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Estimating Statistical Properties of Eddy-Current
Signals From Steam Generator Tubes

Aleksandar Dògandz̆ić and Ping Xiang

Abstract—We develop a model for characterizing amplitude and phase
probability distributions of eddy-current signals and propose a maximum
likelihood (ML) method for estimating the amplitude and phase distri-
bution parameters from measurements corrupted by additive complex
white Gaussian noise. The squared amplitudes and phases of the poten-
tial defect signals are modeled as independent, identically distributed
(i.i.d.) random variables following gamma and von Mises distributions,
respectively. Newton–Raphson iteration is utilized to compute the ML
estimates of the unknown parameters. We also compute Cramér–Rao
bounds (CRBs) for the unknown parameters and discuss initialization of
the Newton–Raphson iteration. The proposed method is applied to analyze
rotating-probe eddy-current data from steam-generator tube inspection in
nuclear power plants. The obtained estimates can be utilized for maximum
a posteriori (MAP) signal phase and amplitude estimation, as well as
efficient feature extractors in a defect classification scheme. We present
numerical examples with both real and simulated data to demonstrate the
performance of the proposed methods.

Index Terms—Eddy-current signal modeling, maximum likelihood pa-
rameter estimation, Newton–Raphson iteration.

I. INTRODUCTION

In eddy-current based nondestructive evaluation of materials, a flaw
is usually detected by observing probe impedance changes caused by
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Fig. 1. Rotating-probe eddy-current system.

Fig. 2. Signal preprocessing. (a) 1-D raw data. (b) 2-D image. (c) 2-D image
after preprocessing.

the interaction between induced oscillating electric current in a con-
ductor and a defect [1], [2]. Eddy-current inspection is performed ex-
tensively to detect and size flaws in steam-generator tubes in nuclear
power plants [3], [4]. Rotating-probe eddy-current testing has been pro-
posed to improve the detection, interpretation, and sizing of defects
[3]. (For related analytical and numerical solutions to the eddy-current
testing problem, see, e.g., [1], [5]–[8], and references therein.) Rotating
probes usually consist of three coils spaced 2�=3 rad (120�) apart,
as shown in Fig. 1. Each coil scans the inner surface of the tube by
moving along a helical path. To extract meaningful information from
the rotating-probe data, a preprocessing step is performed first [4]. The
raw data is one-dimensional (1-D) in nature, and a synchronization step
converts it to a two-dimensional (2-D) image, where each column of the
resulting image contains the data from one rotation. Fig. 2 illustrates
the result of this process. Fig. 2(a) and (b) show the raw 1-D signal and
synchronized 2-D image, respectively. Fig. 2(c) is a result of calibra-
tion where potential defect signals show up; the details of the calibra-
tion process are described in [4]. In Fig. 3, we present impedance-plane
plots of typical signals measured by the rotating-probe eddy-current
system. Further analysis of the potential defect signals is needed to dis-
criminate between defects and nondefects, as well as between different
kinds of defects. In this correspondence (see also [9]), we propose a sta-
tistical model for characterizing amplitude and phase probability distri-
butions of eddy-current signals. We model the squared amplitudes and
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Fig. 3. Signals from different discontinuities in impedance plane.

phases of the potential defect signals as independent, identically dis-
tributed (i.i.d.) random variables following gamma and von Mises dis-
tributions, respectively, and derive amaximum likelihood (ML)method
for estimating the unknown amplitude and phase distribution parame-
ters from noisy measurements. We also develop a maximum a poste-
riori (MAP) estimator of the signal amplitudes and phases.

The proposed statisticalmodel andML estimation algorithm are gen-
erally applicable to measurement scenarios where signal amplitudes
and phases have unimodal distributions. For example, the proposedML
method can be used to estimate the statistical properties of communi-
cation channels. Once estimated, these properties can be incorporated
into the receiver design, along the lines of, e.g., [10].

