is

CRB1 =

[
CRBθθ CRBT

ηθ

CRBηθ CRBηη

]
=

{[
Iθθ IT

ηθ

Iηθ Iηη

]
−
[

Iθx

Iηx

]
· I−1

xx · [IT

θx, IT

ηx]

}−1

.

(1.6.6)
From (1.6.3) it follows that

Iηθ − IηxI−1
xx IT

θx = 0, (1.6.7)

implying that CRB1 is block-diagonal; therefore CRBθθ =
[
Iθθ −IθxI−1

xx Iθx

]−1
and

CRBηη =
[
Iηη − IηxI−1

xx Iηx

]−1
, yielding

CRBθθ(γ) =
1

NK

[
DA(θ)T

(
R̂s ⊗

{
Σ−1

−Σ−1A(θ)[A(θ)T Σ−1A(θ)]−1A(θ)T Σ−1
})
DA(θ)

]−1

, (1.6.8a)

CRBηη(γ) =
1

K

[
DΦ(η)T

{
[IN − ΠΦ(η)] ⊗XTA(θ)T Σ−1A(θ)X

}
DΦ(η)

]−1

, (1.6.8b)

CRBθη(γ) = 0, (1.6.8c)

where

R̂s = (1/N) · [s(1) s(2) · · · s(N)] · [s(1) s(2) · · · s(N)]T

= (1/N) ·XΦ(η)Φ(η)TXT (1.6.9)
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is the estimated covariance matrix of the dipole moment components. Here, to
simplify the notation, we omit the dependence of R̂s on X and η. The expression
in (1.6.8a) implies that CRBθθ is independent of the choice of basis functions as long
as the dipole moment temporal evolutions can be expressed exactly as their linear
combination, i.e. [s(1) s(2) · · · s(N)] = XΦ(η) (Note that this condition is satisfied
for a trivial choice of basis functions in the form of Dirac pulses, i.e. Φ = IN ; then
[s(1) s(2) · · · s(N)] = X.) For K = 1, (1.6.8a) is equal to the deterministic CRB for
known Σ in [60] and [45].

Of course, the choice of basis functions is important for the asymptotic accuracy
of estimating X and η; thus it affects the accuracy of estimating dipole moments’
temporal evolutions. The fact that the CRB submatrix for θ and η is block-diagonal
[see (1.6.8c)] is a generalization of similar results in [59] and [18], where it was shown
for a particular choice of a basis function, suitable for radar array processing. We
have shown in [21] that the above CRB decoupling holds for complex data and noise
models as well. As a consequence of the decoupling, (1.6.8a) remains valid when a
nonparametric basis-function model is used.

1.7 Goodness-of-fit Measures

Goodness-of-fit measures are used to show the degree to which the model-fitted data
agrees with the observed data. Most existing measures in the EEG/MEG literature
do not account for spatial correlation of the noise and are often computed for only
one snapshot [30], [65]. Following [72, chapter 8.3], we consider a multivariate
extension of the usual R2 statistic from univariate linear regression which accounts
for multiple snapshots and spatially correlated noise. A similar measure for a single
snapshot has been recently introduced in [39].

We consider goodness-of-fit based on the averaged brain responses Y , since uti-
lizing the individual trials would result in very low values of R2. Our hypothesized
and “null” models are:

Hypothesized Model: y(t) = f(t,ρ) + w(t), E [w(t)] = 0, cov(w(t)) = Σ , (1.7.1a)

Null Model: y0(t) = w0(t), E [w0(t)] = 0, cov(w0(t)) = Σ 0, (1.7.1b)

where f(t,ρ) denotes an arbitrary model used to fit the data and ρ is the unknown
source parameter to be estimated (in our case f(t,ρ) = A(θ)Xφ(t,η)).

Denote the fitted value of f(t,ρ) by ŷ(t), t = 1, . . . , N . By forming the squared
Mahalanobis distances d(t, V )2 = [y(t) − ŷ(t)]TV −1[y(t) − ŷ(t)] and d0(t, V )2 =
y(t)TV −1y(t) for any positive definite matrix V, we define the explained residual
variation of y(t) relative to the null model and V as

R2(t, V ) = 1 − d(t, V )2

d0(t, V )2
, (1.7.2)
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and the overall explained residual variation as

R2(V ) = 1 −
∑N

t=1 d(t, V )2
∑N

t=1 d0(t, V )2
. (1.7.3)

Perfect fit is achieved if R2(V ) = 1, while a complete lack of fit is indicated by
R2(V ) ≤ 0, since the equality is achieved for ŷ(t) = 0.

Different metrics can be chosen by using various values of V : a good choice is Σ 0,
since it is associated with the fixed “null” model. This allows comparisons across
different hypothesized models, which is one of the desirable properties of R2 [37].
However, Σ 0 is not known, in general. It can be estimated from the baseline data
(see also [15]), or computed through an analytical approximation, using a random
dipole field model of spontaneous brain activity [14], [38]. Observe that R2(t, σ2Im)
is the “proportion of variance explained” for the averaged snapshot at time t (see
e.g. [30], [65]). Using R2(σ2Im) and R2(t, σ2Im), which do not take into account
noise spatial correlation, can yield misleading results, as observed in Example 7.2,
Section 1.9, and [37].

1.8 EEG/MEG Sensor Array Design

The goal of sensor array design is to determine the design parameters ξ (i.e. sensor
array locations, number and type of sensors etc.) to minimize a given cost function.
In the following, we propose a sensor array design criterion based on minimizing
the volume of a linearized confidence region for dipole location parameters.

We first show how to construct a linearized confidence region for the dipole
parameters and compute its volume using Wald tests. The linearized confidence
region (in the form of an ellipsoid) for testing H0: h(ρ) = 0, where h is a once
continuously-differentiable function, is defined as

T 2(γ) = h(ρ)T
[
H(ρ) · CRBsignal(γ) ·H(ρ)T

]−1
h(ρ) ≤ g, (1.8.1)

where

H(ρ) =
∂h(ρ)

∂ρT
, (1.8.2a)

CRBsignal(γ) = Isignal(γ)−1, (1.8.2b)

[see also (1.6.2) and (1.6.3)], and g is the threshold computed to satisfy a desired
probability of false alarm [73], [52, chapter 6e.3], [72, chapter 7.3.3]. From (1.8.1),
testing H0: ρ− ρ0 = 0 yields the confidence ellipsoid of the following form:

(ρ− ρ0)
T CRBsignal(γ)

−1
(ρ− ρ0) ≤ g. (1.8.3)

The squared volume of this ellipsoid is proportional to |CRBsignal(γ)| evaluated at
ρ = ρ0. Similarly, testing H0: θ − θ0 = 0 yields the confidence ellipsoid whose
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squared volume is proportional to |CRBθθ(γ)| evaluated at θ = θ0. Wald tests
have been criticized in [7] for yielding too small (i.e. optimistic) confidence regions.
Nevertheless, they provide an idea about the shapes of confidence regions and their
relative sizes at different locations, and are thus applicable to EEG/MEG array
design.

