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Maximum Likelihood Estimation of Statistical Properties
of Composite Gamma-Lognormal Fading Channels

Aleksandar Dogandžić and Jinghua Jin

Abstract—We propose maximum likelihood (ML) methods for esti-
mating the parameters of composite gamma-lognormal fading channels.
Newton–Raphson and expectation–maximization (EM) algorithms are
developed to compute the ML estimates of the mean and variance of the
shadowing component, and the Nakagami- parameter of the fading
component. We also derive Cramér–Rao bounds (CRBs) for the unknown
parameters. Numerical simulations demonstrate the performance of the
proposed method.

Index Terms—Composite gamma-lognormal fading channels, EM algo-
rithm, Newton–Raphson iteration.

I. INTRODUCTION

Composite fading-shadowing models are used to describe the
statistical properties of wireless communication channels in con-
gested downtown areas [1]–[6], satellite communication systems
[7]–[10], and distributed antenna systems [11], [12]. In this paper
(see also [13]), we present maximum likelihood (ML) algorithms
for estimating the parameters of the composite gamma-lognormal
model in [1]–[4]. This model is fairly general and includes as special
cases the Rayleigh-lognormal [6]–[8] and classical Nakagami-m
fading and lognormal shadowing scenarios; see, e.g., [1] and [2].
Once obtained, the parameter estimates can be used to design and
analyze the performance of wireless communication systems [1]–[14]
and to compute minimum mean-square error (MMSE) estimates of
mean-signal (shadow) powers; 1 see [15].

In Section II, we introduce the measurement model. The
Newton–Raphson and expectation–maximization (EM) algorithms for
ML estimation are presented in Sections II-A and B, the initialization
of the proposed algorithms is discussed in Section II-C, and the
Cramér–Rao bound (CRB) matrix for the unknown parameters is
derived in Section II-D. In Section III, numerical examples are used to
evaluate the accuracy of the proposed estimators. Concluding remarks
are given in Section IV.

II. MEASUREMENT MODEL AND ML ESTIMATION

We present a composite gamma-lognormal fading model and
ML methods for estimating the unknown fading and shad-
owing parameters. Assume that N instantaneous signal powers
yk(t); t = 1; 2; . . . ; N have been collected in the kth observation
interval, where k = 1; 2; . . . ; K , and define

yyyk = [yk(1); yk(2); . . . ; yk(N)]T (1)

where “T ” denotes a transpose. [If the samples yk(t) are scaled by the
noise power, they can be viewed as instantaneous signal-to-noise ratios
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1Accurate estimation of the mean-signal powers is required to implement
adaptive modulation techniques and algorithms for handoff, channel access, and
power control; see, e.g., [1], [16], and [17].

(SNRs).] We model yk(t); t = 1; 2; . . . ; N as conditionally indepen-
dent gamma random variables with the following probability density
functions (pdfs):2

py ju(yk(t) juk;m) =
mmyk(t)

m�1

umk �(m)
exp �myk(t)

uk
(2)

where uk is the mean-signal (shadow) power in the kth interval, �( � )
denotes the gamma function, andm is the Nakagami-m fading param-
eter.We thenmodel the mean-signal powers as independent, identically
distributed (i.i.d.) random variables with lognormal pdf

pu(uk;�; �
2) =

�

uk
p
2��2

exp � (10 log
10
uk � �)2

2�2
: (3)

In other words, uk are assumed to be constant within an observation in-
terval but vary randomly from one interval to another. [The assumption
that the mean-signal powers uk are independent is valid if the obser-
vation intervals are sufficiently separated in time.] Here, � (in deci-
bels) and � (also in decibels) are the mean and standard deviation of
10 log

10
uk , which are also known as the area mean and shadow stan-

dard deviation, respectively (see, e.g., [1]), and

� =
10

ln 10
: (4)

Our goal is to find the ML estimates ofm;�, and �2 using the instan-
taneous power observations yk(t); t = 1; 2 . . . ; N; k = 1; 2; . . . ; K .
Define the unknown parameter vector ��� = [m;�; �2]T . The marginal
distribution of yyyk follows from (2) and (3):

pyyy(yyyk; ���) =
1

0

N

t=1

py ju(yk(t) ju;m) � pu(u;�; �2)du (5)

for k = 1; 2 . . . ; K . The ML estimate of ��� is obtained by
maximizing the log-likelihood function of all the measurements
yyy = [yyyT

1
; yyyT

2
; . . . ; yyyTK ]T :

L(yyy; ���) =

K

k=1

ln pyyy(yyyk; ���): (6)

As observed in [5], the difficulty in estimating the parameters of the
composite fading-shadowing models arises due to the integral form of
the density function (5). In the following, we present Newton–Raphson
and EM algorithms for finding the ML estimates of ���.

