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Generalized multivariate analysis of
variance (GMANOVA) [1]-[9]
and related reduced-rank regres-
sion [10]-[15] are general statisti-

ca l models that comprise vers ions of
regression, canonical correlation, and profile
analyses as well as analysis of variance
(ANOVA) and covariance in univariate and
multivariate settings. It is a powerful and, yet,
not very well-known tool. In this article, we de-
velop a unified framework for explaining, ana-
lyzing, and extending signal processing
methods based on GMANOVA. We show the
applicability of this framework to a number of
detection and estimation problems in signal
processing and communications and provide
new and simple ways to derive numerous exist-
ing algorithms for
� synchronization and space-time channel and
noise estimation in [16]-[33]
� space-time symbol detection in [23] and
[30]-[38]
� blind and semiblind channel equalization, es-
timation, and signal separation in [39]-[44]
� source location using parametric signal mod-
els in [17], [23], [28], [31], and [45]-[51]
� radar target estimation and detection in
[45]-[50] and [52]-[55]
� spectral analysis [56], [57] and nuclear mag-
netic resonance (NMR) spectroscopy [58].

Many of the above methods were originally
derived “from scratch,” without knowledge of
their close relationship with the GMANOVA
model. We explicitly show this relationship and
present new insights and guidelines for general-
izing these methods. We also acknowledge the
pioneering works of Brillinger (on frequency
wavenumber analysis; see [59]) and Kelly and
Forsythe (on radar detection; see [53]) who ©DIGITAL VISION, LTD.



first applied GMANOVA to signal processing problems.
Note that special cases of GMANOVA have also been ap-
plied to time-delay estimation for proximity acoustic sen-
sors [60], synthetic aperture radar (SAR) [61], [62],
inverse SAR (ISAR) of maneuvering targets [63], and
hyperspectral image data analysis [64]-[66]; for applica-
tions of related reduced-rank regression methods to sys-
tem identification, see [67] and references therein. Our
results could inspire applications of the general frame-
work of GMANOVA to new problems in signal process-
ing. We will present such an application to flaw detection
in nondestructive evaluation (NDE) of materials. A
promising area for future growth is image processing, as
is shown in [61]-[66].

Problem Formulation and Main Results

Historical Background
The GMANOVA model was first formulated by Potthoff
and Roy [1], who were interested in fitting the following
patterned-mean problem:E[ ]Y = AX�, where Y is a data
matrix whose columns are independent random vectors
with common covariance matrix Σ, A, and � are known
matrices, and X is a matrix of unknown regression coeffi-
cients. In [1], this model was applied to fitting growth
patterns of groups of individuals, hence also the name
growth-curve model [1]-[8]. (Other common statistical
applications are: clinical trials of pharmaceutical drugs,
agronomical investigations, and business surveys; see
[6]-[9] for illustrative examples.) In [2], Khatri com-
puted maximum likelihood (ML) estimates of X and Σ
under the multivariate normal model for Y . Khatri’s re-
sults are closely related to the concomitant-variable
method, independently developed by Rao [3], [4]. In
[68], it was shown that the estimates of the regression co-
efficients and corresponding generalized likelihood ratio
tests developed in [2] are robust when the errors are not
normal.

In the following, we describe the measurement model
and state the main results and important special cases.

Measurement Model
We now present the general measurement model that will
be examined in this article. Let y( )t be an m ×1 complex
data vector (snapshot) received at time t and assume that
we have collected N snapshots. (Note that in image pro-
cessing applications, y( )t are independent sets of pixel ob-
servations, indexed by t that generally does not
correspond to time.) Consider the following model for
the received snapshots:

y A X e( ) ( ) ( , ) ( ), , ,t t t t N= + =� � � 1 K , (1)

where the signal is described by
� an m r× matrix A( ) ( )� m r≥
� d ×1 vectors � �( , ), , ,t t N=1 K

� an r d× matrix X of unknown regression coefficients.
Here, � and � are parameter vectors (unknown in gen-
eral) and e( )t is temporally white and circularly symmetric
zero-mean complex Gaussian noise vector with unknown
positive definite spatial covariance Σ, i.e.,

[ ]E e e( ) ( ) , , { , , , }t t NH
tτ δ ττ= ∈−Σ 12 K . (2)

In sensor array processing applications, � is usually a vec-
tor of spatial parameters describing source locations, and

( )A � is the array response (steering) matrix. The vector �
usually consists of temporal parameters. More details on
the choices of � in various applications will be given later.
Also, δ t denotes the Kronecker delta symbol and “ H ” the
Hermitian (conjugate) transpose. Our goal is to present
methods for
� estimating the unknown signal and noise parameters
X , �, �, and Σ
� detecting the presence of signal (e.g., in radar)
� demodulating the received signal (communications).

Main Results
We present the basic results of this article. Details of their
derivation are relegated to the Appendix. First, define the
following matrices:

[ ]Y = ⋅⋅⋅y y( ) ( )1 N , (3a)

[ ]� � � � � �( ) ( , ) ( , ) ,= ⋅⋅⋅1 N (3b)

$ ( / )R yy
HN= ⋅1 YY , (3c)

$ ( / ) ( ) ( )R
��

� � � �= ⋅1 N H , (3d)

( ) ( )$ $ /R R y

H

y
HNφ = = ⋅φ 1 Y� � , (3e)

( )[ ]
$ $ $ $ $

( / ) ( )

|S R R R R

I

y yy y y
H

N
H HN

φ φ φφ
−

φ= −

= ⋅ −1 Y Y� � � (3f)

[ ]$ ( ) ( ) $ ( ) ( )|T A A S A AA
H

y
H= φ

−
−

� � � �1 ,
(3g)

where I m denotes the identity matrix of size m,
�( ) ( )B B B B B= −H H the projection matrix onto the col-
umn space of a matrix B, and “ − ” a generalized inverse of
a matrix, respectively. (A generalized inverse of a matrix A

is defined as any matrix A
− such that AA A A

− = ; see, e.g.,
[5, ch. 1.6] and [69, ch. 9].) Note that
� $R yy is the sample correlation matrix of the received data
y( )t
� $Rφφ is the sample correlation matrix of � �( , )t
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� $R yφ is the sample cross-correlation matrix between y( )t
and � �( , )t
� $

|S y φ is the sample correlation matrix of the received
data projected onto the space orthogonal to the row space
of � �( ).
Here, $

|S y φ , $Rφφ , and $R yφ are functions of �, and $TA is a
function of � and �. To simplify the notation, we omit
these dependencies throughout this article. Assuming
that

[ ]N m≥ +rank � �( ) , (4)

$
|S y φ will be a positive definite matrix (with probability

one), and the maximum likelihood (ML) estimates of X

and Σ for known � and � are (see the Appendix)