In the theory of optimal experimental designs, minimizing the determinant of the
CRB for all signal parameters |CRBsignal(γ)| with respect to the design variables ξ
is referred to as the D-optimal design, whereas minimizing the determinant of the
CRB of a subset of parameters of interest (for example, |CRBθθ(γ)| when θ is of
interest) is referred to as the Ds-optimal design, see [1].

For simplicity, let us concentrate on the model (1.2.4), where only one dipole,
one time snapshot and one trial are used (n = N = K = 1). Then, ρ = [sT ,θT ]T ,
and (1.6.2)–(1.6.3) simplify to

Isignal(γ) =

[
Iss IT

θs

Iθs Iθθ

]
(1.8.4)

and

Iss = A(θ)T Σ−1A(θ), (1.8.5a)

Iθs = DA(θ)T
[
s ⊗ Σ−1A(θ)

]
, (1.8.5b)

Iθθ = DA(θ)T
[
ssT ⊗ Σ−1

]
DA(θ). (1.8.5c)

In this case, ρ is a d × 1 vector, where d = 3 + r. Now, CRBθθ(γ) can be readily
computed by applying the matrix inversion formula (see [29, theorem 8.5.11] and
[72, result vi, p. 8]) to (1.8.4):

CRBθθ(γ) =
[
Iθθ − IθsI−1

ss IT
θs

]−1

=

{
DA(θ)T

[
ssT ⊗

[
Σ−1 − Σ−1A(θ)(A(θ)T Σ−1A(θ))−1A(θ)T Σ−1

]]
DA(θ)

}−1

, (1.8.6)

see also (1.6.8a). Applying the formula for the determinant of a partitioned matrix
in [72, result v, p. 8] to (1.8.4), we obtain the following relationship between the
D-optimality criterion (for the vector of all signal parameters ρ) and Ds-optimality
criterion for θ,under the measurement model in (1.2.4):

|CRBsignal(γ)| = |CRBss|θ(θ,Σ )| · |CRBθθ(γ)| =
|CRBθθ(γ)|

|A(θ)T Σ−1A(θ)| , (1.8.7)

where
CRBss|θ(θ,Σ ) = Iss(γ)−1 = [A(θ)T Σ−1A(θ)]−1 (1.8.8)

is the CRB for s assuming that the dipole location θ is known. Therefore, the
squared volume of the confidence ellipsoid for all signal parameters ρ is equal to
the product between the
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• squared volume of the confidence ellipsoid for the dipole location θ and

• squared volume of the confidence ellipsoid for the dipole moment vector s
assuming known dipole location θ.

1.8.1 Reparametrization Invariance

We now show that D- and Ds-optimality criteria are invariant to reparametrization.
If ρ 7→ h(ρ) is a smooth non-singular reparametrization of the signal parameters,
the CRB for this model is equal to

CRBh(γ) = H(ρ) · CRBsignal(γ) ·H(ρ)T , (1.8.9)

where H(ρ) is defined in (1.8.2a). Therefore,

|CRBh(γ)| = |H(ρ)|2 · |CRBsignal(γ)|. (1.8.10)

Provided that the reparametrization h(ρ) is independent of ξ, |CRBh(γ)| and
|CRBsignal(γ)| are minimized for the same choice of the design parameters ξ. A simi-
lar argument implies that the Ds−optimality criterion is invariant to reparametriza-
tion as well. Therefore, if D- and Ds-optimal design criteria are used, it becomes
irrelevant whether the dipole location θ is expressed in the Cartesian or spherical
coordinate system, which is a very desirable property.

1.8.2 Relationship between Optimal Array Design
and Information Theory

We show that the D-optimal designs have information-theoretic justification. First,
recall the definitions of relative entropy and mutual information, see [11, chapter
9.5]). The relative entropy (also called the Kullback-Leibler distance or information
divergence) between probability densities p(x) and q(x) is defined as

D(p || q) =

∫
p(x) log

(
p(x)

q(x)

)
dx, (1.8.11)

Then, the mutual information between two random vectors y and ρ with joint
density fy,ρ(y,ρ) is

I(y,ρ) = D
(
fy,ρ(y,ρ) || fy(y)fρ(ρ)

)

=

∫
fρ(ρ)dρ

∫
fy|ρ(y|ρ) log

(
fy|ρ(y|ρ)

fy(y)

)
dy (1.8.12)

where fy(y) and fρ(ρ) are the marginal densities of y and ρ, respectively.
To simplify the following discussion, we assume that the noise covariance Σ is

known; hence CRBsignal = CRBsignal(ρ) = Isignal(ρ)−1. It was shown in [10] that,
under certain regularity conditions, the relative entropy between the conditional



Section 1.8. EEG/MEG Sensor Array Design 415

and the marginal distributions of the measurement vector y [denoted by p(y|ρ) and
p(y), respectively] exhibits the following asymptotic behavior:

D
(
p(y |ρ)

∣∣∣∣ p(y)
)

=
d

2
log
( m

2πe

)
+

1

2
log |Isignal(ρ)| − log(p(ρ)) + o(1), (1.8.13)

where p(ρ) is the prior density of ρ and o(1) → 0 as m→ ∞. [Recall that m is the
number of sensors in the array and d is the size of the signal parameter vector ρ.]
Obviously, maximizing the above expression with respect to the design parameters
ξ is asymptotically equivalent to minimizing |CRBsignal(ρ)|, provided that the prior
distribution p(ρ) is not functionally dependent on ξ.