A. Newton–Raphson Method

We derive the Newton–Raphson algorithm for maximizing (6). [A
quasi-Newton modification of the Newton–Raphson iteration is dis-
cussed in Section II-A1.] First, we apply the change-of-variable trans-
formation

x =
10 log

10
u� �p

2�2
(7)

to (6):

L(yyy; ���) = �K

2
ln� + (m� 1)

K

k=1

N

t=1

ln yk(t)

+KNm lnm�KN ln �(m)

+

K

k=1

ln
1

�1

q(x; �yk; ���) � exp(�x2) dx (8)

2Hence, yk (t1) juk and yk (t2) juk are independent for k1 6= k2 or
t1 6= t2 or both, where k1; k2 2 f1; 2; . . . ; Kgand t1; t2 2
f1; 2; . . . ; Ng.
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where

q(x; �yk; ���) = exp �mN � �yk � 10
�(
p
2� �x+�)=10

� 10�mN�(
p
2� �x+�)=10 (9a)

and

�yk =
1

N

N

t=1

yk(t) (9b)

is the sample-mean estimate of the mean-signal power in the kth ob-
servation interval.

The gradient vector @L(yyy; ���)=@��� and Hessian matrix
@2L(yyy; ���)=@���@���T can be computed using (10a)–(11b), shown at the
bottom of the page. The integral expressions in (8), (10), and (11)
are efficiently and accurately evaluated using the Gauss–Hermite
quadrature formula:

1

�1
f(x) exp(�x2)dx �

L

l=1

hx f(xl) (12)

where f(x) is an arbitrary real function, L is the quadrature order (de-
termining approximation accuracy), xl; l = 1; . . . ; L are the zeroes
of the Lth-order Hermite polynomial, and hx ; l = 1; . . . ; L are the
Gauss–Hermite quadrature weight factors tabulated in e.g., [18]. We
have omitted the expressions for the derivatives @q(x; �yk; ���)=@�i and
@2q(x; �yk; ���)=@�i@�j ; i; j 2 f1; 2; 3g, which are cumbersome but
easy to compute. The (damped) Newton–Raphson algorithm updates
the estimates of ��� as follows (see, e.g., [19, (13.25)], [20, Ch. 9.7],
[21], [22], and [23, Ch. 9.5]):

���(i+1) = ���(i) � �(i) �
@2L yyy; ���(i)

@��� @���T

�1
@L yyy; ���(i)

@���
(13)

where the damping factor 0 < �(i) � 1 is chosen (at every step i) to
ensure that the log-likelihood function (6) increases and that the param-
eter estimates remain in the allowable parameter space (i.e., m;�2 >

0). The negative inverse of the Hessian matrix evaluated at the ML es-
timate �̂�� = ���(1)

�
@2L(yyy; �̂��)

@��� @���T

�1

(14)

can be used to estimate the covariance matrix of �̂�� and to construct con-
fidence regions for the unknown parameters; see, e.g., ([22, Ch. 4.1.3].
The Hessian matrix formulas (11) will be also utilized to compute the
CRB matrix for the unknown parameters; see Section II-D.
1) BFGS Quasi-Newton Algorithm: To accelerate the

Newton–Raphson algorithm, we propose the Broyden–Fletcher–Gold-
farb–Shanno (BFGS) quasi-Newton method that approximates the
Hessian matrices @2L(yyy; ���(i))=@��� @���T in (13) with the following
estimates (see [21, (9.2.10)] and [22, (4.3.7)]):

H(i+1) = H(i) �
H(i)ddd(i)(ddd(i))TH(i)

(ddd(i))TH(i)ddd(i)
+

ggg(i)(ggg(i))T

(ddd(i))Tggg(i)
(15)

where

ddd(i) = ���(i+1) � ���(i) (16a)

ggg(i) =
@L yyy; ���(i+1)