[ ]$ ( , ) ( ) $ ( ) ( ) $ $ $
| |X A S A A S R R

I

� � � � �=

+ −

φ
−

−

φ
−

φ φφ
−H

y
H

y y

r

1 1

[ ]
[ ]

A A

A I

( ) ( )

( ) ( ) ( ) ,

� �

� � � � �

−

−+ −

Ξ

Ξ

1

2
H

d (5a)

( )$( , ) $ $ $

$ $ $ $ $

| |Σ � � = + −

⋅ −

φ φ
−

φ φφ
−

φ

S I T S

R R R I T S

y m A y

y y
H

m A

1

( )y

H

| ,φ
−1

(5b)

where Ξ1 and Ξ2 are arbitrary matrices (of appropriate di-
mensions). Here, I A Ar − −( ) ( )� � is a matrix whose col-
umns span the space orthogonal to the column space of
A( )� H and [ ( ) ( ) ]I d

H− −� � � � is a matrix whose
columns span the space orthogonal to the column space
of � �( ). Therefore, premultiplying (5a) by A( )� and
postmultiplying by � �( ) reduces the second and third
terms in (5a) to zero, implying that the estimate of the
mean A X( ) $ ( , ) ( )� � � � � is unique (and is equal to (A.17)
in the Appendix).

For unknown � and �, their ML estimates $� and $� can
be obtained by maximizing the concentrated likelihood
function (see the Appendix):

GLR( , )
| $ |

| $ $ $ $ $ $ ||

� � =
− φ φ φφ

−
φ

−

R

R T S R R
yy

yy A y y y
H1

R
,

(6)

where ||⋅ denotes the determinant. (Concentrated likeli-
hood function is also known as the profile likelihood; see
[70, ch. 7.2.4.] for its definition and properties) Here,
the ML estimates of X and Σ follow by substituting � and
� in (5a) and (5b) with $� and $�. In [31], we also compute
closed-form Cramér-Rao bound expressions for� and �.

Detection
Expression (6) is written in the form of a generalized like-
lihood ratio (GLR) test statistic for testingH0 :X = 0 ver-
susH1 :X ≠ 0(i.e., detecting the presence of signal) for the
case of known � and �. (See, e.g., [4, p. 418], [71], and
[74, ch. 6.4.2.] for the definition of the generalized likeli-
hood ratio test.) The GLR test computes the ratio of like-
lihood functions under the two hypotheses, with
unknown parameters (X and Σ under H1 and Σ under
H0 ) replaced by their ML estimates; see also the Appen-
dix. If � and � are unknown, the GLR test compares
max GLR GLRθ , ( , ) ($, $ )

�
� � � �= with a threshold. Since (6)

is concentrated with respect to the ML estimates of the
nuisance parameters (Σ in this case), it is also the maxi-
mized relative likelihood, as defined in [72]. Under H0
and assuming known � and �, 1 / ( , )GLR � � is distributed
as complex Wilks’ lambda; see [53] and [73]. Since
Wilks’ lambda distribution does not depend on the un-
known parameters (Σ in this case), we can compute a
threshold (with which the above test statistic should be
compared) that maintains a constant probability of false
alarm. Such a detector is referred to as a constant false
alarm rate (CFAR) detector; see, e.g., [74].

GLR as a Function of A⊥ ( )�

In some applications, it may be convenient to express the
above GLR test statistic in terms of a matrix A⊥ ( )� whose
columns span the space orthogonal to the column space
of A( )� [see(7) at the bottom of the page], which follows
by applying Lemma 2 from the Appendix, with S S= φ

$
|y

and A A⊥ ⊥= ( )� , to (6). For example, if A( )� is a
Vandermonde matrix, we can easily construct a corre-
sponding A⊥ ( )� and apply polynomial-rooting based
ideas to estimate �; see e.g., [75] and [76].

GLR for Full-Rank A( )�

If A( )� has full rank r, the second term in (5a) becomes
zero, and (6) simplifies to

GLR( , )
| ( ) $ ( )|

| ( ) $ ( )|
|

� �
� �

� �
= φ

−

−

A S A

A R A

H
y

H
yy

1

1
,

(8)

see [31, App. A]. (In sensor array processing applica-
tions, (8) can be viewed as the ratio of the Capon spec-
tral estimate in the direction � using the data Y , and the
Capon spectral estimate in the direction � using the
projection of the data onto the space orthogonal to the
row space of � �( ). In other words, it is the overall
power arriving from the direction �, normalized by the
power of the noise only, arriving from the same direc-

tion � [59].) We will use
(8) shortly to derive the
reduced-rank regression
equations in (14) and the
corresponding GLR ex-
pression in (13).
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GLR for Full-rank A( )� and � �( )
If, in addition to A( )� , � �( ) has full rank (equal to d),
then both the second and third terms in (5a) are zero,
$ ( , )X � � is unique, and another interesting expression for

GLR( , )� � follows (see [31]):

GLR( , )
| $ $ ( ) $ |

| $ ( )||

� �
�

�
=

−φφ φ φ

φ

R R R

S
y
H

y

y

W
,

(9)

where

[ ]W( ) $ $ ( ) ( ) $ ( ) ( ) $� � � � �= −− − −
−

−R R A A R A A Ryy yy
H

yy
H

yy
1 1 1

1
1

(10a)

$ ( ) $ $ $ $
|S R R R Rφ φφ φ

−
φ= −y y

H
yy y� 1 . (10b)

Assuming d =1,� �( ) becomes a 1× N vector, $ $R ry yφ φ=
reduces to an m ×1vector, and $ $R φφ φφ= r to a scalar. Then,
(9) simplifies to

[ ]
GLR( , )

$ $ ( ) ( ) $ ( ) ( ) $

� �
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=

+
φ

− −
−

1
1 1

1
r R A A R A A Ry

H H
yy

H
yy yy y

y
H

yy yr

−
φ

φφ φ
−

φ−

1

1

$

$ $ $ $
.

r

r R r (11)

Special cases of the above expression have been used for
target parameter estimation with radar arrays [48]-[50]
and target detection in hyperspectral images [64], [65],
which will be discussed in the Applications Section (Ra-
dar Array Processing).