Relationship with Mutual Information and Bayesian Array Design: From
(1.8.12) and (1.8.13), it follows that

I(y,ρ) =
d

2
log
( m

2πe

)
+

1

2

∫
fρ(ρ) log |Isignal(ρ)| dρ+ h(ρ) + o(1), (1.8.14)

where

h(ρ) = −
∫
fρ(ρ) log[fρ(ρ)]dρ (1.8.15)

is the differential entropy of ρ, see [11, chapter 9]). Hence, asymptotically (as
m → ∞), the mutual information between the data vector y and the vector of
signal parameters ρ is maximized by minimizing

Eρ[log |CRBsignal(ρ)|] =

∫
fρ(ρ) log |CRBsignal(ρ)| dρ, (1.8.16)

provided that the prior distribution fρ(ρ) does not depend on the design parameter
vector ξ. The criterion (1.8.16) belongs to the class of Bayesian optimal experi-
mental designs, recently proposed in [2] (see also references therein). Now, using
(1.8.7), we can decompose (1.8.16) as

Eρ

[
log |CRBsignal(ρ)|

]
= Eρ

[
log |CRBθθ(ρ)|

]
− Eθ

[
log
∣∣A(θ)T Σ−1A(θ)

∣∣]

=

∫
fρ(ρ) log |CRBθθ(ρ)| dρ−

∫
fθ(θ) log |A(θ)T Σ−1A(θ)| dθ, (1.8.17)

where the first term in the above expression can be viewed as a Bayesian Ds-optimal
design criterion for the vector of dipole location parameters θ.

Following the discussion in Section 1.8.1, it is easy to show that the above
Bayesian D- and Ds-optimal are invariant to smooth non-singular reparametriza-
tions ρ 7→ h(ρ).

Another interesting array design criterion is the mean-square error of dipole
location estimates, which we examined in [31].
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1.9 Numerical Examples

Example 7.1: Simulated Data
In this section we compare the localization accuracy of the ML, GLS, OLS and
scanning methods when spatially correlated noise is added to a simulated evoked
response. Our simulations confirm the theoretical results presented in Sections 1.3
and 1.6.

The simulation was performed for an MEG configuration of 37 radial magne-
tometers located on a spherical helmet of radius 10 cm, with a single sensor at the
pole of the cap, and three rings at elevation angles of π/12, π/6 and π/4 rad, con-
taining, respectively 6, 12 and 18 sensors equally spaced in the azimuthal direction.
This arrangement is similar to an array made commercially by 4-D Neuroimaging
Inc., San Diego, California.

We generated two coherent dipole sources. The components sθ and sϕ of the
first dipole change in time

sθ = 15 exp(−(t− 60)2/82) − 5 exp(−(t− 40)2/172) [nA · m], (1.9.1a)

sϕ = 13 exp(−(t− 60)2/122) − 3 exp(−(t− 40)2/172) [nA · m], (1.9.1b)

and the corresponding components of the second dipole as sθ(t) and −sϕ(t), i.e. the
sources are correlated. The dipoles are symmetric relative to the mid-sagittal plane
with locations θ1 = [π/6,−π/3, 5 cm] and θ2 = [π/6, π/3, 5 cm].

We simulated 50 runs each consisting of K = 10 trials, and N = 100 snapshots
per trial. To approximate realistic spatially correlated noise, we generated 400
random dipoles uniformly distributed on a sphere of radius 5 cm [for a discussion
on random dipole modeling of spontaneous brain activity, see [14]]. For each noise
dipole we assumed that its two tangential moment components were uncorrelated
and distributed as N (0, σm

2). For σm = 1nA·m the total noise standard deviation
at the sensors was approximately 110 fT, consistent with 25fT/

√
Hz one-sided white

noise spectral density bandlimited to 20Hz. We justify this choice by the fact that
typically recorded background noise spectral density is 20–40 fT/

√
Hz below 20Hz

[30]. The peak value of the signal at the sensor with the largest response was around
270 fT, consistent with typical values measured in practical applications.

In EEG/MEG literature, several parametric models have been used to model
temporal evolution of the evoked responses: decaying sinusoids (see [68]), dou-
ble Gaussian (see [67]), or Hermite wavelets (see [26]). In this example, we
choose a combination of Gaussian and harmonic terms, i.e. φ(t,η) = [exp(−(t −
τ1)

2/σ2
1
), exp(−(t−τ2)2/σ2

2
), 1, sin(ωt), sin(2ωt), sin(3ωt), cos(ωt), cos(2ωt), cos(3ωt)]T .

Hence, the unknown parameter vector describing the temporal evolution is η =
[τ1, σ1, τ2, σ2, ω]T . The two Gaussian functions were used to model peaks in the
response, and the sine and cosine terms model the low-pass signal component. Such
components are typical in evoked responses.

In Figure 1.2, we compare the localization accuracies of the ML, GLS, OLS,
and scanning methods by showing the mean localization errors per dipole (1/2) ·
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Figure 1.2. Average location error per dipole as a function of the noise level σm

for (a) ML method with parametric basis functions, (b) ML method with l = 2n
nonparametric basis functions, (c) GLS with Φ = IN , (d) OLS with parametric basis
functions, (e) OLS with Φ = IN . (f) scanning with unknown dipole orientation that
is fixed in time.
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(‖ p̂1 − p1 ‖2
+ ‖ p̂2 − p2 ‖2

)1/2 (averaged over the 50 runs) as functions of σm.
Here, ‖ · ‖ denotes the Euclidean norm, and p1, p2 and p̂1, p̂2 are the location
vectors of the two dipoles and the corresponding ML estimates, see also (1.2.1).
The standard deviation of the localization error curves is the largest for OLS with
parametric basis functions (up to 0.3 mm).

It is interesting to note that as σm increases, the dipole location estimates ob-
tained by the OLS methods move toward the center of the head. Thus, the error
values become comparable to the head’s dimensions for large σm (shown in Figure
1.2), whereas the ML estimation errors remain very small, showing the robustness
of the ML method. A similar trend was also observed in [39], [40].

The average location error is approximately the same for the ML methods with
parametric and nonparametric basis functions and the GLS method, which is con-
sistent with the asymptotic results in Section 1.6, where we show that the ML and
GLS methods have the same asymptotic accuracy of the signal parameters ρ (due
to the block-diagonal structure of the FIM for signal and noise) and the parametric
and nonparametric ML have the same asymptotic location accuracy (since CRBθθ is
independent of the choice of basis functions as long as the dipole moment temporal
evolutions can be expressed exactly as their linear combination).

We have applied the scanning algorithm for unknown fixed (time-invariant)
dipole orientation in (1.5.2), see Section 1.5. As shown in Figure 1.2, this algo-
rithm is robust to the increase in the noise level σm because it accounts for spatially
correlated noise. Further, for larger values of σm, it outperforms the OLS algo-
rithms, which do not account for the correlation in the noise. This is an important
result, since scanning is computationally simpler than OLS (OLS with Φ = IN re-
quires a 6-D search for the two-dipole fit). Note that, for small values of σm, the
OLS algorithms perform better than scanning because they fit the exact noiseless
response (two dipoles in this case), which becomes more important than the noise
correlation when the noise level is small.

