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Dynamic Shadow-Power Estimation
for Wireless Communications

Aleksandar Dogandžić and Benhong Zhang

Abstract—We present a sequential Bayesian method for dynamic esti-
mation and prediction of local mean (shadow) powers from instantaneous
signal powers in composite fading-shadowing wireless communication
channels. We adopt a Nakagami- fading model for the instantaneous
signal powers and a first-order autoregressive [AR(1)] model for the
shadow process in decibels. The proposed dynamic method approximates
predictive shadow-power densities using a Gaussian distribution. We also
derive Cramér–Rao bounds (CRBs) for stationary lognormal shadow
powers and develop methods for estimating the AR model parameters.
Numerical simulations demonstrate the performance of the proposed
methods.

Index Terms—Composite gamma-lognormal fading channels, dynamic
shadow-power estimation, lognormal shadowing, Nakagami- sequential
Bayesian estimation.

I. INTRODUCTION

In wireless communications, the ability to accurately estimate and
predict local-mean (shadow) powers is instrumental for handoff,1

channel access, power control, and adaptive modulation: The more
accurately we estimate the local-mean signal level, the more effi-
ciently we can perform these functions [1]–[8]. For example, the
analysis of power-control algorithms for CDMA systems in [5] shows
that reducing the shadow-power estimation error by 1 dB leads to
a significant increase in achievable forward-link capacity (see also
[2]). Several approaches to shadow-power estimation have been
proposed [1]–[3], [7]–[9]. Window-based estimators in, e.g., [1, ch.
12.3], [3], and [7]–[9], are designed assuming constant shadow power
over the duration of an averaging window. A Kalman-filter-based
power estimation and prediction algorithm is developed in [2] for
the composite Rayleigh-lognormal scenario and shown to meet or
exceed the performance of window-based approaches. However, this
method does not account for the non-Gaussian nature of the received
log-powers in wireless radio environments. Recently, sequential
Bayesian methods have attracted considerable attention due to their
ability to overcome the limitations of the Kalman filter and success-
fully cope with non-Gaussian and nonlinear estimation problems.2 In
this correspondence (see also [16]), we develop a sequential Bayesian

Manuscript received February 15, 2004; revised September 22, 2004.
The associate editor coordinating the review of this manuscript and approving
it for publication was Dr. Dominic K. C. Ho.

The authors are with the Department of Electrical and Computer Engi-
neering, Iowa State University, Ames, IA 50011 USA (e-mail: ald@iastate.edu;
zhangbh@iastate.edu).

Digital Object Identifier 10.1109/TSP.2005.850380

1For example, effective implementations of soft handoff for code-division
multiple access (CDMA) cellular systems are based on shadow-power esti-
mates, leading to extended cell coverage and increased reverse-link capacity
[4].

2In wireless communications, recursive Bayesian methods have been applied
to channel tracking [11], blind detection, equalization, and deconvolution [12],
[13], mobility tracking [14], and impulsive interference identification [15].

algorithm for estimating and predicting the shadow powers in com-
posite fading-shadowing channels with a Nakagami-m component3

and a shadowing component that follows a first-order autoregressive
[AR(1)] random process. For stationary local-mean powers, we
develop a nondynamic forward–backward (FB) algorithm for their
estimation, as well as methods for estimating the model (AR and
Nakagami-m) parameters.
We introduce the measurement model, derive sequential Bayesian

and FB estimators (see Sections II-A and B), and compute Cramér–Rao
bounds (CRBs) for the shadow powers (see Section II-C). In
Section III, we propose methods for model parameter estimation. In
Section IV, the accuracy of the proposed methods is evaluated using
numerical simulations. Concluding remarks are given in Section V.

