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Bayesian NDE Defect Signal Analysis

Aleksandar Dogandžić and Benhong Zhang

Abstract—We develop a hierarchical Bayesian approach for estimating
defect signals from noisy measurements and apply it to nondestructive
evaluation (NDE) of materials. We propose a parametric model for the
shape of the defect region and assume that the defect signals within this
region are random with unknown mean and variance. Markov chain
Monte Carlo (MCMC) algorithms are derived for simulating from the
posterior distributions of the model parameters and defect signals. These
algorithms are then utilized to identify potential defect regions and
estimate their size and reflectivity parameters. Our approach provides
Bayesian confidence regions (credible sets) for the estimated parameters,
which are important in NDE applications. We specialize the proposed
framework to elliptical defect shape and Gaussian signal and noise models
and apply it to experimental ultrasonic -scan data from an inspection of
a cylindrical titanium billet. We also outline a simple classification scheme
for separating defects from nondefects using estimated mean signals and
areas of the potential defects.

Index Terms—Bayesian analysis, defect estimation and detection,
Markov chain Monte Carlo (MCMC) methods, nondestructive evaluation
(NDE).

I. INTRODUCTION

In nondestructive evaluation (NDE) applications, defect signal typ-
ically affects multiple measurements at neighboring spatial locations.
Therefore, multiple spatial measurements should be incorporated into
defect detection and estimation (sizing) algorithms. In [1], measure-
ments within a sliding window were compared with a dynamically
chosen threshold in order to detect potential defects in ultrasonic C
scans. Related problems have been studied in image processing litera-
ture in the context of image segmentation and saliency region detection,
see e.g., [2]–[4] (respectively) and references therein. In this correspon-
dence (see also [5]), we propose the following:

• a parametric model that describes defect shape, location, and re-
flectivity;

• a hierarchical Bayesian framework and Markov chain Monte
Carlo (MCMC) algorithms for estimating these parameters
assuming a singe defect;

• a sequential method for identifying multiple potential defect re-
gions and estimating their parameters;

• a simple classification scheme for separating defects from non-
defects using estimated mean signals and areas of the potential
defects.

We adopt elliptical defect shape and Gaussian signal and noise models;
however, the proposed framework is applicable to other scenarios as
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well. The elliptical shape model is well-suited for describing hard alpha
inclusions in titanium alloys [6]. In most applications, the defect signal
is not uniform over the defect region but varies randomly depending, for
example, on local reflectivity and various constructive and destructive
interferences. To account for these variations, we assume that the defect
signal is random over the defect region, having fixed (but unknown)
mean and variance.

In Section II, we describe the measurement model and prior spec-
ifications. In Section III and Section A of the Appendix, we develop
Bayesian methods for simulating and estimating the defect model pa-
rameters and signals (Sections III-A–III-C). In addition, our approach
provides Bayesian confidence regions (credible sets) for the estimated
parameters, which are important in NDE applications. The underlying
Bayesian paradigm allows us to easily incorporate available prior
information about the defect reflectivity, shape, or size. In Section IV,
the proposed methods are applied to experimental ultrasonic C-scan
data from an inspection of a cylindrical titanium billet. Although we
focus on estimating parameters of a single defect, we also discuss the
multiple-defect scenario in Section IV. Note that applying optimal
Bayesian approaches for estimating the number and parameters of
multiple defects (e.g., reversible-jump MCMC schemes [9, Ch. 11])
would lead to computationally intractable solutions. In Section IV, we
propose a simple sequential method and a classification scheme for
identifying multiple potential defect regions and separating defects
from nondefects. Concluding remarks are given in Section V.

II. MEASUREMENT MODEL AND PRIOR SPECIFICATIONS

We first introduce our parametric defect location and shape
models (Section II-A) and random noise and defect-signal models
(Sections II-B and II-C). Then, in Section II-D, we combine the noise
and signal models by integrating out the random signals. Our goal is
to estimate the model (defect location, shape, and signal-distribution)
parameters and random signals. In Section II-E, we introduce our
model-parameter prior specifications.

The random defect signals and model parameters that we wish to
estimate are described using a hierarchical statistical model, see [7,
Ch. 5] for an introduction to hierarchical models.

A. Parametric Model for Defect Location and Shape

Assume that a potential defect-signal region R(zzz) can be modeled
as an ellipse, as follows:

R(zzz) = rrr : (rrr � rrr0)
T�R(d; A; ')

�1(rrr � rrr0) � 1 (2.1)

where rrr = [x1; x2]
T denotes location in Cartesian coordinates,

zzz = rrrT0 ; d; A; '
T

(2.2)

is the vector of (unknown) defect location and shape parameters,1

�R(d;A; ') =�(') �
d2 0

0 A2=(d2�2)
� �(')T ;

�(') =
cos' � sin'

sin' cos'
(2.3)

1The inverse of � can be easily computed as � (d;A; ') = �(') �

1=d 0

0 d � =A
� �(') .
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and “T ” denotes a transpose. Here, rrr0 = [x0;1; x0;2]
T represents the

center of the ellipse in Cartesian coordinates, d > 0 is an axis param-
eter, A > 0 the area of the ellipse, and ' 2 [��=4; �=4] the ellipse
orientation parameter (in radians). Under the above parametrization, d
and A=(d�) are the axes of the ellipse R(zzz).