In this example, we have used a very small number of trials (K = 10). As
K → ∞, both the ML and OLS estimates converge to the true parameters, as
shown in [19, theorems 1 and 2]. In some real data applications, the number of
trials is K = 100 or more: then the ML and OLS results may differ only by a few
millimeters [41].
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Figure 1.3. Left: Auditory evoked responses averaged over 100 trials. Right: N100
peak response (view from above).

Example 7.2: Real Data
We demonstrate the performance of the proposed method in application to real
auditory evoked response data. The dipole moments were estimated using the
ML method in Section 1.4. The optimization algorithms were initialized using
the scanning technique described in Section 1.5, assuming known orientation, see
discussion below. We also apply the goodness-of-fit statistic suggested in Section 1.7.

The measurements were obtained by CTF’s whole head MEG system with 143
first-order gradiometers in an unshielded environment. An auditory stimulus at
1 kHz was applied to the subject and repeated K = 100 times. After being sampled
at 1250Hz, the data was low-pass filtered with a 30Hz cut-off frequency, and the
DC offset was removed. The number of snapshots per trial was N = 400, corre-
sponding to an observation time of 320ms. The prestimulus interval contains the
first 120ms (150 snapshots) of each trial, and is used as baseline. The peak activity
is referred to as N100m [51] because it occurs approximately 100ms after stimulus
onset. It has been hypothesized that the location of the N100m sources (which are
often modeled by current dipoles) depend on many parameters: latency, stimulus
frequency, stimulus intensity [see e.g. [48]]. Accurate source locations and moments
are necessary for studying the above dependencies, which could help understanding
of the functioning of the human auditory cortex.

Figure 1.3 shows averaged (over trials, timelocked to the instant of stimulus
application at t = 0) temporal evolutions of all 143 channel measurements, and the
spatial distribution of N100m peak response over the helmet (interpolated between
sensor locations), viewed from above. Figure 1.4 shows side views of the N100m
(averaged) peak responses.

Figure 1.5 shows the estimated temporal evolutions of the dipole moment com-
ponents sϑ(t) and sϕ(t), using the ML method with l = 3 nonparametric basis
functions (see Section 1.4). These estimates capture a small delay between the
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Figure 1.4. N100 peak response in x-z plane (left and right ear view).
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Figure 1.5. Estimated dipole moment components of the auditory evoked response
as a function of time.

peak responses of the right and left ear. Fitting two dipoles yielded the follow-
ing location estimates: θ̂1 = [1.57, 1.59, 5.15 cm]T and θ̂2 = [1.61,−1.36, 5.4 cm]T .
These locations are shown in Figures 1.6, 1.7, and 1.8, overlaid on MRI scans of the
brain (the circles show projections of the sphere used to model the head).

Using the OLS estimator with s(t) allowed to vary arbitrarily in time (see Subsec-

tion 1.3.2) yields θ̂1OLS = [1.63, 1.57, 3.81 cm]T and θ̂2OLS = [1.70,−1.49, 3.75 cm]T .
Observe that the OLS estimates of the dipoles’ azimuth and elevation are similar
to those obtained by the ML, whereas their distances from the center of the head
are significantly smaller. This is consistent with the results of Example 7.1, where
the OLS estimates moved deeper as the noise level increased.

In the above examples, the optimization algorithms were initialized using the
scanning procedure suggested in Section 1.5 with dipoles having known orientations.
Scanning is performed for elevational and azimuthal orientations separately, yielding
two sets of initial values. The best initial estimates obtained by scanning were only
6.5 and 8 mm away from the ML location estimates of the two dipoles. In Figures
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Figure 1.6. Left and right dipole location estimates overlaid on coronal MRI brain
scans.



Section 1.9. Numerical Examples 423

Figure 1.7. Dipole location estimates overlaid on axial MRI brain scans.



424 EEG/MEG Spatio-Temporal Dipole Source Estimation and Sensor Array Design Chapter 1

Figure 1.8. Dipole location estimates overlaid on sagittal MRI brain scans.



Section 1.9. Numerical Examples 425

Figure 1.9. Concentrated likelihood function for a single dipole, used for scanning
in uϕ direction over a sphere of radius 5 cm.

Figure 1.10. Single dipole concentrated likelihood function, used for scanning in
uϑ direction over a sphere of radius 5 cm.
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1 dipole 2 dipoles 3 dipoles

R2(σ2Im) 0.2912 0.5839 0.5854

R2(Σ 0) -0.0054 0.7031 0.7374

Table 1.1. Goodness-of-fit for the ML method.

1 dipole 2 dipoles 3 dipoles

R2(σ2Im) 0.3845 0.7574 0.8362

R2(Σ 0) -0.3200 0.4952 0.4160

Table 1.2. Goodness-of-fit for the OLS method.

1.9 and 1.10, we denonstrate how the scanning function for known fixed dipole
oriantation depends on the choice of orientation. We show the scanning function
in (1.5.4) for azimuthal and elevational orientations, respectively. In particular, we
plot this function on the sphere of radius 5 cm (around the center of the head) for
assumed dipole orientations described by uϕ (azimuthal) and uϑ (elevational). The
ML dipole estimates (at the N100m peak, for n = 2) are shown by black arrows.
Both scanning functions show exactly two distinguished peaks close to the ML
estimates. The peaks in the scanning function are quite close to these estimates,
showing the feasibility of the scanning technique. Interestingly, in this case, scanning
in the azimuthal direction has peaks closer to the actual ML estimates, compared
to scanning in the elevational direction.

Next, we computed goodness-of-fit measures R2(V ) as a function of the number
of dipoles for V = σ2Im and V = Σ 0, estimated from the baseline data (containing
only the background noise). Table 1.1 shows the goodness-of-fit of the ML method
as a function of the number of fitted dipoles. Both values of R2 saturate when the
data is fitted with 3 dipoles. Table 1.2 shows the goodness-of-fit of the OLS method
(with Φ = IN). Since 1 − R2(σ2Im) equals the OLS cost function, R2(σ2Im) has
higher values than in Table 1.1. However, the dipole locations of a 3-dipole fit are
clearly not admissible (all three dipoles fall within a 2 cm distance from the center
of the head, which is far from the cortex). This unacceptable solution causes a drop
in the value of R2(Σ 0) compared with a 2-dipole fit, whereas R2(σ2Im) continues
to improve. A drawback of R(Σ 0) is that it does not have a direct quantitative
interpretation, since it is “proportion of variance explained” of the transformed (i.e.
spatially whitened) data. Thus, both R2(Σ 0) and R2(σ2Im) should be computed
and analyzed as goodness-of-fit indicators.
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1.10 Conclusions

We proposed maximum likelihood methods for estimating evoked dipole responses
using a combination of EEG and MEG arrays, assuming spatially correlated noise
with unknown covariance. To exploit prior information on the shapes of the evoked
responses and improve the estimation of the dipole moments, we modeled them
as linear combinations of parametric basis functions. Utilizing multiple trials, we
also derived the estimation method for nonparametric basis functions, which allows
for computation of the concentrated likelihood function that depends only on the
dipole locations (but needs many parameters to describe the moment evolutions).
We further showed how to obtain initial estimates of the dipole locations using
scanning. Cramér-Rao bounds for the proposed model were derived. We also showed
that the proposed estimators are asymptotically more efficient than the nonlinear
OLS estimators. Finally, we proposed optimal array design criteria and discussed
their properties.