@���
�

@L yyy; ���(i)

@���
(16b)

and the initial valueH(0) can be obtained by computing the exact Hes-
sian at the initial estimate of the unknown parameter vector ���(0):

H(0) =
@2L yyy; ���(0)

@���@���T
: (17)

The Hessian approximation (15) is also known as the positive definite
secant update; see [21, Ch. 9.2]. Compared with the Newton–Raphson
method, the BFGS quasi-Newton algorithm requires more iterations to
converge, but each iteration has lower computational complexity; see
also Section III.

@L(yyy; ���)

@m
= KN lnm+KN �KN �

�0(m)

�(m)
+

K

k=1

N

t=1

ln yk(t) +

K

k=1

1
�1 @q(x; �yk; ���)=@m � exp(�x2)dx

1
�1 q(x; �yk; ���) � exp(�x2)dx

(10a)

@L(yyy; ���)

@�
=

K

k=1

1
�1 @q(x; �yk; ���) @� � exp(�x2)dx

1
�1 q(x; �yk; ���) � exp(�x2)dx

(10b)

@L(yyy; ���)

@�2
=

K

k=1

1
�1 @q(x; �yk; ���)=@�

2 � exp(�x2)dx
1
�1 q(x; �yk; ���) � exp(�x2) dx

: (10c)

and
@2L(yyy; ���)

@m2

= KNm�1 �KN �
�(m)�00(m)� [�0(m)]2

[�(m)]2

+

K

k=1

1
�1 @2q(x; �yk; ���)=@m

2 � exp(�x2)dx
1
�1 q(x; �yk; ���) � exp(�x2)dx

�

1
�1 @q(x; �yk; ���)=@m � exp(�x2)dx

1
�1 q(x; �yk; ���) � exp(�x2)dx

2

(11a)

@2L(yyy; ���)

@�i@�j (i;j) 6=(1;1)

=

K

k=1

1
�1 @2q(x; �yk; ���)=@�i@�j � exp(�x

2)dx
1
�1 q(x; �yk; ���) � exp(�x2) dx

�

1
�1 @q(x; �yk; ���)=@�i � exp(�x

2) dx �
1
�1 @q(x; �yk; ���)=@�j � exp(�x

2)dx

1
�1 q(x; �yk; ���) � exp(�x2) dx

2 : (11b)
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B. EM Algorithm

We present an EM algorithm (see, e.g., [24], [25], and [26, Ch.
2.4.4]) to compute the ML estimates of ���. Define the vector of the
mean-signal (unobserved) powers uuu = [u1; u2; . . . ; uK ]T . By treating
uuu as the unobserved (or missing) data, we derive the following itera-
tion between the expectation (E) and maximization (M) steps (see the
Appendix):

E Step: Compute

T1 yyy; ���(i) =
1

K

K

k=1

Eu jyyy lnuk yyyk; ���
(i) (18a)

T2 yyy; ���(i) =
1

K

K

k=1

Eu jyyy (lnuk)
2

yyyk; ���
(i) (18b)

T3 yyy; ���(i) =
1

K

K

k=1

Eu jyyy u
�1
k yyyk; ���

(i) � �yk

�
1

KN
�

K

k=1

N

t=1

ln yk(t) (18c)

where

���
(i) = m

(i)
; �

(i)
; (�2)(i)

T

(18d)

is an estimate of ��� in the ith iteration, and (18a)–(18c) are computed
using (19a) and (19b), shown at the bottom of the page, where t(uk) =
lnuk; (lnuk)

2, and u�1
k , for k = 1; 2; . . . ; K .

M Step: Compute

�
(i+1) = � � T1 yyy; ���(i) (20a)

(�2)(i+1) = �
2 � T2 yyy; ���(i) � �

(i+1)
2

(20b)

and find m(i+1) that maximizes

m
(i+1) = argmax

m
m lnm� ln[�(m)]

� mT1 yyy; ���(i) �mT3 yyy; ���(i) : (20c)

Upon convergence (i.e., as i!1), the above algorithm also provides
(estimated) MMSE estimates of the shadow powers in decibels [see
(18a)]

Eu jyyy[10 log10 uk j yyyk; �̂��] = � � Eu jyyy[lnuk j yyyk; �̂��] (21)

where the unknown parameter vector ��� is replaced with itsML estimate
�̂�� = ���(1). Note that estimates of the shadow powers in decibels are
being utilized bymost handoff algorithms, as well as for channel access
and power control; see [17].