Reduced-Rank Regression
Consider a nonparametric model for the matrix A A( )� = ,
i.e., assume that it is completely unknown having full rank
r d m≤ min( , ). To solve this problem, it is useful to perform
eigenvalue decomposition of the following matrix:

$ $ $ $ $ $ $ $/ /R R R R U Uyy y y
H

yy
H−

φ φφ
−

φ
− =1 2 1 2 2

R � , (12)

where $ { $ ( ), $ ( ), , $ ( )}�2 2 2 21 2= diag λ λ λK m and
$ ( ) $ ( ) $ ( )λ λ λ1 2 0≥ ≥ ≥ ≥L m . [Here, R 1 2/ denotes a
Hermitian square root of a Hermitian matrix R, and
R R− −=1 2 1 2 1/ /( ) .] Again, for notational simplicity we
omit the dependence of the above quantities on �. Note
that $ ( )λ k are the sample canonical correlations between
y( )t and � �( , )t ; see, e.g., [11]. Note that (8) with un-
structured A A( )� = can be interpreted as a multivariate

Rayleigh quotient and is easily maximized with respect to
A, yielding

GLR low rank ( )
$ ( )

� =
−=

∏ 1

1 2
1 λ kk

r

.
(13)

For details of the proof, see the derivation in [31, App.
B]. The above result is also closely related to the Poincaré
separation theorem [4, pp. 64-65], which addresses the
problem of maximizing the multivariate Rayleigh quo-
tient. Interestingly, log GLR low rank[ ( )]� is a measure of
the (estimated) mutual information between y( )t and
� �( , )t ; see [77, sec. 9.2]. Using the results of [31, App.
B.], the ML estimates of H AX= and Σ follow:

$ ( ) $ $ $ $ ( ) $ ( ) $ $ $/ /H R U U R Ryy yylow rank � = = −AX r r H
y

1 2 1 2
φ R

[ ]
φφ
−

−+ ⋅ −Ξ Φ ΦI d ( ) ( ) ,� � (14a)

$( ) $ $ $ ( ) $ ( ) $ ( ) $/ /Σ Λ� = −R R U U Ryy yyyy
Hr r r1 2 2 1 2 , (14b)

where Ξ is an arbitrary matrix (of appropriate dimen-
sions), $ ( ) { $ ( ), $ ( ), , $ ( )}�2 2 2 21 2r r= diag λ λ λK , and $ ( )U r is
the matrix containing the first r columns of $U. If � �( )has
full rank, the second term in (14a) disappears, and (14a)
and (14b) reduce to the complex versions of the re-
duced-rank regression and noise covariance estimates in
[10]-[14].

Canonical Correlation Analysis
and Reduced-Rank Regression
Consider the problem depicted in Figure 1: we wish to
find the r m× and r d× matrices B and W that minimize
the sample (estimated) geometric mean-square error of
By W( ) ( , )t t− � � , or, equivalently, maximize its inverse:

l
N H

( , , )
|( / ) ( ) ( ) |

,

( ) ( ),

�
� �

� �

B W

BY W

=
⋅ ⋅

= −

1
1 E E

Ewhere Φ (15)

subject to the normalizing constraint

BR B I$ ,yy
H

r= (16)

which prevents the trivial solution (in which B and W
equal zero), and decorrelates the rows of the filtered data
matrix BY . The optimal B and W for the above problem
are (see [42]):

$( ) $ ( ) $ /B U R yy� = −r H 1 2 , (17a)

$ ( ) $( ) $ $W B R� �= φ φφ
−

y R (17b)

and
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( )l � � � �, $( ), $ ( ) ( )B W =GLR low rank (18)

is exactly the GLR expression for reduced-rank regression
in (13). (Interestingly, a stronger result holds: the optimal
B and W in (17) simultaneously minimize all the
eigenvalues of the sample mean-square error matrix
E E( ) ( ) /� �⋅ H N subject to (16); see [42].) Note that the
elements of $( ) ( )B y� t and $ ( ) ( , )W � � �t are the estimated
canonical variates of y( )t and � �( , )t (see, e.g., [11] and
[42]). The above results can be used to derive blind adap-
tive signal extraction algorithms in [40]; see the Applica-
tions section (Wireless Communications).

MANOVA
Multivariate analysis of variance (MANOVA) is an im-
portant special case of GMANOVA where A I( )� ≡ m , and
hence the coefficient matrix becomes H X= . Then, the
measurement model (1) simplifies to

y H e( ) ( , ) ( ), , ,t t t t N= + =� � 1 K . (19)

The MANOVA model dates back to the first half of the
20th century and is a standard part of modern textbooks
on multivariate statistical analysis; see, e.g., [4]-[7], [9],
[11], [78]. The GLR in (8) and ML estimates of H X=
and Σ simplify to [using (5) or (14)]

GLR( )
| $ |

| $ ||

� =
φ

R

S
yy

y

,
(20a)

[ ]$ ( ) $ $ ( ) ( )H R I� � � � �= + ⋅ −φ φφ
− −

y dR Ξ , (20b)

$( ) $
|Σ � = φS y , (20c)

where, as before, Ξ is an arbitrary matrix of appropriate
dimensions. The above GLR can be used for noncoherent
detection of space-time codes, as will be discussed in the
Applications section (Wireless Communications). Its re-
cursive implementation was derived in [31]. Interest-
ingly, if � �( )has full rank (equal to d) and d m< , it can be
shown that the concentrated likelihood function in (20a)
increases by iterating between the following two steps.

Step 1: Fix � and compute � � �= $ ( ) using

[ ]$ ( ) $ ( ) $ $ ( ) $ ( ) $� � � � �= ⋅−
−

−H R H H R YH
yy

H
yy

1
1

1

(21)

[where $ ( ) $ $H R R� = φ
−
φφy

1 ].

Step 2: Fix � and find � that minimizes

[ ] [ ]� � � � � �− ⋅ −( ) ( ) H .
(22)

The derivation of this result is based on identity (18); see
[42]. The above iteration will be used in the following
discussion to develop blind equalization (DW-ILSP and
LSCMA) algorithms; see the Applications section (Wire-
less Communications). An alternative way to maximize
(20a) is by using the cyclic ML approach in [37, sec.
III-D]; see also [42, sec. V].

In the following, we review several important signal
processing applications of GMANOVA and MANOVA
models.

Applications
We discuss the applications of GMANOVA to radar array
processing, spectral analysis, and wireless communica-
tions. We also derive a multivariate energy detector and
outline how it can be applied to NDE flaw detection in
correlated interference.

Radar Array Processing

Kelly’s Detector and Extensions
Assume that an n-element radar array receives P pulse re-
turns, where each pulse provides N range-gate samples.
After collecting spatio-temporal data from the tth range
gate into a vector y( )t (of size m nP= ), we search for the
presence of targets in one range gate at a time. Without
loss of generality, let t =1 be under test. Then, this radar
array detection problem can be formulated within the
GMANOVA framework in (1) with

[ ]� �( ) , , , ,= 10 0 0K of size 1× N, (23)

� X x= , an r ×1 vector of target amplitudes
� A( )� , an m r× spatiotemporal steering matrix of the
targets
� �, a vector of target parameters, e.g., directions of ar-
rival (DOAs) and Doppler shifts; see [52] and [79].
We wish to test H0 :x =0 (targets absent) versus H1 :x ≠0
(targets present). The unknown noise covariance Σ ac-
counts for broadband noise, clutter, and jamming. To be
able to estimate Σ, we need noise-only snapshots
y y y( ), ( ), , ( )2 3 K N , where N m≥ +1; see (4). In [52],
Kelly derived the GLR test for the above problem assum-
ing one target (r =1). It was originally derived from
scratch, but Kelly and Forsythe recognized its close rela-
tionship with GMANOVA in [53].