II. MEASUREMENT MODEL AND SHADOW POWER ESTIMATION

We describe a model for received-power fluctuations as a mobile
subscriber moves through a wireless cellular radio environment.
Passing the received signal through square-law envelope detector and
amplifier (see, e.g., [7, Fig. 1] and [6]) and sampling the amplifier
output yields a discrete-time sequence yk, k = 1; 2; . . . of instan-
taneous signal powers.4 We model yk as the product of mutually
independent fading and shadowing components [1, ch. 2.4.2], [2], [7],
[8]

yk = �k � 10 (2.1a)

where �k is the power fluctuation due to multipath fading, and �k is
the local-mean (shadow) power fluctuation in decibels. We assume that
�k are independent and identically distributed (i.i.d.) gamma random
variables with mean one, having the probability density function (pdf)

p�(�k;m) =
mm�

m�1
k

�(m)
� exp(�m�k) (2.1b)

where �(�) denotes the gamma function, and m the denotes
Nakagami-m fading parameter. (The fading samples �k are ap-
proximately independent if the sampling interval is large enough; see
also the discussion in Section IV.) Finally, we model �k as a first-order
AR(1) random process

�k = �k�k�1 + !k (2.1c)

where !k are independent zero-mean random variables with variances
�2!;k . The AR(1) model (2.1c) is widely used to describe the correlation
of the shadow process �k (see, e.g., [2], [6]–[8], and [17]). Note that
AR shadow modeling is different from AR channel modeling (see the
discussion in [2, Sect. IV]). Here, we estimate and predict the unknown
shadow powers �k, assuming that the model parameters (Nakagami-m
parameter, AR coefficients �k , and variances �2!;k) are known. An ex-
tension to the scenario where the model parameters are unknown is
considered in Section III.

3The Nakagami-m fading model is fairly general: It includes Rayleigh fading
as a special case and can be used to closely approximate Ricean and Nakagami-q
(Hoyt) fading scenarios (see [10, ch. 2.2.1.4]).

4We neglect the effects of additive noise in the derivation of the proposed
methods and assume that the instantaneous signal powers y are accuratelymea-
sured (see also [2], [3], and [7]–[9]). However, the presence of noise is consid-
ered in our numerical simulations (see Fig. 7 in Section IV).
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A. Sequential Bayesian shadow-power estimation

We now derive a sequential Bayesian method for shadow-power es-
timation and prediction. Note that we have not specified the distribu-
tional form of the random variables !k apart from their first two mo-
ments; hence, the distribution of the shadow process �k, k = 1; 2; . . . is
also not fully specified. (For a fully specified pdf of �k , the recursion for
computing its prediction and filtering densities is given inAppendixA.)
Denote by �k and ck the posterior mean and variance of �k given the
set yyy1:k = fy1; y2; . . . ; ykg of all instantaneous powers until time k.
Immediately before observing yk , all currently available information
is described by the mean �k�1 and variance ck�1. At time k = 1,
these are the starting values �0 and c0 and, for all other k, will come
from the posterior (filtering) distribution of �k�1 given yyy1:(k�1), de-
noted by [�k�1jyyy1:(k�1)]. Using the AR(1) model in (2.1c), we com-
pute the mean bk and variance rk of the prior (predictive) distribution
[�kjyyy1:(k�1)]

bk = �k�k�1; rk = �2kck�1 + �2!;k: (2.2)

Since [�kjyyy1:(k�1)] is specified only through the above moments, we
are free to choose the form of this distribution as long as it is consistent
with (2.2); here, we adopt the Gaussian pdf with mean and variance
given in (2.2)

�kjyyy1:(k�1) � g(�k; bk; rk) =
1p
2�rk

� e�(� �b ) =(2r ): (2.3)