In Section II, we introduce the signal and noise models. The
Newton–Raphson algorithm for the ML estimation is presented
in Section III, its initialization is discussed in Section III-A, and
Cramér–Rao bounds (CRBs) for the unknown parameters are pre-
sented in Section III-B. The MAP method for estimating the signal
amplitudes and phases is described in Section IV. We apply the
proposed ML method to analyze rotating-probe eddy-current data
from steam-generator tube inspections and evaluate its accuracy via
numerical simulations; see Section V. In Section V, we also utilize an
empirical-Bayes MAP method to estimate the signal amplitudes and
phases from noisy measurements. Concluding remarks are given in
Section VI.

II. SIGNAL AND NOISE MODELS

Characterizing the amplitude and phase probability distributions of
eddy-current signals is important for flaw detection and classification.
For example, after preprocessing and calibration of rotating-probe
eddy-current data, the true defect signals should have sufficiently large
amplitudes (compared with the noise level), and their phases should lie
in the first and second quadrants of the impedance plane (i.e., between
0 and � rad); see [4]. The phase information is also essential for
discriminating between inner diameter (ID) and outer diameter (OD)
defects; see [4] and Fig. 3. (Note that the defect signals in Fig. 3 were
collected from machined defects in a low-noise environment.) Below,
we describe a statistical model for characterizing the amplitude and
phase probability distributions of the potential defects.

Assume that we have collected K complex eddy-current measure-
ments yk; k = 1; 2; . . . ; K from neighboring spatial locations. These
measurements are modeled as

yk =
p
�k � ej� + ek; k = 1; 2; . . . ; K (1)

where

i) �k; k = 1; 2; . . . ; K are i.i.d. squared signal amplitudes
(powers) following a gamma distribution with the probability
density function (pdf)

p�(�k; a; b) =
ba

�(a)
� �a�1k exp(�b�k); �k � 0 (2)

where a; b > 0. (Interestingly, in the special case where a = 1,
the amplitudes

p
�k follow a Rayleigh distribution.)

ii) �k; k = 1; 2; . . . ; K are i.i.d. signal phases, independent of the
amplitudes, which follow a von Mises distribution described by
the pdf (see [11]):

p�(�k; c; d) =
1

2�I0(d)
� exp[d cos(�k � c)]; 0 < �k � 2� (3)

where c and d > 0 can be viewed as the mean and variance
parameters, respectively, and I0( � ) denotes the modified Bessel
function of the first kind and order zero1 (In the special case
where d = 1, it simplifies to the uniform distribution on the
interval [0; 2�].)

iii) ek; k = 1; 2; . . . ; K are i.i.d. zero-mean complex Gaussian
noise samples independent of the signal amplitudes and phases
having known variance �2. (The noise variance �2 can be esti-
mated from the neighboringmeasurement locations that contain
only noise.)

Our goal is to find the ML estimates of the unknown model param-
eters a; b; c; and d using the observations yk; k = 1; 2; . . . ; K .
Define the vector of unknown parameters

��� = [a; b; c; d]T

and the vectors of signal amplitudes and phases

���k = [�k; �k]
T
; k = 1; 2; . . . ; K

where “T ” denotes a transpose. The assumptions iii) and (1) imply that
the conditional pdf of yk given ���k is complex Gaussian:

pyj���(ykj���k) = 1

��2
exp �jyk �

p
�ke

j� j2
�2

(4)

and, due to the assumed independence of the signal amplitudes and
phases, the pdf of the ���k is

p���(���k;���) = p�(�k; a; b) � p�(�k; c; d): (5)

The marginal distribution of yk is then obtained by integrating out the
signal power �k and phase �k:

py(yk;���) =
�

pyj���(ykj���)p���(���;���)d���

=
1

��2

2�

0

d�
1

0

exp �jyk �
p
�ej� j2

�2

� p�(�; a; b)p�(�; c; d)d� (6)

1The vonMises distribution is one of the most used distributions for modeling
random phase and is analogous to the normal distributions on the real line. It is
also known as the Tikhonov distribution in the communications literature, see,
e.g., [10], [12, (3.37)] , and ([13, (6.1)].
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where � = f(�; �) : 0 < �; 0 < � � 2�g. Maximizing the log-
likelihood function of ��� for all available measurements

yyy = [y1; y2; . . . ; yK ]T

yields the ML estimate of ���:

L(���; yyy) =

K

k=1

ln py(yk;���): (7)

The difficulty in estimating ��� arises due to the integral form of the
density function (6). In the following, we present the Newton–Raphson
method for computing the ML estimates of ���.