We now show how celebrated Kelly’s detector and its
extensions follow from the GMANOVA framework. Col-
lecting all noise-only snapshots into one matrix

[ ]Z y y y= ⋅⋅⋅( ) ( ) ( )2 3 N , (24)

and substituting (23)-(24) into (3), we obtain

N y
H$

|S ZZφ = ,
(25a)
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N y
$ ( )R yφ = 1 ,

(25b)

N $R φφ =1.
(25c)

After substituting (25) into (6), using the determinant
formula| |I ab b a+ = +H H1 (see, e.g., [69, cor. 18.1.3 at
p. 416]) and applying the monotonic transformation
1 1− / ( )GLR � , we have (26), found at the bottom of the
page, which is a multivariate extension (for r >1) of the
Kelly’s detector.

The above detector can be further generalized to si-
multaneously testing multiple (d) snapshots. Without
loss of generality, choose the first d snapshots to be under
test: Y y yT = ⋅⋅⋅[ ( ) ( )]1 d . This problem easily fits the
GMANOVA framework in (1) with

[ ]Y Y Z= T , , (27a)

[ ]Z y y y= + + ⋅⋅⋅( ) ( ) ( )d d N1 2 , (27b)

[ ]� �( ) ,= I d 0 , (27c)

where N m d≥ + ; see (4). Substituting (27) into (6)
yields

( )

( )

GLR T T

T

( )

( )

( )

�

�

�

= − +
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⋅

⋅

− −

−

I I Y ZZ Y

Y ZZ A

A

d d
H

H

H

H

1 1

1

( )

( )

H H

H H

ZZ A

A ZZ Y

− −

− −







⋅

1

1 1

( )

( )

�

� T

which is a multivariate extension (for r >1 ) of Wang and
Cai’s detector in [54]. Indeed, for one target (r =1) we
have A a( ) ( )� �= , and the above expression simplifies to
(28) at the bottom of the page, which is exactly the detec-
tor in [54], originally derived “from scratch.”

Range, Velocity, and Direction Estimation
Radar array estimation algorithms in [47]-[49] can also
be cast into the GMANOVA framework. Equation (1)
with

A a( ) ( )� �= , (29a)

X = x, (29b)

[ ]� �( , ) ( ) ( ) , , ,t s t j t t N= − ⋅ − =τ ω τexp D 1 K (29c)

can be used to model the signal reflected from a single
point target and received by an m-element radar array.
Here, y( )t contains the array measurements at time t, a( )θ
is the array response to a planewave reflected from the tar-
get,� is the vector of DOA parameters (e.g., azimuth and
elevation), x is the (scalar) complex amplitude of the re-
ceived target signal, s t( ) is the transmitted waveform, τ is
the time delay (proportional to the target’s range), and
ω D is the Doppler shift (proportional to the target’s radial
velocity). Then � = [ , ]τ ω D

T and

[ ]{ }$ $ ( ) ( ) ( )R r yy y
t

N

N
t s t j tφ φ

=

∗
= = − ⋅ −∑1

1

τ ω τexp D ,
(30a)

$ $ | ( )|R φφ φφ
=

= = −∑r
N

s t
t

N1
1

2τ ,
(30b)

where “∗” denotes complex conjugation. Assuming that
the entire signal s t( )− τ is included in the observation in-
terval t N=12, , ,K and for integer delay τ, $rφφ in (30b)
simplifies to the signal energy (which is independent of
�) and $ryφ in (30a) can be computed using the Parseval’s
identity:

$ ( ) ( , )r yy N
dφ −

∗= ∫
1

2π
ω ω ω

π

π

DTFT DTFTφ � ,
(31)

where

y yDTFT exp( ) ( ) ( )ω ω= −
=
∑
t

N

t j t
1

,
(32a)
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s s t j t
t

N

DTFT exp( ) ( ) ( )ω ω= −
=

∑
1

,
(32b)

( )φDTFT DTFT D exp( , ) ( )ω ω ω ωτ� = − ⋅ −s j . (32c)

Note that yDTFT ( )ω and φDTFT ( , )ω � are the discrete-time
Fourier transforms (DTFTs) of y( )t and φ( , )t � . Substitut-
ing (30) into (11), we obtain the concentrated likelihood
function

GLR( , )
|$ $ ( )|

( ) $ ( ) $
� �

�

� �
= +

⋅ −
φ

−

−

φφ

1
1 2

1

r R a

a R a

H
yy

yy

y

H r( )$ $ $r R ry
H

yy yφ φ

−1
,

(33)
which needs to be maximized to obtain the ML estimates
of � and �; see also [49]. A similar expression was used
for target detection in hyperspectral images; see [65, eq.
(3-6)].

If we are interested in estimating η(range and velocity)
only, we can apply the MANOVA model. Then, substitut-
ing A I( )� = m and (29c) into (11) yields
GLR( ) $ / ($ $ $ $ )� = −φφ φφ φ

−
φr r y

H
yy yr R r1 . After the monotonic

transformation 1 1− / ( )GLR � , we obtain a simpler form
of the GLR:

GLR′ = φ
−

φ

φφ

( )
$ $ $

$
�

r R rH
y yy y

r

1

,
(34)

see also [49] and [64], where it was applied to target de-
tection in hyperspectral images. To maximize (33) and
(34) with respect to noninteger delays τ, we can use (31)
to compute $ryφ ; see also [74, sec. 7.5].

If s t( )≡1 and τ ≡0, then $rφφ =1 and $ryφ in (30a) be-
comes proportional to the DTFT of y( )t , evaluated atω D .
This scenario, analyzed extensively in [48], implies that
matched filtering has been performed beforehand [i.e.,
the snapshot y( )t corresponds to the matched-filtered re-
turn from the tth pulse] and the DOA and Doppler shift
are estimated using the filtered data. Under this model,
(33)-(34) reduce to [48, eqs. (16) and (32)], and (11) to
the concentrated likelihood function for low-angle target
estimation in [50, eq. (32)].

Spectral Analysis
Consider estimating the parameters of a single complex
sinusoid from a noisy discrete-time complex data se-
quence y t( ). Using common spectral estimation method-
ology, construct N data snapshots as follows:

[ ]y( ) ( ), ( ), , ( ) , , , ,t y t y t y t m t NT= + + − =1 1 12K K ,

(35)
and choose
� � �= = ω (angular frequency of the sinusoid)
� A a( ) ( ) [ , ( ), , ( ( ) )]� = = −ω ω ω1 1exp expj j m TK
� � �( ) ( ) [ ( ), ( ), , ( )]= =ϕ ω ω ω ωT j j jNexp exp exp2 K .