B. Measurement-Error (Noise) Model

Assume that we have collected measurements yi at locations sssi, i =
1; 2; . . . ; tot within the region of interest, where tot denotes the
total number of measurements in this region. We adopt the following
measurement-error model.

• If yi is collected over the defect region (i.e. sssi 2 R(zzz)), then

yi = �i + ei (2.4a)

where �i and ei denote the defect signal (related to its reflectivity)
and noise at location sssi, respectively.

• If yi is collected outside the defect region (i.e., sssi 2 Rc(zzz), where
Rc(zzz) denotes the noise-only region outsideR(zzz)), then the mea-
surements contain only noise

yi = ei (2.4b)

implying that the signals �i are zero in the noise-only region.
We model the additive noise samples ei, i = 1; 2; . . . ; tot as
zero-mean independent, identically distributed (i.i.d.) Gaussian
random variables with known variance �2 (which can be easily esti-
mated from the noise-only data). Denote by N (y;�; �2) the Gaussian
probability density function (pdf) of a random variable y with mean �
and variance �2. Then, (2.4a) and (2.4b) imply that the conditional dis-
tribution of the measurement yi given �i is p(yij�i) = N (yi; �i; �

2),
where �i = 0 for sssi 2 Rc(zzz). In the following, we describe a model
for the signals �i.

C. Defect-Signal (Reflectivity) Model

Assume that the signals �i within the defect region [for sssi 2 R(zzz)]
are i.i.d. Gaussian with unknown mean � and variance � 2, which define
the vector of unknown defect-signal distribution parameters

www = [�; � ]T : (2.5)

Therefore, the joint pdf of the defect signals conditional on www and zzz

can be written as

p (f�i; sssi 2 R(zzz)g jwww;zzz) =
i;sss 2R(zzz)

N (�i;�; �
2): (2.6)

In the noise-only region (i.e., sssi 2 Rc(zzz)), the signals �i are zero (see
also the previous section).

In the hierarchical modeling context, the elements of www are often
referred to as hyperparameters. Note that � is a measure of defect-
signal variability: if � = 0, then all �i within the defect region are
equal to �.

D. Measurement Model for the Location, Shape, and Defect-Signal
Distribution Parameters

Define the vector of all model parameters (see (2.2) and (2.5)), as
follows:

��� = [zzzT ; wwwT ]
T
: (2.7)

We now combine the noise and defect-signal models in Sections II-B
and II-C and integrate out the �is. Consequently, conditional on the
model parameters ���, the observations yi collected over the defect re-
gion are i.i.d. Gaussian random variables with the following pdf:

p(yij���) = N (yi;�; �
2 + � 2); for sssi 2 R(zzz) (2.8a)

whereas the observations collected in the noise-only region are zero-
mean i.i.d. Gaussian with pdf:

p(yij���) = N (yi; 0; �
2); for sssi 2 R

c(zzz): (2.8b)

Since we can integrate out the random signals �i, sssi 2 R(zzz), we can
decouple sampling the model parameters ��� from sampling the �is, as
demonstrated in Sections III-A and III-B.

E. Prior Specifications for the Model Parameters

We assume that the defect location, shape, and signal-distribution
parameters are independent a priori 2:

����(���) = �zzz(zzz) � �www(www) (2.9a)

where

�zzz(zzz) =�x (x0;1) � �x (x0;2) � �d(d) � �A(A) � �'(')

�www(www) =��(�) � �� (�): (2.9b)

Let us adopt simple uniform-distribution priors for all the model pa-
rameters:

��(�) = uniform(0; �MAX) (2.10a)

�� (�) = uniform(0; �MAX) (2.10b)

�x (x0;1) = uniform(x0;1;MIN; x0;1;MAX) (2.10c)

�x (x0;2) = uniform(x0;2;MIN; x0;2;MAX) (2.10d)

�d(d) = uniform(dMIN; dMAX) (2.10e)

�A(A) = uniform(AMIN; AMAX) (2.10f)

�'(') = uniform('MIN; 'MAX) (2.10g)

where 'MIN � ��=4, 'MAX � �=4, dMIN > 0, and AMIN > 0.