III. MAXIMUM LIKELIHOOD ESTIMATION

We derive the Newton–Raphson algorithm for maximizing (7). The
gradient vector @L(���; y)=@��� and Hessian matrix @2L(���; y)=@���@���T

are

@L(���; yyy)

@���
=

K

k=1

@lnpy(yk;���)
@���

(8a)

@2L(���; y)

@���@���T
=

K

k=1

@2lnpy(yk;���)

@���@���T
(8b)

where the terms in the above summations have been computed using
the following formulas:

@

@�i
flnpy(yk;���)g

= [py(yk;���)]
�1 �

�

pyj���(ykj���)
@p�(���;���)

@�i
d��� (9a)

@2

@�i@�m
flnpy(yk;���)g

= [py(yk;���)]
�1 �

�

pyj���(ykj���)
@2p�(���;���)

@�i@�m
d���

� [py(yk;���)]
�2 �

�

pyj���(ykj���)
@p�(���;���)

@�i
d���

�
�

pyj���(ykj���)
@p�(���;���)

@�m
d��� (9b)

for i;m = 1; 2; 3; 4 and k = 1; 2; . . . ; K . After applying the
change-of-variable transformation

u = b� (10)

the above integral expressions can be easily computed using Gauss
quadratures. (The Gauss quadrature formulas and their application
to statistics are discussed in detail in [14, ch. 5.3].) We applied the
Gauss–Chebyshev and generalized Gauss–Laguerre quadratures (of
orders NC and NL) to approximate integrals over � and u, respec-
tively, yielding

2�

0

d�
1

0

f(u; �)ua�1 exp(�u)du

�
2�

NC

N

n=1

N

i=1

wi(a� 1)f(ui(a� 1); �n) (11)

where f(u; �) is an arbitrary real function, ui(a � 1) and wi(a �
1) are the abscissas and weights of the generalized Gauss–Laguerre
quadrature of order NL with parameter a � 1, and

�n =
(2n� 1)�

NC
; n = 1; 2; . . . ; NC (12)

are the abscissas of the Gauss–Chebyshev quadrature; see also [14, ch.
5.3]. For example, applying (10) and (11) to (6) yields

py(yk;���)

=
1

2�2�2�(a)I0(d)

2�

0

exp[d cos(� � c)] d�

�
1

0

exp �
jyk � u=b � ej� j2

�2
ua�1 exp(�u)du

�
1

��2�(a)NCI0(d)

N

n=1

exp[d cos(�n � c)]

�

N

i=1

wL;i(a� 1) exp �
jyk � uL;i(a� 1)=b � ej� j2

�2
:

(13)

To compute the derivatives in (9), we have also utilized the formulas
in [11, (A.7) and (A.9)]. The (damped) Newton–Raphson algorithm
updates the estimates of ��� as follows (see, e.g., [14] and [15, (13.25)]:

���(i+1) = ���(i) � �(i) �
@2L(���(i); yyy)

@���@���T

�1
@L(���(i); yyy)

@���
(14)

where the damping factor 0 < �(i) � 1 is chosen (at every step i) to
ensure that the log-likelihood function (7) increases, and the parameter
estimates remain in the allowable parameter space (a; b; d > 0). Ini-
tialization of the above iteration is discussed below.

A. Initialization

The above Newton–Raphson iteration can be initialized by ne-
glecting the noise effects and using the following simple moment
estimators of a and b:

a(0) =
(Ê[�])2

var(�)
(15a)

b(0) =
Ê[�]

var(�)
(15b)

where

Ê[�] =
1

K

K

k=1

jykj
2; var(�) =

1

K

K

k=1

jykj
4 � (Ê[�])2

and the following estimators of c and d (see [11, (2.2.4) and (5.3.11)]):

c(0) =
tan�1( �Sy= �Cy); �Cy � 0

tan�1(�Sy= �Cy) + �; �Cy < 0
(15c)

d(0) = 1:28� 0:53 � �R2
y � tan(� �Ry=2) (15d)

where

�Ry = �C2
y + �S2y

1=2

�Cy = (1=K) �

K

k=1

cos(6 yk)