Then the concentrated likelihood for estimatingω simpli-
fies to (33) with $rφφ =1, a a( ) ( )� = ω , and

$ $ ( ) ( / ) ( )r r yy y Nφ φ= = ⋅ω ω1 DTFT , (36)

see also (32a).

Amplitude and Phase Estimation of a Sinusoid (APES)
Substituting the above model into (5a) yields the
GMANOVA estimate of the complex amplitude X = x
for given ω:

$( ) ( ) $ ( )x H
yω ω ω= ⋅ φh rAPES , (37)

where

h
S a

a S a
APES ( )

$ ( )

( ) $ ( )
|

|

ω
ω

ω ω
= φ

−

φ
−

y

H
y

1

1

(38)

is exactly the (forward) amplitude and phase estimation
of a sinusoid (APES) filter proposed in [56] and [57].
(An extension to forward-backward APES is straightfor-
ward; see [56].) It was derived “from scratch” in [56] us-
ing the ML-based approach. An alternative,
nonparametric derivation of APES was presented in [57].
Note that $ $ $ ( ) $ ( )|S R r ry yy y y

H
φ φ φ= − ω ω and its inverse can

be efficiently computed using the matrix inversion
lemma; see [56, eq. (23)].

APES for Damped Sinusoids
A 2-D APES filter for damped sinusoids in [58] follows
from the GMANOVA framework by choosing (35),
a( ) [ , ( ), , {( ) ( )}]� = − + − + −1 1exp expβ ω β ωj j m TK , and
φ( , ) {( ) }, , ,t j t t N� = − + =exp β ω 1 K , where
� �= = [ , ]ω β T and β >0 is the damping factor. In [58],
this filter was applied to NMR spectroscopy.

An extension of APES for chirp signals was derived in
[63] and applied to ISAR imaging of maneuvering
targets.

Estimating Frequencies of Multiple Sinusoids
Simultaneous estimation of the frequencies of multiple si-
nusoids can be easily cast into the GMANOVA frame-
work: choose
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[ ]� �= = ω ω ω1 2, , ,K r
T

(39a)

[ ]A a a a( ) ( ) ( ) ( )� = ⋅⋅⋅ω ω ω1 2 r , (39b)

( ) ( ) ( )[ ]� � � �( ) ( )= = ⋅⋅⋅ϕ ω ϕ ω ϕ ω1 2 r

T
, (39c)

where r is the number of sinusoids, and estimate the un-
known frequencies ω ω ω1 2, , ,K r by maximizing the
GLR express ions in (6)-(9). Here
$ ( / ) [ ( ), ( ), , ( )].R y y yy rNφ = ⋅1 1 2DTFT DTFT DTFTω ω ωK

Wireless Communications
In wireless communications, the simple MANOVA mea-
surement model (19) is by far the most predominantly
used, although it is not referred to as such. Here, H is
known as the channel response matrix. The MANOVA es-
timates of H and the noise covariance matrix Σ [given in
(20b)-(20c)] and the GLR in (20a) have been utilized in
numerous recent algorithms for channel and noise esti-
mation [17], [27], [32], [33], synchronization [18],
[19], [20], [21], [25], [26], and symbol detection [23],
[31]-[38]. (In most of the above references, the
MANOVA equations and corresponding GLR were de-
rived from scratch, see [17]-[21], [25], [26], [33],
[35]-[37].) Special cases of the more complex
GMANOVA and reduced-rank models have also been ap-
plied to channel estimation and synchronization; see
[16], [22]-[24], [28]-[31]. For example, the re-
duced-rank regression results in (14) have been applied to
low-rank channel estimation in [22], [23], and
[29]-[31]. The temporal parameter vector � typically
contains
� i) unknown time delays or Doppler shifts, or both (in
channel estimation for wireless communications and ra-
dar target estimation)
� ii) unknown frequencies (spectral analysis)
� iii) unknown symbols (blind equalization and
noncoherent detection)
� iv) unknown phases of the received signal (con-
stant-modulus blind equalization).

The vector � can be estimated by maximizing the
GLR( )� functions in (13) and (20a) under the re-
duced-rank and MANOVA models, respectively. Below,
we discuss applications of these models to noncoherent
space-time detection and blind and semiblind channel
equalization and estimation.

Noncoherent Space-Time Detection
We derive methods for noncoherent space-time detection
in spatially correlated noise with unknown covariance.

We use the MANOVA model in (19) to describe a
flat-fading multi-input, multi-output (MIMO) wireless
channel with antenna arrays employed at both ends of the
wireless link. Here

� y( )t is an m ×1measurement vector received by the re-
ceiver array at time t
� � �( , )t is the d ×1 vector of symbols transmitted by an
array of d antennas and received by the receiver array at
time t.
The matrix � �( ) contains one or more space-time
codewords to be detected. Assume that the transmitted
space-time codewords are uniquely described by �. Then,
the MANOVA-based GLR demodulation scheme con-
sists of finding � that maximizes GLR( )� in (20a):

( )[ ]

$ max
| $ |

| $ |

m ( )

|

η
η

η

GLR arg

arg in

=

= −

φ

R

S

Y I Y

yy

y

N
H H� � �

(40)

which is exactly the GLR detector proposed and analyzed
in [23], [31], and [34]-[37]. The above detector can be
viewed as a multivariate extension (accounting for multi-
ple receive antennas and spatially correlated noise) of the
multiuser detector in [80]. For a single-input, single-out-
put (SISO) scenario with m d= =1, it further reduces to
the standard noncoherent detector in, e.g., [81, sec.
5.4)]. The logarithm of the GLR expression in (20a) and
(40) can be approximated as

( ) ( )

( )

ln
| $ |

| $ |
ln ( )

( )

|

R

S
I Y

Y

yy

y

N
H H

H

φ













= − −

≈

� � � �

� � � �tr ( )[ ]H ,
(41)

which is the subspace-invariant detector in [38] and can
be viewed as a multivariate extension of (34). Here, the
equality follows by using the determinant formula
| | | |I AB I BA+ = + (see, e.g., [69, cor. 18.1.2, p. 416]) and
the approximate expression is obtained by keeping only
the first term in the Taylor-series expansion:

( ) ( )
( ) ( )[ ]

( ) ( )[ ]

− −

=

+ 


+

ln ( )

( )

( )

I Y

Y

Y

N
H H

H H

H H

� � � �

� � � �

� � � �

tr

tr1
2

2
L.

(42)

Blind Equalization
We utilize the proposed GMANOVA framework to de-
rive algorithms for blind channel equalization and signal
separation in [39]-[41].