III. BAYESIAN ANALYSIS

The goals of our analysis in this section are to estimate the model
parameters ��� and random signals �i, i = 1; 2; . . . ; tot describing a
single defect region under the measurement model and prior specifi-
cations in Section II. The posterior pdf of ��� follows by using (2.8a),
(2.8b), and (2.9a):

p(���jyyy) /�zzz(zzz) � �www(www) � p(yyyj���)

=�zzz(zzz) � �www(www) �
i;sss 2R(zzz)

N (yi;�; �
2 + � 2)

�
i;sss 2R (zzz)

N (yi; 0; �
2)

/�zzz(zzz) � �www(www) � l(yyyjzzz;www) (3.1a)

which simply states that the posterior pdf of ��� is propor-
tional to the product of the prior and likelihood of ���. Here,
yyy = [y1; y2; . . . ; y ]T denotes the vector of all observations,

l(yyyjzzz;www)

=
i;sss 2R(zzz)

N (yi;�; �
2 + � 2)

N (yi; 0; �2)

= 1 +
� 2

�2

�N(zzz)=2

� exp �
1

2
i;sss 2R(zzz)

(yi � �)2

�2 + � 2
�

y2i
�2

(3.1b)

2Here, � (���) denotes the prior pdf of ��� and analogous notation is used for
the prior pdfs of the components of ���.
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is the normalized likelihood (i.e., likelihood ratio), and

N(zzz) =
i;sss 2R(zzz)

1 (3.2)

is the number of measurements collected over R(zzz).
In Sections III-A and III-B (below), we construct methods for

drawing samples from the posterior distributions of the model param-
eters ��� and random signals

��� = [�1; �2; . . . ; � ]T : (3.3)

We utilize these samples to estimate ��� and ��� (Section III-C) and con-
struct credible sets for these parameters.

A. Simulating the Model Parameters ���

We first outline our proposed scheme for simulating from the joint
posterior pdf p(���jyyy). To draw samples from this distribution, we apply
a Gibbs sampler [7]–[9], which utilizes the full conditional posterior
pdfs of � , � and zzz.

1) Draw � (t) from

p � j�(t�1); zzz(t�1); yyy (3.4a)

using rejection sampling [7, Ch. 11.1], [10] (as described in
Section A of the Appendix), where �(t�1) and zzz(t�1) have been
obtained in Steps 2) and 3) of the (t � 1)th cycle.

2) Draw �(t) from

p �j� (t); zzz(t�1); yyy (3.4b)

which is a truncated Gaussian distribution, easy to
sample from using, e.g., the algorithm in [11] (see also
Section B of the Appendix).

3) Draw zzz(t) from

p zzzjwww(t); yyy where www(t) = �(t); � (t)
T

(3.4c)

using shrinkage slice sampling [12] (see Section C of
the Appendix).

Cycling through the Steps 1)–3) is performed until the desired number

of samples ���(t) = [(zzz(t))
T
; (www(t))

T
]
T

is collected [after discarding
the samples from the burn-in period (see, e.g., [7]–[9])]. This scheme
produces a Markov chain ���(0); ���(1); ���(2); . . . with stationary distribu-
tion equal to p(���jyyy).

B. Simulating the Random Signals �i

To estimate the random signals ���, we utilize composition sampling
from the posterior pdf p(���jyyy) = p(���j���; yyy)p(���jyyy)d���, which can be
done as follows (see also [7, steps 1. and 2. on p. 127]):

• draw ���(t) from p(���jyyy), as described in Section III-A;
• draw ���(t) from p(���j���(t); yyy) as follows:

— for i 2 R(zzz(t)), draw conditionally independent samples �(t)i

from

p �
(t)
i j���(t); yi =N �

(t)
i ;

� (t)
2

yi+�2�(t)

(� (t))
2
+�2

;
1

(� (t))
2 +

1

�2

�1

(3.5a)

— for i 2 Rc(zzz(t)), set �(t)i = 0

yielding ���(t) = [�
(t)
1 ; �

(t)
2 ; . . . ; �

(t)
]
T

.

Fig. 1. Ultrasonic C-scan data with 17 defects.

Then, the mean signal � = [1=N(zzz)] �
i;sss 2R(zzz) �i within the po-

tential defect region simulated in the tth draw can be estimated as
�
(t)

= [1=N(zzz(t))] �
i;sss 2R(zzz ) �

(t)
i .

Note that the proposed MCMC algorithms are automatic, i.e., their
implementation does not require preliminary runs and additional
tuning. This is unlike the Metropolis–Hastings algorithm and algo-
rithms that contain Metropolis steps, which typically require tuning
the scales of the proposal distributions [13].

C. Estimating the Model Parameters ��� and Random Signals ���

Once we have collected enough samples, we estimate the posterior
means of ��� and ��� simply by averaging the last T draws, as follows:

E[���jyyy] ���� = [zzzT ;wwwT ]
T
=

1

T

t +T

t=t +1

���(t)

E[���jyyy] � ��� =
1

T

t +T

t=t +1

���(t) (3.6)

where t0 defines the burn-in period. Note that ��� and ��� are the (approx-
imate) minimum mean-square error (MMSE) estimates of ��� and ���.