We now discuss computing the conditional expectation in (19) and
maximizing (20c). The approximation (19b) was derived by applying
the change-of-variable transformation (7) to the numerator and denom-
inator in (19a) and using the Gauss–Hermite quadrature (12) to numer-
ically evaluate the obtained integrals. Due to the cancellations of the

common terms in the numerator and denominator of (19a), (19b) is
remarkably simple. In [15], (19b) was used to compute the MMSE es-
timates of t(uk) = uk .
The computation of m(i+1) requires maximizing (20c), which was

performed using the Newton–Raphson method (embedded within the
“outer” EM iteration) with the initial values chosen as (see [27, Ch.
8.3.6])

m
(i+1)
init =

3 + 2�(yyy; ���(i))

2�(yyy; ���(i)) � 3 + � yyy; ���(i)
(22a)

where

� yyy; ���(i) = T1 yyy; ���(i) + T3 yyy; ���(i) � 1: (22b)

The Newton–Raphson iteration for maximizing (20c) converges
rapidly when initialized with the approximate ML estimate in (22a);
see Section III. The derivatives needed to implement this iteration are
shown in (A.5) in the Appendix, where '(yyy; uuu) should be replaced
with �(yyy; ���(i)).

C. Choosing the Initial Values

The proposed algorithms can be initialized by fitting the simple log-
normal shadowing model, which leads to the following initial estimates
of the shadowing parameters:

�
(0) =

1

K

K

k=1

10 log10 �yk (23a)

(�2)(0) =
1

K

K

k=1

[(10 log10 �yk)
2]� �

(0)
2

: (23b)

For N > 1, an initial estimate of m to start the EM iteration can be
obtained using an approximate estimator similar to (22a):

m
(0) =

3 + 2'0(yyy)

2'0(yyy) � [3 + '0(yyy)]
(24a)

where

'0(yyy) =
1

K
�

K

k=1

(ln �yk)�
1

KN
�

K

k=1

N

t=1

ln yk(t) (24b)

is obtained by replacing the unobserved shadow powers uk with their
sample-mean estimates �yk; k = 1; 2; . . . ; K in the expression for
'(yyy; uuu) in (A.6); see the Appendix.

D. Cramér–Rao Bounds

The CRB matrix for the unknown parameter vector ��� can be com-
puted by inverting the expected negative Hessian matrix [see (11)],
where the expectation is performed with respect to the distribution of
yyy (see, e.g., [26, Ch. 3.4.2] and [28, Ch. 3.7]):

CRB(���) = � Eyyy
@2L(yyy; ���)

@���@���T

�1

: (25)

Eu jyyy t(uk) yyyk; ���
(i)

=

1
0

t(u) � N
t=1 py ju yk(t) u;m(i) � pu u;�(i); (�2)(i) du

1
0

N
t=1 py ju (yk(t) ju;m

(i) ) � pu (u;�(i); (�2)(i))du
(19a)

�

L
l=1 hx � t 10(

p
2� �x +�)=10 � exp �mN � �yk � 10

�(
p
2� �x +�)=10 � 10�mN�

p
2� �x =10

L
l=1 hx exp �mN � �yk � 10�(

p
2� �x +�)=10 � 10�mN�

p
2� �x =10

(19b)
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Fig. 1. Mean-square error and Cramér–Rao bound for the proposed estimator
of m as a function of Kassuming uncorrelated shadow powers (� = 0),
correlated shadow powers with the AR coefficient � = 0:5, and correlated
shadow powers with � = 0:9.

Fig. 2. Mean-square error and Cramér–Rao bound for the proposed estimator
of � as a function of Kassuming uncorrelated shadow powers, correlated
shadow powers with � = 0:5, and correlated shadow powers with � = 0:9.

The above expectation requires multidimensional integration, which
can be performed using Monte Carlo integration, i.e., by averaging
@2L(yyy; ���)=@���@���T over many realizations of yyy.