�Sy = (1=K) �

K

k=1

sin( 6 yk):
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B. Cramér–Rao Bounds

The CRB matrix for the unknown parameter vector ��� can be com-
puted by inverting the expected negative Hessian matrix, where the ex-
pectation is performed with respect to the distribution of y [16, ch. 3.7]:

CRB���(���) = � Eyyy
@2L(���; yyy)

@���@���T

�1

: (16)

The above expectation requires multidimensional integration, which
can be performed using Monte Carlo integration, i.e., by averaging
@2L(���; yyy)=@���@���T over many realizations of yyy. The exact CRB in (16)
does not have a closed-form expression, and it is, hence, difficult to pre-
dict its behavior as ��� varies. Under the complete-data model, i.e., as-
suming that the signal amplitudes��� and phases � are known, we derive
the closed-form complete-data CRB, which is a block-diagonal matrix:

CRBc;���(���) =
1

K
� bdiag

�(a)� (a)�[� (a)]

[�(a)]
�1=b

�1=b a=b2

�1

I0(d)

dI1(d)
; 1� I1(d)

I0(d)

2

� I1(d)

I0(d)d

�1

: (17)

Clearly, the complete-data CRB is a lower bound on the exact CRB,
i.e., CRB(���) � CRBc(���) is a positive semidefinite matrix.

Once theML estimates of��� have been computed, we can utilize them
to obtain MAP estimates of the amplitudes and phases of the eddy-
current signal, as shown in the following section.

IV. MAP ESTIMATION OF SIGNAL AMPLITUDES AND PHASES

Assume that the model parameters ��� are known. We compute the
MAP estimates of the signal amplitudes ��� = [�1; �2; . . . ; �K ]T and
phases ��� = [�1; �2; . . . ; �K ]T by maximizing

LMAP(���; ���;y; ���) =

K

k=1

ln[pyj���(ykj���k) � p�(�k; a; b) � p�(�k; c; d)]

= �Kln(2�2�2)�
K

k=1

jyk �p
�k � ej� j2
�2

+Kalnb�Kln�(a)

+ (a� 1) �
K

k=1

ln�k � b

K

k=1

�k

�KlnI0(d) + d �
K

k=1

cos(�k � c) : (18)

For fixed ���, we can easily find the signal powers � that maximize (18):

�̂k = argmax
�

p
�k � yke�j� +

p
�k � y�kej�

�(1 + b�2) � �k + (a� 1)�2 � ln�k
where k = 1; 2; . . . ; K , and “�” denotes complex conjugation. Differ-
entiating (18) with respect to�k and solving for�k yields (19a), shown

Fig. 4. (a) Impedance-plane and imaginary-component plots and (b) estimated
amplitude and phase distributions of two potential defects.

at the bottom of the page. Similarly, for fixed���, the signal phases��� that
maximize (18) can be obtained as follows:

�̂k = 6
p
�k � yk + 1

2
� d�2 exp(jc) ; k = 1; 2; . . . ; K:

(19b)

To obtain the MAP estimates of both ��� and ���, iterate between (19a)
and (19b) until convergence.

V. EXPERIMENTAL AND SIMULATION RESULTS

We first apply the proposed ML estimation method to steam-gen-
erator inspection data containing two real defects. The tubes were
made of Inconel 600 with outer diameter 0.875 in and wall thickness
0.050 in. We selected K measurements yk; k = 1; 2; . . . ; K from

�̂k =

Refyk exp(�j�k)g+ f[Refyk exp(�j�k)g]2 + 4(a� 1) � �2(1 + b�2)g1=2
2(1 + b�2)

2

; [Refyk exp(�j�k)g]2

+4(a� 1) � �2(1 + b�2) > 0

0; [Refyk exp(�j�k)g]2
+4(a� 1) � �2(1 + b�2) < 0

(19a)
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Fig. 5. MSEs and corresponding CRBs for amplitude distribution parameters
a and b.