We presented numerical examples with simulated and real MEG data, demon-
strating the performance of the ML methods. The ML and OLS methods were
compared; the ML was more accurate and robust, confirming the theoretical results
in Section 1.3.

In [17], we extended the above method to solve the problem of dipoles having
fixed orientations in time, whereas their strengths were modeled by a linear combi-
nation of basis functions. There are several interesting topics for further research:

• analysis of the proposed methods in the presence of more realistic noise and
signal models (e.g. temporally correlated noise, latency jitters etc);

• tracking moving dipoles [47], [9];

• simulation analysis and comparison of the proposed scanning methods;

• classifying evoked responses for diagnostic purposes;

• more realistic array response modeling (e.g. incorporating a realistic patient-
specific head model obtained from MRI scans in source estimation and per-
formance analysis following [46]);

• more extensive applications to real data.
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APPENDICES

1.A ML Estimation

We derive the ML estimates of the matrix of basis function coefficients X and
noise covariance for known θ and η. Then, we present the concentrated likelihood
function that should be maximized when θ and η are unknown to obtain their ML
estimates.

Stack all the measurement matrices into one matrix Ỹ = [Y1, Y2 · · ·YK ] of size

m × NK. Similarly, put K basis function matrices Φ into a matrix Φ̃ = [Φ · · ·Φ]
of size l × NK. [We use A instead of A(θ) and Φ instead of Φ(η), since θ and η
are assumed to be known.] Using the above notation and the measurement model
from Section 1.2.2, the likelihood function can be written as

f(Ỹ ;X,Σ ) =
1

(2π)mNK/2|Σ |NK/2
exp

{
− 1

2
tr
[
Σ−1(Ỹ −AXΦ̃)(Ỹ −AXΦ̃)T

]}
.

(1.A.1)
Then, according to [36], [58, chapter 6.4], the ML estimates of X and Σ are:

X̂ = (ATS−1A)−1ATS−1Ỹ Φ̃T (Φ̃Φ̃T )−1, (1.A.2a)

Σ̂ = S +
1

NK
· (Im − TS−1)Ỹ Φ̃T (Φ̃Φ̃T )−1Φ̃Ỹ T (Im − TS−1)T , (1.A.2b)

where

R̂ =
1

NK
Ỹ Ỹ T =

1

NK

K∑

k=1

YkYk
T , (1.A.3a)

S = R̂− 1

NK
· Ỹ Φ̃T (Φ̃Φ̃T )−1Φ̃Ỹ T , (1.A.3b)

T = A(θ)
[
A(θ)TS−1A(θ)

]−1
A(θ)T . (1.A.3c)

Observing that

Φ̃Φ̃T = KΦΦT (1.A.4a)

Φ̃Ỹ T =
K∑

k=1

ΦYk
T = KΦY

T
(1.A.4b)

428



Section 1.B. Parameter Identifiability 429

directly yields (1.3.8a)–(1.3.8d). Substituting the above estimates into the likelihood
function (1.A.1) we obtain the concentrated likelihood function

f(Ỹ ; X̂, Σ̂ ) =
1

(2π)mNK/2|Σ̂ |NK/2
exp[−(1/2) ·mNK], (1.A.5)

and the concentrated likelihood function lML(θ,η) = R̂/|Σ̂ (θ,η)| in (1.3.10) follows.
Using [21, eq. (3.3) and App. A] yields an alternative expression for the concentrated
likelihood:

lML(θ,η) =
|Φ̃(INK − (1/NK) · Ỹ TQ(θ)Ỹ )Φ̃T |
|Φ̃(INK − (1/NK) · Ỹ T R̂−1Ỹ )Φ̃T |

, (1.A.6)

and (1.3.10b) follows by applying the identities (1.A.4) to (1.A.6). Using similar
arguments, the third expression in (1.3.10) easily follows from [21, eq. (3.5) and
App. A].

1.B Parameter Identifiability

As observed in Subsection 1.3.4, the regularity condition R5) is essentially an identi-
fiability condition for the unknown signal parameters ρ. Here, we formally introduce
the concept of identifiability by distribution and apply it to the signal and noise
parameters in the measurement model (1.3.4). We then derive several necessary
identifiability conditions for the unknown parameters.

Let F (y;γ) be the distribution of a random vector y based on an unknown
parameter vector γ. Following [5] and [6, chapter 1.1.2], we say that that the
parametric function f(γ) is identifiable by distribution if there exist no pair of
values γ1 and γ2 such that f(γ1) 6= f(γ2) and F (y,γ1) = F (y,γ2). Since in our
model the distribution of the observations is specified up to the first and second
moments only, the concept of identifiability needs an appropriate modification. The
following definition, adapted to our measurement model in (1.3.4), represents such
a modification (see also [53, p. 74]):

Definition. The parameter vector ρ is said to be identifiable if, for ρ1 and ρ2

(which belong to the parameter space of ρ)

ρ1 6= ρ2 ⇒ A(θ1)X1Φ(η1) 6= A(θ2)X2Φ(η2). (1.B.1)

Similarly, the parameter vector ψ is identifiable if, for ψ1 and ψ2 (which belong to
the parameter space of ψ)

ψ1 6= ψ2 ⇒ Σ (ψ1) 6= Σ (ψ2). (1.B.2)

Remark 1. If the conditions (1.B.1) or (1.B.2) fail, then ρ or Σ are not identifiable
by distribution.
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Remark 2. Since, in our model, the noise covariance is unstructured [ψ =
vech(Σ )], it is obvious that ψ is always identifiable.