In other words, we approximate the “exact” (and generally analytically
intractable) predictive distribution in (A.1a) in Appendix A using the
above Gaussian pdf, which leads to the posterior updating equations
in (2.4a) and (2.4b), shown at the bottom of the page, where

vl(bk; rk) = 10(
p

2r �x +b )=10

and an approximate expression for E�jyyy �2kjyyy1:k is in (2.4c), shown
at the bottom of the page. The posterior updating equations are derived
as the mean and variance of [�kjyyy1:k], where [�kjyyy1:k] is obtained by
substituting the approximation (2.3) into the “exact” filtering-density
expression (A.1b) in Appendix A. The approximate expressions (2.4a)
and (2.4c) follow by using the Gauss–Hermite quadrature (GHQ) to
numerically evaluate the above conditional expectations. Here,L is the
quadrature order (determining approximation accuracy), and xl, hx ,
l = 1; . . . ; L are the GHQ abscissas and weights, tabulated in, e.g.,
[19]. The GHQ approximation has been used in [20] for nonlinear state
estimation in stochastic dynamical systems.

To summarize, we have developed a sequential Bayesian method for
dynamic estimation and prediction of shadow powers whose predictive
pdfs are approximated using a Gaussian distribution; the proposed re-
cursion alternates between

• the prior cascade equations (2.2);
• posterior updating equations (2.4).

Assuming that instantaneous signal powers until time k are available,
our estimator of �k is given by (2.4a), and the one-step predictor of
�k+1 is bk+1 = �k+1�k [see (2.2)].

B. Forward–Backward Estimation of Stationary Shadow Powers

Assume that the AR coefficients �k and variances �2!;k are constant
(independent of k) in the interval f1; 2; . . . ; Kg, i.e.,

�k = � 2 (�1; 1); �2!;k = �2! (2.5)

for k = 1; 2; . . . ; K , implying stationarity of the shadow process �k .
Then, the variance of �k is

�2� =
�2!

(1� �2)
: (2.6)

We now present a nondynamic (batch) FB estimator of the stationary
shadow powers. In addition to the “forward” recursion described in
Section II-A, we also apply the proposed recursion “backward” to the
observations arranged in the reverse order: yK ; yK�1; . . . ; y1. Hence,
an improved shadow-power estimator is obtained by running both re-
cursions and averaging the obtained forward and backward estimates
of �1; �2; . . . ; �K .

C. CRB for Stationary Lognormal Shadow Powers

We derive the Bayesian Cramér–Rao bound for the shadow-power
vector ��� = [�1; �2; . . . ; �K ]T assuming Gaussian ��� (lognormal shad-
owing), known model parameters, and stationary shadow powers

CRB� = I�1
� (2.7)

where I� is the Bayesian Fisher information matrix. (For the defini-
tion and properties of the Bayesian Cramér–Rao bound, see [21, ch.
2.4].) Here, I� is a tridiagonal matrix whose sub- and super-diagonal
elements are equal to ��=�2! , and its diagonal elements are equal
to m(ln 10=10)2 + (1 + �2)=�2! for k 2 f2; 3; . . . ; K � 1g and
m(ln 10=10)2+1=�2! for k 2 f1;Kg. The derivation of I� is outlined
in Appendix B. An extension of the above CRB results to the nonsta-
tionary scenario is straightforward. Assuming stationarity and a large
number of samples K approximating I� with a circulant matrix, we
derive an approximate formula for the average CRB

tr(CRB�)
K

� m
ln 10

10

2

+ ��2
� � 1� �

1 + �

� m
ln 10

10

2

+ ��2
� � 1 + �

1� �

�

: (2.8)

�k =E�jyyy[�kjyyy1:k] �
L
l=1 hx � (p2rk � xl + bk) � exp � my

v (b ;r )
� vl(bk; rk)�m

L
l=1 hx exp � my

v (b ;r )
� vl(bk; rk)�m

(2.4a)

ck =var�jyyy[�kjyyy1:k] = E�jyyy �2kjyyy1:k � �2k; (2.4b)

E�jyyy �2kjyyy1:k �
L
l=1 hx � (p2rk � xl + bk)

2 � exp � my
v (b ;r )

� vl(bk; rk)�m
L
l=1 hx exp � my

v (b ;r )
� vl(bk; rk)�m

: (2.4c)
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Small �2� , large � (close to one), or largem lead to small average CRB
and good estimation performance.