III. NUMERICAL EXAMPLES

The numerical examples presented here assess the estimation
accuracy of the ML estimates of ���. Our performance metric is the
mean-square error (MSE) of an estimator, calculated using 60 000 in-
dependent trials. [Note that the MSEs of the Newton–Raphson and EM
algorithms coincide since the convergence points of both algorithms
coincide and are equal to the ML estimate of ���.] The measurements
yk(t); t = 1; 2; . . . ; N; k = 1; 2; . . . ; K were simulated from the
composite gamma-lognormal distribution with N = 10 samples per
observation interval, 10 � K � 100;m = 1 (i.e., Rayleigh fading),
� = 5 dB, and � = 3 dB. The quadrature order of the Gauss–Hermite
approximation in (12) [see also (19b)] was L = 20. In Figs. 1–3, we

Fig. 3. Mean-square error and Cramér–Rao bound for the proposed estimator
of �2 as a function of K assuming uncorrelated shadow powers, correlated
shadow powers with � = 0:5, and correlated shadow powers with � = 0:9.

Fig. 4. (Left) Average number of iterations and (right) CPU time of the EM,
Newton–Raphson, and BFGS algorithms as a function ofK .

show the MSEs (and corresponding CRBs3) for the ML estimates of
m;�, and �2, respectively, as functions of the number of observation
intervals K . The ML estimators are “almost efficient” in this sce-
nario, i.e., their MSEs are very close to the corresponding CRBs. In
Figs. 1–3, we also show the performance of the proposed algorithms
when the shadow powers uk are correlated. We adopt the first-order
autoregressive [AR(1)] correlation model for the shadow process in
decibels (see, e.g., [17] and [29]):

10 log
10
uk = � � 10 log

10
uk�1 + !k (26)

where !k are i.i.d. Gaussian random variables with mean (1��) �� =
(1 � �) � 5 dB and standard deviation

p
1� �2 � � =

p
1� �2 �

3 dB. The MSEs of the proposed estimators are shown for � = 0:5
and � = 0:9. Interestingly, the MSE performance of the estimator
of m is insensitive to the value of the correlation coefficient �; see

3The CRB matrix was computed using (25), where the expectation with re-
spect to the distribution of yyy was performed using Monte Carlo integration with
60 000 trials.
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Fig. 1. However, the estimation of the shadowing parameters � and �2

is affected by �; see Figs. 2 and 3.
We now evaluate the computational efficiency of the proposed

methods. In Fig. 4, we show the numbers of iterations and CPU
times (averaged over 2000 trials) of the EM, Newton–Raphson, and
BFGS algorithms (implemented using MATLAB), as functions of K .
The EM algorithm converged within 12 iteration steps,4 whereas the
Newton–Raphson algorithm converged in four iterations (on average);
see the left side of Fig. 4. In terms of CPU time, however, the EM algo-
rithm was faster than the Newton–Raphson method [see the right side
of Fig. 4], which can be explained by the fact that a single EM iteration
is significantly faster than a Newton–Raphson iteration. In particular,
the Newton–Raphson algorithm requires computing and inverting
the Hessian matrix, which counterbalances its advantage in speed of
convergence. This is a well-known drawback of the Newton–Raphson
method (see, e.g., [22, Ch. 4.3.2]and [26, Ch. 2.4.3], which can be
surmounted if the derivatives in (10) and (11) are computed in parallel.
The BFGS quasi-Newton algorithm converged in five iterations (on
average) and outperformed the Newton–Raphson method in terms of
CPU time; however, it was slower than the EM algorithm; see the right
side of Fig. 4.

IV. CONCLUSION

We derived maximum likelihood methods for estimating the pa-
rameters of composite gamma-lognormal fading channels. The ML
estimates of the unknown fading and shadowing parameters were
computed using Newton–Raphson and EM algorithms. We also
applied the BFGS quasi-Newton algorithm, discussed initializing
the proposed algorithms, and computed Cramér–Rao bounds for the
unknown parameters. The proposed algorithms can be extended to
other composite fading-shadowing scenarios, such as Rice-lognormal
[9], [10] and multi-input multi-output (MIMO) fading scenarios.
Further research will include

• combining quasi-Newton and EM methods (see [30] and refer-
ences therein);

• developing ML methods for estimating parameters in combined
shadowed/unshadowed fading channels for land-mobile satellite
scenarios; see, e.g., [2, Ch. 2.2.4] and [31].