To achieve identifiability of ρ, certain obvious conditions must be imposed on
the allowable parameter values. Specifically, the parameter space of θ should im-
pose ordering of dipole locations; otherwise permuting the dipole responses in the
response matrix and appropriate modifications of the matrix X would violate the
definition in (1.B.1). Also, the parameter space of X needs to be restricted to avoid
degenerate cases, such as sets of zero rows of X, which would not allow the identi-
fication of some dipole locations. Furthermore, there is an artificial identifiability
problem due to the use of spherical coordinate system: if the elevation of a dipole
ϑ is zero, its azimuth can be arbitrary and is not identifiable.

The radial dipole components are not identifiable if only MEG sensors are em-
ployed, see Section 1.2. Consequently, a dipole located in the center of the head
cannot be localized by an MEG array. The parameter space of dipole locations
should be restricted to avoid the above problems.

To allow unique determination of basis functions, zero columns of X should not
be allowed, since the corresponding rows of Φ(η) are redundant. If a nonparametric
basis function model is used, the parameter space of the basis functions should be
restricted to allow a unique solution; for example, it is sufficient to impose the
orthonormality condition on the rows of Φ (see also the discussion in Appendix
1.E).

We now examine the identifiability of X, assuming that θ and η are known.
[Since θ and η are known, we use A and Φ instead of A(θ) and Φ(η).] A linear
parametric function hT vec (X) is identifiable if, for every X1,X2 ∈ RI nr×l

hT vec (X1) 6= hT vec (X2) ⇒ (ΦT ⊗A) vec (X1) 6= (ΦT ⊗A) vec (X2). (1.B.3)

(Here, we have used the fact thatAX1Φ 6= AX2Φ is equivalent to (ΦT⊗A)vec (X1) 6=
(ΦT ⊗ A)vec (X2), see [72, result i at p. 12].) Following [53, Theorem 4.2.1], the
above condition is satisfied if and only if h belongs to the column space of Φ ⊗AT

(which has size nrl ×mN). Since rank(A) = nr < m and rank(Φ) = l ≤ N (see
the discussion in Sections 1.2–1.4), it follows that Φ ⊗ AT has more columns than
rows. Also, note that the column space of Φ ⊗AT is full if both A and Φ have full
ranks. Then, hT vec (X) is identifiable for an arbitrary vector h, implying that X
is identifiable.

We now consider joint identifiability of X and θ, for known η. [Since η is known,
we use Φ instead of Φ(η).] We also assume that all the necessary identifiability
conditions discussed above hold: A(θ) and Φ are full-rank matrices and the above
assumptions on the parameter spaces of θ, X, and η are satisfied. The condition
for identifiability of θ and X is now

θ1 6= θ2 and X1 6= X2 ⇒ A(θ1)X1Φ 6= A(θ2)X2Φ, (1.B.4)

and a straightforward extension of the derivation in [74] yields the following neces-
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sary condition on the number of sources n that can be identified:

n <
m+ rank(X)

2r
. (1.B.5)

Finally, to ensure a positive definite estimate of Σ with probability 1, the fol-
lowing inequality must hold

NK −m− l ≥ 0, (1.B.6)

which is the usual multivariate analysis of variance (MANOVA) restriction stating
that the number of observations per snapshot plus the number of basis functions
must not exceed the number of snapshots (see also Appendix 1.E).

1.C Asymptotic Properties of the OLS Estimates

We prove the asymptotic properties of the OLS estimators stated in Theorem 7.2.
Assume that the true parameters are ρ = ρ0, and define the OLS cost function

as

QK(ρ) =
1

K

K∑

k=1

tr
{

[Yk −A(θ)XΦ(η)][Yk −A(θ)XΦ(η)]T
}
. (1.C.1)

This expression can be rewritten as

QK(ρ) =
2

K

K∑

k=1

tr
{
[Yk −A(θ0)X0Φ(η0)][A(θ0)X0Φ(η0) −A(θ)XΦ(η)]T

}

+QK(ρ0) + Q(ρ), (1.C.2)

where

Q(ρ) = tr
{
[A(θ)XΦ(η)−A(θ0)X0Φ(η0)]·[A(θ)XΦ(η)−A(θ0)X0Φ(η0)]

T
}

(1.C.3)
can have only non-negative values, and is exactly the expression in the regularity
condition R5) with Σ = Im. Then, the strong law of large numbers implies that
(as K → ∞):

QK(ρ0)
a.s.→ tr(Σ ), (1.C.4)

2

K

K∑

k=1

tr
{
[Yk −A(θ0)X0Φ(η0)][A(θ0)X0Φ(η0) −A(θ)XΦ(η)]T

} a.s.→ 0. (1.C.5)

Denote by ρ̂
OLS

(K) the OLS estimate which minimizes QK(ρ). Using the above
results, it follows that, as K → ∞:

QK(ρ̂
OLS

(K))
a.s.→ tr(Σ ) + Q(ρ

OLS
), (1.C.6)
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where ρ
OLS

is any limit point of the sequence of OLS estimators ρ̂
OLS

(K). Moreover,
since QK(ρ̂

OLS
(K)) ≤ QK(ρ0), we have

0 ≤ tr(Σ ) + Q(ρ
OLS

) ≤ tr(Σ ), (1.C.7)

which implies Q(ρ
OLS

) = 0. Now, the regularity condition R5) implies that ρ
OLS

=

ρ0; hence ρ̂
OLS

(K)
a.s.→ ρ0, which is the result in (1.3.21a).

The proof of (1.3.21b) follows arguments similar to those in [24, chapter 4.3].
The expression

[
K

N∑

t=1

D(t,ρ)TD(t,ρ)
]−1

K∑

k=1

N∑

t=1

D(t,ρ)T wk(t) (1.C.8)

has expected value 0 and covariance O(K−1) because wk(t) are i.i.d. Then (1.3.21c)
follows from [22, Corollary 5.1.1.2].

1.D ML versus OLS

We show that the ML estimates of ρ derived in this chapter are asymptotically more
efficient than the OLS estimates, i.e. the difference in their asymptotic variances is
negative semidefinite.