In the following, we consider the case where the model parameters
�, �2! , and m are unknown and develop methods for their estimation
when the shadow powers are stationary.

III. ESTIMATING UNKNOWN MODEL PARAMETERS

We present an iterative alternating-projection method for jointly es-
timating the AR model parameters and shadow powers under the sta-
tionarity assumptions in (2.5): Iterate between the following two steps.

Step 1 (AML): Fix �1; �2; . . . ; �K , and estimate � and �2!
using their asymptotic maximum likelihood (AML) estimates
(see, e.g., [22, Ex. 7.18])

� =

K

l=2

�l�l�1

K

k=1

�2k

(3.1a)

�2! =(1� �2) �

K

k=1

�2k

K
: (3.1b)

Step 2 (FB): Fix � and �2! , and estimate �1; �2; . . . ; �K using
the FB method in Section II-B.

shadow-power estimation for unknown AR model parameters is im-
portant in urban environments if the sampling period with which the
measurements are collected is relatively large (see [2, Sec. IV]). The
above iteration can be initialized using the instantaneous powers in
decibels: �initk (t) = (10= ln 10) � ln yk, k = 1; 2; . . . ; K . Note that
Step 2 requires the knowledge of the Nakagami-m fading parameter,
which can be estimated separately using the method in [23], discussed
briefly below.
Nakagami-m Parameter Estimation: In [23], we derive

ML methods for estimating m from the instantaneous powers
y1; y2; . . . ; yK under the piecewise-constant model for the shadow
powers. In particular, �1; �2; . . . ; �K are assumed to be constant
within intervals (windows) of length N but allowed to vary randomly
from one interval to another. In [23], we have chosen K = LN and
�(l�1)N+1 = �(l�1)N+2 = . . . = �(l�1)N+N = zl, where zl,
l = 1; 2; . . . ; L are modeled as i.i.d. Gaussian random variables with
unknown mean and variance.

Denote the estimates of �1; �2; . . . ; �K the above AML/FB itera-
tion by �1; �2; . . . ; �K . In the following, we utilize �1; �2; . . . ; �K to
compute improved estimates of � and �2! estimated likelihood (EL)
approach.

A. EL Estimation of the AR Model Parameters

We now treat the estimates �1; �2; . . . ; �K as observations and esti-
mate � and �2! by maximizing the estimated log-likelihood function:5

LEL(�; �!) =
1

2
ln(1� �2)�

K

2
� ln 2��2! �

�21 + �2K
2�2!

�
�2

2�2!
�

K�1

l=2

�2l +
�

�2!
�

K

l=2

�l�l�1 (3.2)

with respect to � and �2! . This maximization yields the EL estimates
of � and �2! and can be performed using alternating projections, as

5See [24, ch. 10.7] for the definition and properties of the estimated likelihood
and [24, ch. 11.1] for the pdf of an AR(1) Gaussian random process.

described below. We first estimate � for fixed �2! . Differentiating (3.2)
with respect to � and setting the result to zero yields

���2! � �(1� �2) �

K�1

l=2

�2l

+(1� �2) �

K

l=2

�l�l�1 = 0 (3.3a)

which can be solved by polynomial rooting. Note that the left-hand side
of (3.3a) is positive at � = �1 and negative at � = 1, implying that
we can always find a real root � above polynomial within the param-
eter space [satisfying � 2 (�1; 1)] for which the second derivative of
(3.2) is negative. Consequently, we estimate � as the conforming root
of (3.3a), which maximizes (3.2). We now fix � and estimate �2! . Max-
imizing (3.2) with respect to �2! yields

�2! =
1

K
� �21 + �2K + (1 + �2) �

K�1

l=2

�2l

�2� �

K

l=2

�l�l�1 : (3.3b)

To find the EL estimates of � and �2! that jointly maximize (3.2),
iterate between the polynomial-rooting-based estimation of � in
(3.3a) and the estimation of �2! in (3.3b) until convergence. After
computing the EL estimates of � and �2! , we can apply the FB method
to obtain improved estimated-likelihood/forward-backward (EL/FB)
shadow-power estimates.