APPENDIX

EM ALGORITHM DERIVATION

We derive the EM algorithm presented in Section II-B. Observe that
the complete-data log-likelihood can be written as

Lc(yyy; uuu; ���)

=

K

k=1

ln pu(uk;�; �
2) +

K

k=1

N

t=1

ln py ju(yk(t) juk;m)

= K � ln
�p
2�

� 1

2
ln�2 +Nm lnm�N ln[�(m)]

+ (m� 1)N � 1

KN

K

k=1

N

t=1

ln yk(t) �mN

� 1

KN

K

k=1

N

t=1

yk(t)

uk
� �2

2�2
� 1

K

K

k=1

(lnuk)
2

+
��

�2
�mN � 1 � 1

K

K

k=1

lnuk � �2

2�2
: (A.1)

4The scalar Newton–Raphson iteration embedded within the “outer” EM iter-
ation converged within three steps and has low computational complexity com-
pared with the E step in (18).

Therefore, the complete-data sufficient statistics are

T1(uuu) =
1

K
�
K

k=1

lnuk (A.2a)

T2(uuu) =
1

K
�
K

k=1

(lnuk)
2 (A.2b)

T3(yyy; uuu) =
1

KN

K

k=1

N

t=1

yk(t)

uk
� 1

KN

K

k=1

N

t=1

ln yk(t)

=
1

K
�
K

k=1

�yk
uk

� 1

KN
�
K

k=1

N

t=1

ln yk(t) (A.2c)

where �yk was defined in (9b). The complete-data log-likelihood (A.1)
is easily maximized with respect to � and �2, yielding the following
estimates:

�̂ =
1

K

K

k=1

10 log
10
(uk) = �T1(uuu) (A.3a)

�̂2 =
1

K

K

k=1

[10 log
10
(uk)� �̂]2 = �2 T2(uuu)� �̂2: (A.3b)

Then, to find the ML estimate of m based on the complete data, we
need to maximize

�(yyy; uuu;m) = m lnm� ln[�(m)]�mT1(uuu)�mT3(yyy; uuu) (A.4)

with respect to m. The above expression follows by dividing the con-
centrated complete-data log-likelihood function Lc(yyy; uuu; [m; �̂; �̂2]T )
byKN and neglecting terms that are independent ofm. It can be max-
imized using the Newton–Raphson iteration, which requires the first
two derivatives of �(yyy; uuu;m) with respect tom:

@�(yyy; uuu;m)

@m
= lnm� �0(m)

�(m)
� '(yyy; uuu) (A.5a)

@2�(yyy; uuu;m)

@m2
=

1

m
� �(m)�00(m)� [�0(m)]2

�(m)2
(A.5b)

where

'(yyy; uuu) = T1(uuu) + T3(yyy; uuu)� 1: (A.6)

The complete-data likelihood belongs to an exponential family of dis-
tributions, i.e., the log-likelihood (A.1) is linear in the natural sufficient
statistics (A.2); see, e.g., [26, Ch. 1.6.2] for the definition of the mul-
tiparameter exponential family and natural sufficient statistics. In ad-
dition, the number of parameters is equal to the number of sufficient
statistics. In this case, the EM algorithm is easily derived as follows
(see, e.g., [25, Ch. 1.5.3] or [26, Th. 2.4.3, pp. 135–136]).

• The E step reduces to computing the conditional ex-
pectations of the complete-data natural sufficient
statistics [in (A.2)] given the observed data yyy; see
(18). [Note that K

k=1

N

t=1
ln yk(t)=(KN) is con-

stant with respect to this conditional expectation, and
hence, Eu jyyy[

K

k=1

N

t=1
ln yk(t)=(KN) j yyy; ���] =

K

k=1

N

t=1
ln yk(t)=(KN).]

• The M step is reduced to finding the expressions for (obtaining)
the complete-data ML estimates of ��� [see (A.3)–(A.6)] and re-
placing the complete-data sufficient statistics (A.2) that occur in
these expressions with their conditional expectations computed
in the E step; see (20) and (22).
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