Iterative Least Squares with Projection (ILSP) and
Least-Squares Constant Modulus Algorithm (LSCMA)
We derive ILSP [41] and LSCMA [39] algorithms using
the iteration (21)-(22). First, we specialize the
MANOVA model in (19) to the single-input, multi-out-
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put (SIMO) flat-fading scenario, i.e., assuming that d =1.
Define the vector of (unknown) received symbols:

[ ]� � �( ) ( ), ( ), , ( )= =T s s s N1 2 K . (43)

Then

$ $ ( / ) ( ) ( )R r yy y
t

N

N t s tφ φ
=

∗= = ⋅∑1
1 (44a)

$ $ ( / ) | ( )|R φφ φφ
=

= = ⋅∑r N s t
t

N

1 2

1

,
(44b)

and the concentrated likelihood is given in (34). Hence,
we need to find the most likely symbol sequence (43) that
maximizes (34). To accomplish this task, apply the itera-
tion (21)-(22) with (43)-(44):

Step 1: Fix � and compute

ω ω( ) $ ( , )
$

$ $ $
$ $ ( ),t t t

t
y
H

yy y

y
H= = ⋅φφ

φ
−

φ

φ�
r

r R r
r R y-

1 yy
1

=12, , , ,K N (45)

[where $ryφ and rφφ are defined in (44)].
Step 2: Fix ω( ), , , ,t t N=12 K , and minimize

| ( ) ( )|
t

N

t s t
=
∑ −

1

2ω
(46)

with respect to �.
Based on the finite-alphabet property of the received

symbols, Step 2 reduces to project ing each
ω( ), , , ,t t N=12 K onto finite alphabet. In this case, the
above iteration is identical to the decoupled weighted it-
erative least squares with projection algorithm in
(DW-ILSP) [41]. To resolve phase ambiguity, a small
number of known (training) symbols is typically embed-
ded in the transmission scheme (see [41]); the above al-
gorithm can be easily modified to utilize the training data.

If the transmitted symbols belong to a con-
stant-modulus constellation, we can model the received
signal as follows:

[ ]Φ( ) ( ( )), ( ( )), , ( ( ))� = exp exp expj j j Nϑ ϑ ϑ1 2 K , (47a)

� = [ ( ), ( ), , ( )]ϑ ϑ ϑ1 2 K N T , (47b)

$ ( / ) ( ) ( ( ))r yy
t

N

N t j tφ
=

= ⋅ −∑1
1

exp ϑ ,
(47c)

$rφφ =1, (47d)

where ϑ( ), , , ,t t N=12 K are the unknown phases. In this
case, iteration (21)-(22) simplifies to the following.

Step 1: Fix � = [ ( ), ( ), , ( )]ϑ ϑ ϑ1 2 K N T and compute

ω ω( ) $ ( , )
$ $ $

$ $ ( ),

,

t t t

t
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yy y

y
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yy= = ⋅

=
φ

−
φ

φ
−�

1

1

1

1

r R r
r R y

2, , ,K N
(48)

[where $ryφ is defined in (47c)].
Step 2: Fixω( ), , , ,t t N=12 K , and update �as follows:

$ [ ( ), ( ), , ( )]� = ∠ ∠ ∠ω ω ω1 2 K N T . (49)

The above algorithm is identical to the least-squares
constant modulus algorithm (LSCMA) in [39].

The DW-ILSP and LSCMA algorithms were origi-
nally derived using approaches very different from the
ML-based methodology presented here; see [41] and
[39]. Note that our approach provides a framework for
extending these algorithms to the MIMO scenario, based
on the iteration (21)-(22).

Spectral Self-Coherence Restoral (SCORE) Algorithms
Consider the problem of “matching” the receiver array
measurements y( )t with frequency-shifted (by a constant
α) and possibly conjugated replicas of y( )t :

� � � �( , ) ( ) ( ) ( , ) ( ) ( )t t j t t t j t= = ∗y yexp or exp2 2πα πα ,
(50)

see [40, eq. (31)]. We now adopt the reduced-rank ca-
nonical correlation model with r =1, i.e., we wish to mini-
mize the sample mean-square error of

By W b y w( ) ( , ) ( ) ( , )t t t tH H− = −� � � � , (51)

subject to b R bH
yy

$ ; see (16). Then, the optimal $b and $w
are

$ $ $ ( )/b R U= −
yy

1 2 1
(52a)

$ $ $ ( ) $ $ $/W w U R R= = −
φ φφ

−H H
yy y1 1 2

R ,
(52b)

see (17). [Note that (50) together with (4) implies that
both $R yy and $R φφ are positive definite with probability
one. However, due to generality, we present expressions
(52) that allow for singular $R φφ , which may be useful in
other applications.] The above solutions satisfy

$ ( ) $ $ $ $ $ $λ2 1 ⋅ = φ φφ
−

φR b R R R bH
yy y y ,

(53a)

$ ( ) $ $ $ $ $ $λ2 11 ⋅ =φφ φ
−

φR w R R R wy
H

yy y ,
(53b)

which are exactly the cross-SCORE eigenequations in
[40, eqs. (35) and (36)].
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Semiblind Channel and Noise Estimation
Using the EM Algorithm
Consider a SIMO flat-fading channel described by the
following equation:

y h e( ) ( ) ( ), , , ,t s t t t N= ⋅ + =12 K , (54)

where
� h is an unknown m ×1 channel response vector
� s t t N( ), , , ,=12 K are the unknown symbols received
by the array.
The above equation is a special case of the MANOVA
model (19) with d =1; this model has also been used to
derive the DW-ILSP algorithm. However, unlike the
DW-ILSP approach which treats the unknown symbols
s t( ) as deterministic parameters, we model them as inde-
pendent, identically distributed (i.i.d.) random variables
that take values from an M-ary constant-modulus con-
stellation { , , , }s s s M1 2 K with equal probability; the con-
stant-modulus assumption implies that
| | , , , ,s n Mn = =1 12 K . (These assumptions can be relaxed,
resulting in more cumbersome computations.) As dis-
cussed before, to allow unique estimation of the channel h
(i.e., to resolve the phase ambiguity), we also assume that
a small number (N T ) of training symbols

s NT T( ), , , ,τ τ =12 K (55)

is embedded in the transmission scheme. Denote the cor-
responding snapshots received by the array as
yT T( ), , , ,τ τ =12 K N . Then, the measurement model
(54) holds for the training symbols as well, with y( )t and
s t( ) replaced by yT ( )τ and sT ( )τ , respectively.