IV. NUMERICAL EXAMPLES

We assess the estimation accuracy of the proposedmethods and com-
pare them with the existing techniques. The instantaneous powers yk ,
k = 1; 2; . . . were simulated using a composite gamma-lognormal
fading-shadowing scenario described by (2.1) with Gaussian wk , k =
1; 2; . . .. We also assume that the stationarity conditions (2.5) are satis-
fied. Our performance metric is the mean-square error (MSE) of an es-
timator, calculated using 4000 independent trials. The quadrature order
of the Gauss–Hermite approximations in (2.4a) and (2.4c) wasL = 20,
unless specified otherwise (see Fig. 3). (When L = 20, the errors in-
troduced by these approximations are negligible compared with the
estimation errors due to randomness introduced by the measurement
model.)
In the first set of simulations, we generated the simulated data using

the measurement model in Section II. We selected �k = � = 0:9704
and �2!;k = �2! = 0:9318, which are typical values in an urban en-
vironment obtained by choosing the shadow standard deviation �� =
4 dB and effective correlation distance, mobile speed, and sampling
interval equal to �c = 10 m, v = 20 km/h, and T = 54ms.6 Consider
first the scenario where the model parameters are known. We applied
the sequential Bayesian method in Section II-A to estimate and pre-
dict the unknown shadow powers; this method was initialized using
the mean and variance of �k: �0 = 0 c0 = �2� = 16. In Figs. 1 and 2,
we show the MSEs (averaged over the K samples) for the sequential
Bayesian estimator (2.4a) and one-step predictor form = 1 (Rayleigh
fading) and m = 3, respectively, as functions of the number of sam-
ples K . Figs. 1 and 2 also show the average MSEs for the Kalman-
filter-based shadow-power estimators and predictors recently proposed
in [2]. The method in [2] is derived by applying the Kalman filter to

6To compute �, we apply the following formula: � = exp(�vT=� ) (see,
e.g., [2]); to compute � , we use (2.6).
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Fig. 1. Average MSEs for the sequential Bayesian and Kalman-filter-based
estimators and predictors of the shadow powers as functions of K , assuming
known model parameters and m = 1 (Rayleigh fading).

Fig. 2. Average MSEs for the sequential Bayesian and Kalman-filter-based
estimators and predictors of the shadow powers as functions of K , assuming
known model parameters and m = 3.

the log-domain model [obtained by taking the logarithm of (2.1a)],
where the instantaneous signal power in decibels is decomposed into a
sum of the shadowing component and the fading component. However,
the fading component is non-Gaussian, and the Kalman filter ignores its
distributional form, effectively approximating it with a Gaussian distri-
bution. This is in contrast with the sequential Bayesian method in Sec-
tion II-A, which utilizes the distribution of the fading component. The
sequential Bayesian method outperforms the Kalman filter in both sce-
narios;7 in the Rayleigh-fading case, the sequential Bayesian predictor
performs as well as the Kalman-filter estimator (see Fig. 1). In terms of
CPU time, the sequential Bayesian algorithm is approximatelyL times
slower than the Kalman filter, where L denotes the quadrature order. In
Fig. 3, we present the average MSEs for the sequential Bayesian esti-
mator and predictor as functions of L, form 2 f1; 3g and K = 200.

7Note that the Kalman filtering method in [2] was designed for the Rayleigh-
fading scenario.

Fig. 3. Average MSEs for the sequential Bayesian estimator and predictor of
the shadow powers as a function of the quadrature order L, for K = 200 and
m 2 f1; 3g.

Fig. 4. Average MSEs and corresponding CRBs for the FB estimates of the
shadow powers as functions of K , assuming known model parameters and
m 2 f1; 3g.