Assume that the regularity conditions R1)–R5) hold. Theorem 7.1 implies that
the asymptotic covariance matrix of

√
NKρ̂ is (see also Appendix 1.G)

C∞
ML

= NK
[
Isignal(θ)

]−1
= NK

[ N∑

t=1

D(t,ρ)T Σ−1D(t,ρ)
]−1

= NK
[
DTS−1D

]−1

,

(1.D.1)
where

D(t,ρ) =
∂(A(θ)Xφ(t,η))

∂ρT
, (1.D.2a)

D = [D(1,ρ)T · · ·D(N,ρ)T ]T , (1.D.2b)

S = IN ⊗ Σ , (1.D.2c)

which can be further simplified [see (1.6.2) and (1.6.3)].
The asymptotic covariance matrix of

√
NKρ̂

OLS
is (see Theorem 7.2)

C∞
OLS

= NK
[
DTD

]−1
DTSD

[
DTD

]−1
. (1.D.3)

Let Td be an arbitrary full-rank matrix such that its columns span the space
orthogonal to the column space of D; thus DTTd = 0. Then

Td(Td
TSTd)−1Td

T = S−1 − S−1D(DTS−1D)−1DTS−1, (1.D.4)
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which is Lemma 1 in [36] [see also [52, p. 77]]. It follows that

[
DTS−1D

]−1
=
[
DTD

]−1
DTSD

[
DTD

]−1

−
[
DTD

]−1
DTSTd

[
Td

TSTd

]−1
Td

TSD
[
DTD

]−1
, (1.D.5)

and, thus, C∞
ML

− C∞
OLS

≤ 0. Note that equality holds if Σ = σ2Im.

1.E Nonparametric Basis Functions

To maximize the concentrated likelihood with respect to nonparametric basis func-
tions, we express it as a function of R̂ instead of S (since S is a function of Φ), see
(1.A.6) and (1.3.10b).

Using the Lemma in (1.D.4) we can compute Q(θ) in the following alternative

way: Q(θ) = Ta(Ta
T R̂Ta)

−1Ta, where Ta is an arbitrary full-rank m × (m − nr)
matrix such that A(θ)TTa = 0 (assuming that A(θ) is full-rank), i.e. Ta spans the
space orthogonal to the column space of A(θ).

The matrix INK−(1/NK)·Ỹ T R̂−1Ỹ in the denominator of (1.A.6) is a projection
matrix with rankNK−m. Thus, for fixed η and if NK−m−l ≥ 0, the denominator
of the above expression is non-zero with probability one. Note also that, for K = 1,
the GLR in (1.A.6) would go to infinity if we choose the rows of Φ̃ = Φ from the

row space of Ỹ = Y .
Note that X̂ can also be computed as a function of R̂ instead of S:

X̂ =
√
N
[
A(θ)T R̂−1A(θ) + A(θ)T R̂−1P

[
Il − PT R̂−1P

]−1
PT R̂−1A(θ)

]−1

×

× A(θ)T R̂−1P
[
Il − PT R̂−1P

]−1
(ΦΦT )−1/2, (1.E.1)

where P is defined as

P = Y ΦT (ΦΦT )−1/2/
√
N. (1.E.2)

Equation (1.E.1) follows from (1.3.7) and

S−1 = R̂−1 + R̂−1P (Il − PT R̂−1P )−1PT R̂−1, (1.E.3)

which is obtained by using the matrix inversion lemma.
Consider the basis function matrix of the following form:

Φ = C∆T (IN − 1
N Y

T
R̂−1Y )−1/2, (1.E.4)

where C is an l ×N matrix of full rank l, and ∆ is the matrix whose columns are
the normalized eigenvectors of

Ξ (θ) = (IN − 1
N Y

T
R̂−1Y )−1/2

[
IN − 1

N Y
T
Q(θ)Y

]
(IN − 1

N Y
T
R̂−1Y )−1/2, (1.E.5)
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ordered to correspond to the eigenvalues of Ξ (θ) (denoted by λj , j = 1, . . . , N)
sorted in non-increasing order, i.e. λ1 ≥ λ2 · · · ≥ λN . Thus,

Ξ (θ) = ∆diag{λ1, . . . , λN}∆T . (1.E.6)

Also, denote by ∆l the matrix containing the first l columns of ∆, which are the
eigenvectors corresponding to the largest l eigenvalues of Ξ (θ). Then, (1.3.10b)
reduces to

lML(θ,η) =
|C∆T Ξ (θ)∆CT |

|CCT | =
|C diag{λ1, . . . , λN}CT |

|CCT | (1.E.7)

which is maximized for C = H · [Il, 0], where H is an arbitrary l × l matrix of full

rank, and the maximum is equal to
∏l

j=1 λj . Thus,

Φ̂ = H∆T
l (IN − 1

N Y
T
R̂−1Y )−1/2. (1.E.8)

For H = Il, the rows of Φ̂ are the generalized eigenvectors of the matrices IN −
1
N Y

T
Q(θ)Y and IN − 1

N Y
T
R̂−1Y that correspond to the largest l generalized eigen-

values of these two matrices; the product of these eigenvalues is

lML(θ) =

l∏

j=1

λj . (1.E.9)

Note that Ξ (θ) can be written as

Ξ (θ) = IN +
1

N
· (IN − 1

N Y
T
R̂−1Y )−1/2Y

T
R̂−1A(θ)

[
A(θ)T R̂−1A(θ)

]−1

·A(θ)T R̂−1Y (IN − 1
N Y

T
R̂−1Y )−1/2. (1.E.10)

The second term in (1.E.10) is a positive semidefinite symmetric matrix with rank
min(rank(A(θ)), N), which equals rank(A(θ)) = nr in most practical applications.

We now show that, although Φ̂ is not unique, the moment temporal evolution
X̂Φ̂ = [̂s(1) ŝ(2) · · · ŝ(N)] is. Using (1.3.7a), we get

[̂s(1) ŝ(2) · · · ŝ(N)] = X̂Φ̂ = [A(θ)TS−1A(θ)]−1A(θ)TS−1YΠ
Φ̂
, (1.E.11)

where Π
Φ̂
, the projection matrix on the row space of Φ̂, is independent of H

because it cancels out. Since S depends on Φ only through ΠΦ [see (1.3.8)],
[̂s(1) ŝ(2) · · · ŝ(N)] is also independent of H.

Substituting H =
[
∆l

T (IN − 1
N Y

T
R̂−1Y )−1∆l

]−1/2
into (1.E.8), we get or-

thonormal basis functions, i.e. Φ̂Φ̂T = Il.
When Yk = [Y1k, Y2k], k = 1, . . . ,K, where Y1k contains baseline data and Y2k

contains the evoked response, (1.3.10b) becomes

lML(θ,η) =
|Φ2(IN2

− 1
N Y 2

T
Q(θ)Y 2)Φ2

T |
|Φ2(IN2

− 1
N Y 2

T
R̂−1Y 2)Φ2

T |
. (1.E.12)
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The concentrated likelihood function GLR(θ) is the product of l largest eigenvalues

of (IN2
− 1

N Y2
T
R̂−1Y2)

−1/2
[
IN2

− 1
N Y2

T
Q(θ)Y2

]
(IN2

− 1
N Y2

T
R̂−1Y2)

−1/2. Thus, the
result in Section 1.4 follows.