In [43] and [44], we treat the unknown symbols as the
unobserved (or missing) data and combine the MANOVA
model with the expectation-maximization (EM) algo-
rithm to estimate the channel h and spatial noise
covariance Σ. We now sketch the main ideas of this ap-
proach. We first computed the joint distribution of y( )t ,
s t( ) (for t N=12, , ,K ), and yT ( )τ (for τ =12, , ,K N T ),
which is also known as the complete-data likelihood func-
tion. Using this joint distribution, we then obtained com-
plete-data sufficient statistics for estimating h and Σ:

$ ( ) ( ) ( ) ( )r y yy
t

N N

N N
t s t sφ

=

∗

=

∗=
+

+
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1 1T
T T
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τ τ ,
(56a)
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N
H

N
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N N
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= =
∑ ∑1

1 1T
T T

T

τ

τ τ
(56b)

and observed that the complete-data likelihood belongs
to the exponential family of distributions, i.e., its loga-
rithm is a linear function of the above natural sufficient
statistics (see e.g., [82] for the definition and properties of
the exponential family). If the complete-data likelihood
belongs to the exponential family and if N N m+ ≥ +T 1
[see (4)], the EM algorithm is easily derived as follows.
� The expectation (E) step is reduced to computing con-
ditional expectations of the complete-data sufficient sta-
tistics [in (56)] given the observed data y( ), , ,t t N=1 K
and yT T T( ), ( ), , ,τ τ τs N=1 K .
� The maximization (M) step is reduced to finding the
expressions for the complete-data ML estimates of the
unknown parameters h and Σ and replacing the com-
plete-data natural sufficient statistics (56) that occur in
these expressions with their conditional expectations
computed in the E step.
In our problem, the complete-data ML estimates of hand
Σ follow as a special case (for d =1) of the MANOVA
equations in (20b) and (20c):

$ ( ) ( ) ( ) ( )h y y=
+

+










=

∗

=

∗∑ ∑1
1 1N N

t s t s
t

N N

T
T T

T

τ

τ τ ,
(57a)

$ $ $ $Σ = −R hhyy
H , (57b)

where we used the constant-modulus property of the
transmitted symbols. Following the above procedure, we
derive the EM algorithm for estimating h and Σ:
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(58a)

Step 2:

( )Σ ( )
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( )

( )

( )
k

yy
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k k H
yy

k
+ − −

− + + −

+
= +

−
1 1 1

1 1 1 1

11
R

R h h R

h H
yy

kR h− +1 1( )
.

(58b)

Note that (58a) and (58b) each incorporate both E and
M steps. To avoid matrix inversion, we applied the matrix
inversion lemma (see, e.g., [69, cor. 18.2.10, p. 424]) to
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directly compute the estimates of Σ −1 ; see (58b). We now
utilize the above channel estimates to detect the unknown
transmitted symbols s t( ) (see [43] and [44]):

$( ) max { ( ) (
( ) { , , , }

( )s t t s t
s t s s s

H
yy

M

= ⋅
∈

− ∞arg Re
1 2

1

K
y R h )}, (59)

where h( )∞ is the ML estimate of h obtained from the EM
iteration (58a)-(58b).

In Figure 2, we compare symbol error rates of the de-
tector (59) and the DW-ILSP detec-
tor in (45)-(46). We consider an
array of m =5 receiver antennas. The
transmitted symbols were generated
from an uncoded QPSK modulated
constellation (i.e., M = 4) with nor-
mal ized energy. We added a
three-symbol training sequence
( )N T =3 , which was utilized to ob-
tain initial estimates of the channel
coefficients. (For further details of
the simulation scenario, see [44].)
The symbol error rates averaged over
random channel realizations are
shown as functions of the bit sig-
nal-to-noise ratio (SNR) per receiver
antenna for block lengths N =50,
100, and 150. An intuitive explana-
tion for the better performance of the
EM-based detector is that the EM al-
gorithm exploits additional informa-
tion provided by the distribution of
the unknown symbols. Note also that
the number of real parameters in the
random-symbol measurement model
equals m m2 2+ , and, therefore, is in-
dependent of N. This is in contrast
with DW-ILSP and other determin-
istic ML methods (e.g., [37], [42],
and [83]) where the number of
parameters grows with N.

Other Applications

Multivariate Weighted Energy Detector
Consider the problem of detecting
the presence of a signal in a data ma-
trix under test YT of size m d× , where
noise-only data matrix Z of size
m N d× −( ) is avai lable, and
N m d≥ + . If we do not have any ad-
ditional information about the nature
of the signal to be detected, we can
choose a nonparametric model for the
signal mean:

E T[ ]Y X= . (60)

Using the definitions in (27) and A I( )� = m , we simplify
(8) to the following GLR test statistic:

GLR T T=
+| |

| |
Y Y ZZ

ZZ

H H

H
(61)

for testingH0 :X =0 versusH1 :X ≠0. The above statistic
can be viewed as a multivariate extension of the classical
energy detector; indeed, for m =1, it simplifies to the en-
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� 2. Symbol error rates of the EM-based and DW-ILSP detectors as functions of the SNR
per receiver antenna.

� 3. Magnitude plot of low-noise NDE measurements with peak value normalized to one.
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ergy detector in, e.g., [74, ch. 7.3.]. Expression (61) sim-
plifies also when the presence of a signal is tested in one
snapshot at a time (i.e., d =1 and hence Y yT T= ):

GLR T T= + −1 1y yH HZZ( ) . (62)

which is the weighted energy detector in [62, eq. (37)]
and [66, eq. (20)].

Flaw Detection for Nondestructive Evaluation of Materials:
We now apply the above test to NDE flaw detection in
correlated noise; see also [85]. In NDE, correlated noise
is typically caused by
� backscattered “clutter” in ultrasonic NDE array sys-
tems (similar to the clutter in radar) [84]
� random liftoff variations between measurement loca-
tions in eddy-current systems [86]. (Liftoff is the distance
between the probe and the testpiece surface.)

A key aim of eddy-current NDE is to
quantify flaws in conductors using
changes of the probe impedance due to
defects; see [86]. Figure 3 shows a
magnitude plot of low-noise experi-
mental eddy-current impedance mea-
surements in a sample containing two
realistic flaws, where each pixel corre-
sponds to a measurement location.
The data was collected by scanning the
testpiece surface columnwise (parallel
to the y axis). To model liftoff varia-
tions, we added complex Gaussian
noise, correlated along y direction (i.e.,
between rows) and uncorrelated along
x direction (i.e., independent col-
umns). Figure 4 shows a magnitude
plot of noisy measurements. We used a
region R of the image to generate the
noise-only data matrix Z. A window
YT of size m d× = ×10 10 was swept
across the noisy image, as depicted in
Figure 4. For each location of the win-
dow, we computed the (logarithms of)
� the proposed GLR test statistic in
(61)
� the classical energy detector for
white noise

tr T T( )Y Y H , (63)

which is simply the sum of squared
magnitudes of all measurements
within the window YT ; see Figure 5.
Clearly, the proposed detector which
accounts for noise correlation out-
performs the classical detector, which
breaks down in this scenario.