In this case, the error introduced by the integral approximations (2.4a)
and (2.4c) affects the MSE curves only when very small quadrature
orders (L � 3) are used. We also examine the performance of the non-
dynamic FB method in Section II-B. Fig. 4 shows the average MSEs
for the FB power estimates and corresponding average Bayesian CRBs
as functions ofK , wherem 2 f1; 3g. For largeK , the average CRBs
are well approximated by (2.8).
We now consider the scenario where the model parameters �,

�2
!
, and m are unknown. Fig. 5 shows the average MSEs for the

AML/FB and EL/FB shadow-power estimates as functions of K (see
also Section III). The AML/FB method converged within 15 steps.
In Fig. 6, we show the MSE for the estimator of m in [23] (using
the window length N = 5) and the MSEs for the AML/FB and EL
estimators of � and �2

!
as functions of K . The EL method gives sig-

nificantly better estimates of � compared with the AML/FB method.
This, in turn, improves shadow-power estimation (see Fig. 5).
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Fig. 5. Average MSEs for the AML/FB and EL/FB shadow-power estimators
as functions of K for m 2 f1; 3g.

Correlated Ricean Fading: In the second set of simulations, we
consider a correlated noisy Ricean-fading scenario with known model
parameters and received instantaneous signal powers yk modeled as

yk = 10 � hk + ek

2

(4.1)

where the shadow process �k is described in Section II, and two sta-
tionary circularly symmetric complex Gaussian random processes hk
and ek model fading and noise effects, respectively. We assume that
�k , hk , and ek are mutually independent, ek is a zero-mean white
noise with variance �2, and the mean and autocovariance function of
hk are E[hk] = �h � exp[j(2�vLOST=�)k] and E[(hk�E[hk])(hl�

E[hk])
�] = (1� j�hj

2)�J0((2�vT=�) � (k � l)), respectively. Here,
0 � j�hj < 1, corresponding to the Ricean factor

=
j�hj

2

1� j�hj2
(4.2)

and the autocovariance function of hk follows the Jakes’ model for
uniformly distributed scatterers around the mobile, see e.g. [1]. Note
that “*” denotes complex conjugation, J0(�) the zeroth-order Bessel
function of the first kind, v and vLOS the magnitude and line-of-sight
component of the mobile velocity, respectively, � the wavelength cor-
responding to the carrier frequency, and T the sampling interval. We
selected v = 20 km=h, vLOS = 10 km=h, �c = 10 m, � = 1=3 m,
�� = 4 dB, and = 4. The Nakagami-m parameter was computed
using the approximate formula in [10, eq. (2.26)]

m �
(1 + )2

1 + 2
=

1

1� j�hj4
(4.3)

which is approximately equal to 3 for the above choice of model pa-
rameters. In parts (a) and (b) of Fig. 7, we present the averageMSEs for
the sample-mean and uniformly minimum variance unbiased (UMVU)
window-based estimators [1]–[3] as functions of the window length

Fig. 6. MSEs for the AML/FB estimates of the model parameters (m, �, and
�2! , respectively) as functions of K , for m 2 f1; 3g.

for (a) �2 = 0 (noiseless scenario) and (b) �2 = 0:2 (noisy sce-
nario), assuming T = 54 ms (i.e., � = 0:9704 and �2! = 0:9318;
see footnote 6). Parts (c) and (d) of Fig. 7 show corresponding average
MSEs obtained using a smaller sampling interval T = 5ms. Fig. 7 also



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 8, AUGUST 2005 2947

Fig. 7. Average MSEs for the sequential Bayesian, Kalman-filter, and window-based shadow-power estimators as functions of the window length, assuming
correlated Ricean fading with (a) �2 = 0 and T = 54ms, (b) �2 = 0:2 and T = 54ms, (c) �2 = 0 and T = 5ms, and (d) �2 = 0:2 and T = 5ms.

shows the average MSE performances of the sequential Bayesian and
Kalman-filter-based methods. If the fading component is not strongly
correlated (large T ), the sequential Bayesian estimator outperforms the
Kalman-filter and window-based estimators. For strongly correlated
fading (small T ), the UMVU window-based method outperforms the
sequential Bayesian and Kalman-filter-based methods if the window
length is chosen correctly.