potential defect regions and estimated the noise variance �2 from
neighboring regions that contain only noise. The quadrature orders of
the Gauss–Chebyshev and generalized Gauss–Laguerre approximation
were NC = 120 andNL = 80, respectively. The proposed algorithms
converged within ten iterations. In Fig. 4, we show the estimated pdfs
of the signal amplitudes

p
�k and phases �k . Here, the amplitudes

�k =
p
�k follow the Nakagami-m pdf (see [12, (2.20)]:

p�(�k; a; b) =
2ba

�(a)
� �2a�1k exp �b�2k ; �k � 0: (20)

For the first test signal, the noise variance was �2 = 1:9, and the poten-
tial defect region containedK = 154measurements. The ML estimate
���(1) of the unknown parameter vector and the estimated covariance
matrix of ���(1) are shown in (21) at the bottom of the next page. For
the second signal, �2 = 1:9 andK = 525, and���(1) and the estimated
covariance matrix of���(1) are given in (22), shown at the bottom of the
page. We have used (16) to compute the CRB matrix; the expectation
with respect to the distribution of yyy was performed using Monte Carlo
integration with 100 trials.

We now present a simulation example showing the estimation perfor-
mance of the proposed method. Our performance metric is the mean-

Fig. 6. MSEs and corresponding CRBs for phase distribution parameters c and
d.

square error (MSE), calculated using 400 independent trials. The sim-
ulated data was generated using the measurement model in Section II
with ��� = [0:8; 0:14; 1:93; 13:2] and �2 = 1:2. In Figs. 5 and 6, we
show the MSEs of

• the ML estimates of a; b and c; d, respectively, computed using
the Newton–Raphson iteration (14) in Section III;

• the initial estimates (15a) and (15c) in Section III-A;
as well as corresponding exact and complete-data CRBs. The ML es-
timates performed well, achieving MSEs close to the exact CRBs. The
initial estimates a(0); b(0); and c(0) performed fairly well, whereas d(0)

performed poorly. The poor performance of d(0) can be explained by
the fact that, being obtained by ignoring the noise effects, it cannot
separate the phase variability of yk; k = 1; 2; . . . ; K due to the signal
from that due to noise.

A. Empirical MAP Estimation of Signal Amplitudes and Phases

We apply the MAP estimator of signal amplitudes and phases
(described in Section IV) to experimental eddy-current data, whose
impedance-plane and magnitude plots are shown in Fig. 7(a) and
(c). This data set was collected from the Electric Power Research

���
(1) =

0:548

0:0366

2:281

94:34

CRB(���(1)) =

6:29 � 10�3 4:00 � 10�4 �8:01 � 10�6 �9:78 � 10�2
4:00 � 10�4 4:32 � 10�5 �1:42 � 10�6 8:02 � 10�3
�8:02 � 10�6 �1:42 � 10�6 6:22 � 10�4 �4:60 � 10�2
�9:78 � 10�2 8:02 � 10�3 �4:60 � 10�2 4:31 � 103

: (21)

���
(1) =

0:4765

0:0083

0:9676

14:65

CRB(���(1)) =

3:85 � 10�3 6:48 � 10�5 �2:50 � 10�5 �5:93 � 10�3
6:48 � 10�5 2:09 � 10�6 �1:07 � 10�7 2:94 � 10�5
�2:50 � 10�5 �1:07 � 10�7 8:99 � 10�4 �4:07 � 10�3
�5:93 � 10�3 2:94 � 10�5 �4:07 � 10�3 7:9538

: (22)
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Fig. 7. Impedance-plane and magnitude plots of (a) original eddy-current data
and (b) corresponding empirical MAP estimates.

Fig. 8. Impedance-plane and magnitude plots of eddy-current data with the
axial defect signal’s phases rotated by (a)�70 and (b) corresponding empirical
MAP estimates.