Concluding Remarks
We reviewed GMANOVA and its ap-
plications to numerous problems in
signal processing and communica-
tions. We presented a unified frame-
work for developing GMANOVA-
based methods and showed that
many existing algorithms readily fol-
low as its special cases. More impor-

� 4. Magnitude plot of noisy NDE measurements.

� 5. Logarithms of (a) the proposed GLR test statistic in (61) and (b) classical energy de-
tector for uncorrelated noise in (63).



tantly, insights gained from this framework allow
generalizations of many of these methods. A novel appli-
cation to flaw detection for nondestructive evaluation of
materials was proposed. We hope that our results would
lead to successful applications of this powerful tool to
new and exciting signal processing problems.
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Appendix
We derive the ML estimates of X and Σ in (5) and the
GLR expression in (6). To derive (5), we follow an ap-

proach similar to that of Srivastava and Khatri [5]. (For
an alternative, conditional approach to solving this prob-
lem, see e.g., [2], [8], and [9].) Then, we compute the
GLR in (6) by substituting the estimates of Σ (under
H0 :X =0) and X and Σ [under H1 :X ≠0; see (5)] into
the likelihood ratio. Note that our concentrated likeli-
hood function in (6) is simpler than the one that follows
from [5, th. 1.10.3].

For completeness, we first state the following two lem-
mas from [5], which will be used in the derivation. They
are also of general interest to the signal processing audi-
ence. (Special cases of both lemmas have been widely
used in signal processing literature.)

Lemma 1
Let S be an m m× positive definite matrix. Then, for
a b> >0 0, ,

[ ]| | exp ( ) | / | exp( )Σ Σ− − −− ≤ −b ba a b mbtr 1 S S (A.1)

for all m m× positive definite matricesΣ. Equality holds if
and only if Σ = a bS / .

Lemma 2
Let S:m m× be a positive definite matrix, and A:m r×
and A⊥ ×:m s be two matrices such that
rank rank( ) ( )A A⊥ = −m and A AH

⊥ =0. Then

( )S S A A S A A S A A SA AH H− − − − −
⊥ ⊥ ⊥

−

⊥− =1 1 1 1( )H H

(A.2)
is a positive semidefinite matrix of rank m − rank( )A .

Under the measurement model in (1) and (2), the like-
lihood function is

L N( , , , ) | |

exp [ ( ) ( )] [ ( )

X

Y A X Y A X

� �

� � � � �

Σ Σ

Σ

=

⋅ − − ⋅ −

−

−

π

tr 1{ }( )( )] .� H

(A.3)
Applying Lemma 1 to (A.3), with b N= and a =1, we ob-
tain

L L N( , , , ) ( , , ,( / ) [ ( ) ( )]

[ ( ) (

X X Y A X

Y A X
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� � �

Σ ≤ ⋅ −

⋅ −

1

)] )
| ( / ) [ ( ) ( )]

[ ( ) ( )] | exp(

H

H N

N= ⋅ ⋅ −

⋅ − ⋅−

π 1 Y A X

Y A X

� � �

� � � −mN), (A.4)

where the equality holds if and only if

Σ = ⋅ − ⋅ −( / ) [ ( ) ( )] [ ( ) ( )]1 N HY A X Y A X� � � � � � .
(A.5)

Clearly, the above expression is the ML estimate of the
noise covariance Σ for given θ, ,� and X , and (A.4) is the
likelihood function, concentrated with respect to this esti-
mate. Observe that, in the absence of signal (i.e., X =0),
the ML estimate of the noise covariance is simply $R yy and
(A.4) becomes
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| |L mNyy yy

N
( , , , $ ) $ exp( )0 � � R R= ⋅ −

−
π .

(A.6)

Computing the ratio between the concentrated likeli-
hood functions (A.4) and (A.6) and then raising it to the
power 1/ N yields the following GLR test statistic:

GLR( , , )

| $ |

|( / ) [ ( ) ( )] [ ( ) ( )

X

R

Y A X Y A X

� �
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=

⋅ − ⋅ −
yy

N1 ] |
,

H
(A.7)

for testing H0 :X =0 versus H1 :X X= . To be able to
compute the above expression, we require that
[ ( ) ( )] [ ( ) ( )]Y A X Y A X− ⋅ −� � � � � � H is positive defi-
nite for every X , �, and �.

We now maximize (A.7) with respect to the regression
coefficient matrix X . Let

[ ]$ ( ) ( ) ( ) $ $H Y RLS = =
−

φ φφ
−� � � � �H H

yΦ R (A.8)

denote a least-squares (LS) estimate of the coefficient ma-
trix H [≡ A X( )� ] in the MANOVA model (19). To sim-
plify the notation, we omit the dependence of $H LS on �.
Expression (3f) can be written in terms of $H LS as

[ ][ ]$ ( / ) $ ( ) $ ( )|S Y H Y Hy

H
Nφ = ⋅ − ⋅ −1 LS LS� � � � . (A.9)

Then, the decomposition

[ ( ) ( )] [ ( ) ( )] [ $ ( )]

[ $

Y A X Y A X Y H

Y H

− ⋅ − = −
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is obtained by completing the squares and using basic
properties of generalized inverses; see [5, th. 1.10.3]. As
discussed before, we require that the left-hand side of the
above expression is positive definite for every X , imply-
ing that $

|S y φ must also be positive definite (consider
X =0). To ensure positive definiteness of $

|S y φ (with prob-
ability one), we impose condition (4), which follows us-
ing arguments similar to those in [78, th. 3.1.4]. Now we
can write
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where we used the definitions in (3) and the determinant
formula| | | |I AB I BA+ = + . Also
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where
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To derive (A.12), we have used (3g) and the identity
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see [69, th. 14.12.11(5).]. By Lemma 2, � is positive
semidefinite, and hence

� � � �� �= + ⋅IN ( / ) ( ) ( )1 N H (A.15)

is positive definite. Thus, substituting (A.12) into (A.11)
yields
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Clearly, (A.16) is minimized with respect to δX
( a n d hence X) i f and only i f
� � � � � �( ) ( ) $ ( ) ( )|

H H H
yδ δX A S A Xφ
− =1 0, or, equivalently,

A X( ) ( )� � �δ =0, or
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A y
H1 .

(A.17)

Therefore,
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(A.18)
which is equal to (6), the ML estimates of X in (5a) fol-
low from (A.17), and the ML estimate of Σ in (5b) fol-
lows by substituting (A.17) into (A.5).

54 IEEE SIGNAL PROCESSING MAGAZINE SEPTEMBER 2003