V. CONCLUDING REMARKS

We proposed a sequential Bayesian method for shadow-power es-
timation and prediction in composite fading-shadowing wireless com-
munication channels with a Nakagami-m fading component and AR(1)
shadowing component. For stationary shadow powers, we derived a
nondynamic forward-backward power estimator, exact and approxi-
mate Bayesian CRBs, and methods for estimating the unknown model
parameters. Further researchwill include developing shadow-power es-
timation methods that account for fading correlations and noisy instan-
taneous-power estimates.

APPENDIX A
RECURSIONS FOR COMPUTING THE PREDICTION AND FILTERING

DENSITIES OF �k

We present general recursions for computing the prediction and fil-
tering densities of �k, assuming that both the observation-model pdf
pyj�(ykj�k) and Markov transition pdf p� j� (�kj�k�1) are avail-
able (see [18, eqs. (3.14) and (3.16)])

p� jyyy �kjyyy1:(k�1)

= p� j� (�kj�)p� jyyy �jyyy1:(k�1) d� (A.1a)

p� jyyy (�kjyyy1:k)

=
pyj�(ykj�k)p� jyyy �kjyyy1:(k�1)

pyj�(ykj�)p� jyyy �jyyy1:(k�1) d�
: (A.1b)

Under the measurement model in Section II, the observation-model
pdf follows from (2.1a) and (2.1b). Furthermore, assuming lognormal
shadowing (i.e., Gaussian �k) and AR(1) model in (2.1c), the transi-
tion pdf is p� j� (�kj�k�1) = g(�k;�k�k�1; �

2
!;k). Under this

scenario, (A.1a) and (A.1b) are analytically intractable.
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APPENDIX B
FISHER INFORMATION MATRIX FOR STATIONARY SHADOW POWERS

We derive the Bayesian Fisher informationmatrixI� in Section II-C.
Under the stationarity assumptions in (2.5), the logarithm of the joint
pdf of y = [y1; y2; . . . ; yK ]T and ��� is

Lc m;�; �
2

!; yyy; �

= Km lnm+ (m� 1) �

K

k=1

ln yk

�
ln 10

10
�m �

K

k=1

�k �m

K

k=1

yk10
�

�K ln �(m)�
K
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Differentiating (B.1) twice with respect to ��� and taking joint expecta-
tion with respect to yyy and ��� yields I� .
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Complex Approximation of FIR Digital Filters
by Updating Desired Responses

Masahiro Okuda, Masahiro Yoshida, Kageyuki Kiyose,
Masaaki Ikehara, and Shin-ichi Takahashi

Abstract—In this correspondence, we present a new numerical method
for the complex approximation of FIR digital filters. Our objective is to de-
sign FIR filters whose absolute error between the designed and desired re-
sponse is equiripple. The proposedmethod solves the least-squares problem
iteratively. At each iteration, the desired response is updated so as to have
an equiripple error. The proposed methods do not require any time-con-
suming optimization procedure such as the quasi-Newtonmethods and con-
verge to equiripple solutions quickly. Moreover, by multiplying the arbi-
trary weighting function on the desired response of the passband and stop-
band, the errors in the passband and the stopband can be controlled. We
show some examples to illustrate the advantages of our proposed methods.

Index Terms—Complex approximation, equiripple design, FIR filters.

I. INTRODUCTION

In the case of linear-phase FIR filters, since a perfect linear phase can
be realized and design algorithms have already been established, it is
used in many fields [1]. As is well known, Parks–McClellan algorithm
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