1.F Scanning

We derive the scanning scheme (1.5.5) based on matching the estimated array re-
sponse subspace (constructed using an ML estimate of nonparametric array re-
sponse) with a single-dipole array response.

Consider the nonparametric array response model, i.e. assume that A(θ) = A is
an unknown m× nr matrix of full rank, equal to nr. Also, assume that the dipole
moments are fully uncorrelated, i.e. Φ = IN . In the following, we compute an ML
estimate of A by maximizing the concentrated likelihood function in (1.5.1b) [where
A(θ) is replaced with A] with respect to A.

Consider the array response matrix of the form A = R̂1/2V C, where C is an
m×nr matrix of full rank nr and V is the matrix whose columns are the (normalized)
eigenvectors of

Ψ = 1
N R̂−1/2Y Y

T
R̂−1/2 (1.F.1)

that are ordered to correspond to the eigenvalues of Ψ (denoted by µj , j = 1, . . . ,m)
sorted in non-increasing order, i.e. µ1 ≥ µ2 · · · ≥ µm. Thus,

Ψ = V diag{µ1, . . . , µm}V T .

Then, the concentrated likelihood function in (1.5.1b) becomes

l(θ) =

∣∣CTV T R̂1/2(R̂− 1
N Y Y

T
)−1R̂1/2V C

∣∣
∣∣CTC

∣∣

=

∣∣CT [Im − diag{µ1, . . . , µm}]−1C
∣∣

∣∣CTC
∣∣ , (1.F.2)

which follows from

R̂1/2
(
R̂− 1

N
Y Y

T
)−1

R̂1/2 = V [Im − diag{µ1, . . . , µm}]−1V T. (1.F.3)

Since 0 ≤ (Y
T
R̂−1Y )/N ≤ IN , the non-zero eigenvalues of (Y

T
R̂−1Y )/N (equal

to the non-zero eigenvalues of Ψ) are between 0 and 1; thus, 0 ≤ µj ≤ 1, where
j = 1, . . . ,m. Note that 1/(1−µ1) ≥ 1/(1−µ2) · · · ≥ 1/(1−µm), because 1/(1−µj)
is an increasing function of µj for 0 ≤ µj < 1, Now, it is obvious that (1.F.2) is
maximized for C = [Inr, 0]T ·H where H is an arbitrary nr×nr matrix of full rank.
Thus, an ML estimate of A is of the following form:

Â = R̂1/2VnrH, (1.F.4)
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where Vnr denotes the matrix containing the first nr columns of V . Further, Im −
VnrVnr

T is the projection matrix onto the space orthogonal to the column space of
R̂−1/2Â. Therefore, for a single dipole located at θ,

(I − VnrVnr
T )R̂−1/2A(θ) ≈ 0, (1.F.5)

and a MUSIC-like scanning function easily follows (using e.g. [62]) as an inverse

of the minimum generalized eigenvalue of A(θ)T R̂−1/2[I −VnrVnr
T ]R̂−1/2A(θ) and

A(θ)T R̂−1A(θ). Note also that the columns of Unr = R̂−1/2Vnr are the general-

ized eigenvectors of 1
N Y Y

T
and R̂ corresponding to their nr largest generalized

eigenvalues (equal to µ1, µ2, . . . , µnr); thus

A(θ)T R̂−1/2[Im − VnrVnr
T ]R̂−1/2A(θ) = A(θ)T [R̂−1 − UnrUnr

T ]A(θ). (1.F.6)

1.G Derivation of the Fisher Information Matrix

We derive the FIM for the model in Section 1.3. Define µ(t,ρ) = A(θ)Xφ(t,η).
Then, the negative log-likelihood function is

l(γ) =

K∑

k=1

N∑

t=1

{
[yk(t) − µ(t,ρ)]T Σ−1[y(t) − µ(t,ρ)] + log |Σ |

}
. (1.G.1)

Thus, the (i, j)th entry of the FIM easily follows from [49] and [33, eq. (3.31)]

[I(γ)]ij = K

N∑

t=1

∂µ(t,ρ)T

∂γi
Σ (ψ)−1 ∂µ(t,ρ)

∂γj

+
K

2

N∑

t=1

tr
[∂Σ(ψ)

∂γi
Σ(ψ)−1 ∂Σ(ψ)

∂γj
Σ (ψ)−1

]
. (1.G.2)

Using a well-known formula in e.g. [29, th. 16.2.2]

trATBCDT =
[
vecA

]T [
D ⊗B

]
vecC, (1.G.3)

we can rewrite (1.G.2) as

I(γ) =

[
K
∑N

t=1D(t,ρ)T Σ (ψ)−1D(t,ρ) 0

0 KNH(ψ)TV (ψ)−1H(ψ)

]

=

[
Isignal(γ) 0

0 Inoise(ψ)

]
, (1.G.4)

where

D(t,ρ) =
∂(A(θ)Xφ(t,η))

∂ρT
= [Dx(t,ρ),Dθ(t,ρ),Dη(t,ρ)], (1.G.5a)
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H(ψ) =
∂vec(Σ (ψ))

∂ψT
, (1.G.5b)

V (ψ) = 2 Σ (ψ) ⊗ Σ (ψ), (1.G.5c)

and

Dx(t,ρ) =
∂(A(θ)Xφ(t,η))

∂vec(X)T
= φ(t,η)T ⊗A(θ), (1.G.6a)

Dθ(t,ρ) =
∂(A(θ)Xφ(t,η))

∂θT
= (Xφ(t,η) ⊗ Im)T ∂vec(A(θ))

∂θT
, (1.G.6b)

Dη(t,ρ) =
∂(A(θ)Xφ(t,η))

∂ηT
= A(θ)X

∂φ(t,η)

∂ηT
(1.G.6c)

follow from [72, properties xiv. and xv. at p. 15]. Finally, (1.6.3) follows by using
the above results and the identity

(a ⊗A)B(cT ⊗ C) = acT ⊗ABC. (1.G.7)

Also, from (1.G.2), it follows:

Inoise(ψ) =
NK

2
tr[Σ−1 ∂Σ

∂ψr
Σ−1 ∂Σ

∂ψs
], r, s = 1, . . . , 1

2
m(m+ 1), (1.G.8)

which can be further simplified, see (1.6.5).
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