Institute’s laboratory sample 3 made of Inconel 600. The sample
contained two machined defects: a 49% throughwall circumferential
OD defect and a 59% throughwall axial OD defect. We first estimate
the model parameters ��� from a training region containing defects of
the type that we wish to detect and then apply the proposed MAP
method to the whole image. In this example, we selected the training
region containing the 49% circumferential OD defect. In the MAP
algorithm, we replaced ��� with its ML estimate obtained from the
training region (in the spirit of empirical Bayesian estimation). The
impedance-plane and magnitude plots of the resulting empirical MAP
estimates are shown in of Fig. 7(b) and (d). The empirical MAP
estimator enhances potential defect signals having similar amplitude
and phase distributions to those estimated from the training region
and suppresses other signals. To show this effect, we have rotated the
phases of the 59% throughwall axial defect signals by �70�, yielding
the impedance-plane and magnitude plots in Fig. 8(a) and (c). Clearly,
Figs. 7(c) and 8(c) are identical because phase rotation does not affect
the signal magnitudes. After applying the proposed empirical MAP
estimator, the rotated defect signals are completely suppressed, as
shown in Fig. 8(b) and (d).

Fig. 9. Impedance-plane and magnitude plots of (a) original eddy-current data
and (b) corresponding empirical MAP estimates.

Finally, we apply the empirical MAP estimator to a data set con-
taining real defect signals and show the obtained results in Fig. 9

VI. CONCLUDING REMARKS

We developed a statistical model for characterizing the amplitude
and phase probability distributions of potential defects in eddy-current
systems and derived a maximum likelihood method for estimating the
unknown parameters from noisy measurements. We also discussed ini-
tializing the proposed algorithm and computed exact and complete-data
Cramér–Rao bounds for the unknown parameters. We showed how
the estimated amplitude and phase distribution parameters can be uti-
lized for maximum a posteriori signal phase and amplitude estimation.
The proposed methods were applied to simulated and real data from
steam-generator tube inspection in nuclear power plants.
Further research will concentrate on utilizing the estimated ampli-

tude and phase distribution parameters as feature extractors in defect
classification schemes.
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Correction to “Universal Trellis Codes for Diagonally
Layered Space-Time Systems”

Adina Matache, Student Member, IEEE and
Richard D. Wesel, Senior Member, IEEE

Fig. 1 replaces the incorrect [1, Fig. 3]. The simulation results are
unchanged, but the computation of � was incorrect, leading to some
improperly plotted points in [1, Fig. 3]. Although the corrected graph
is somewhat different, it does not affect the discussion or conclusion.

Fig. 1. Excess MI per antenna required by rate-1/3, 8-PSK trellis code #1 to
achieve BER= 10 versus the ratio of periodic SNRs � =  = .
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Comments on “Estimation of Frequencies and Damping
Factors by Two-Dimensional ESPRIT Type Methods”

Yang Wang, Jian-Wen Chen, and Zhong Liu

Index Terms—ESPRIT-type algorithm, pairing procedures, permutation
matrices, two-dimensional signals.

In [1], the authors present two high-resolution approaches to es-
timate two-dimensional (2-D) signal parameters. The first approach
(see also [2]) decomposes the 2-D estimation problem into two one-di-
mensional (1-D) ones, estimates the 1-D frequencies with the MEMP
method [3], and then forms correct pairs using a new pairing scheme
introduced in [4]. The second method (the 2-D ESPRIT method) di-
rectly estimates the 2-D frequencies. It is shown that both methods are
more accurate than the related methods. The paper has been read with
great interest; however, it appears to have a key error in the permutation
matrix specification of the first method. In this comment, we derive the
correct one with the performance simulations.
For convenience, let [1, ( )] denote the equations in the original

paper. The permutation matrices defined by [1, (47)] read as

P1 = T
�1
Ta

P2 = T
�1
Tb:

(47)

It is pointed out here that this definition is not accurate. The correct one
should be1

P1 = TT
�1

a

P2 = TT
�1

b

: (1)

Equation (1) can be reasoned as follows. Using [1, (40) and (42)] yields

�1 = TF1T
�1

�2 = TF
0

2T
�1
:

(2)

Themain diagonals of�1 and�2 are ordered frequencies and damping
factors. Therefore, the eigenvalue decompositions of F1 and F 0

2 in [1,
(45)] should be denoted by

F1 = T
�1

a �aTa

F
0

2 = T
�1

b
�bTb

(3)
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At first, we thought this was a typing error; however, [2] uses the same per-
mutation matrices.
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