IV. NUMERICAL EXAMPLES

We apply the proposed approach to experimental ultrasonic C-scan
data from an inspection of a cylindrical Ti 6-4 billet. The sample, devel-
oped as a part of the work of the Engine Titanium Consortium, contains
17 #2 flat-bottom holes at 3:200 depth. (The flat-bottom holes are ma-
chined “defects” whose locations are exactly known.) The ultrasonic
data were collected in a single experiment by moving a probe along
the axial direction and scanning the billet along the circumferential di-
rection at each axial position. The raw C-scan data with marked true
defect regions are shown in Fig. 1. The vertical coordinate is propor-
tional to rotation angle and the horizontal coordinate to axial position.

Before analyzing the data, we divided the C-scan image into three
regions of interest, as shown in Fig. 2. In each region, we subtracted
row means from the measurements within the same row. We note that
the noise level in Region 2 is lower than the corresponding noise levels
in Regions 1 and 3. Indeed, the sample estimates of the noise variance
�2 in Regions 1, 2, and 3 are3 11:92, 10:32, and 12:02, respectively.
This phenomenon, known as grain-noise banding [1], is common in
titanium billet inspections; it is a result of the billet manufacturing
process. We now analyze each region separately assuming known noise
variances �2 (set to the above sample estimates). We chose the prior
pdfs in (2.10) with �MAX = maxfy1; y2; . . . ; y g, �MAX = 3�,
dMIN = 1, dMAX = 10, AMIN = 30, AMAX = 300, 'MIN = ��=8,

3These sample estimates are computed as follows: � = (1= )
� y . We note that the defects are much smaller in size than the three
Regions in Fig. 2; consequently, the defect signals in these regions introduce
negligible bias to the estimation of � .
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Fig. 2. MMSE estimates � of the random signals � for the chains having the
smallest model-parameter deviances.

'MAX = �=8, and selected x0;i;MIN, x0;i;MAX, i = 1, 2 to span the
region that is being analyzed. The minimum and maximum areas of the
defect region (AMIN and AMAX) need to be specified carefully. If we
set AMAX to be too large, it may take a long time for our algorithms
to converge. If we choose too small AMIN, our chains may converge to
some of the grains (in the grain structure of the material), requiring the
use of a larger number of chains to ensure that the true defects are not
missed.

We now describe our analysis of Region 1, where we ran seven
Markov chains. We perform sequential identification of potential de-
fects, as described in the following discussion. We first ran 10 000 cy-
cles of the Gibbs sampler described in Section III-A and utilized the
last T = 2000 samples to estimate the posterior distributions p(���jyyy)
and p(���jyyy); hence, the burn-in period is t0 = 8000 samples. The poste-
rior means E[�ijyyy] of the random signals �i, which are also the MMSE
estimates of �i, have been estimated by averaging the T draws (see
(3.6)), as follows:

�ijchain 1 �
1

T

t +T

t=t +1

�
(t)
i ; i = 1; 2; . . . ; tot: (4.1)

Before running the second chain, we subtracted the first chain’s MMSE
estimates �ijchain 1 from the measurements yi, i = 1; 2; . . . ; tot,
effectively removing the first potential defect region from the
data. We then ran the second Markov chain using the filtered data
yijchain 2 = yi � �ijchain 1, computed the MMSE estimates �ijchain 2

of the second potential defect signal (using the second Markov chain),
subtracted them out (yielding yijchain 3 = yijchain 2 � �ijchain 2), and
continued this procedure until reaching the desired number of chains.
In Fig. 3(a), we show estimated model-parameter deviances (see, e.g.,
[7, eq. (6.7)])4

d(yyy; ���) = � 2 ln p(yyyj���)

= tot � ln(2��
2) +

i=1

y2i
�2

� 2 ln l(yyyjzzz;www) (4.2)

for the seven chains in Region 1, where the estimates ��� were computed
for each chain using (3.6). The chains have been sorted in the increasing

4See [7, Ch. 6.7], [8, Ch. 6.5.1], and [14] for definitions of deviance-based
goodness-of-fit measures and examples of their use.

order according to the estimated model-parameter deviances. Note that
the true defects have small estimated deviances; hence, we may use
these deviances to rank the potential defects according to their severity.

We have applied the proposed sequential scheme to Regions 2 and
3, where we ran seven and ten chains, respectively. The obtained es-
timated (and sorted) model-parameter deviances for these chains are
shown in Fig. 3(b) and (c).

Fig. 2 shows the MMSE estimates of the defect signals for
the first five potential defects (chains) from Region 1 (i.e.,
�ijchain 1; �ijchain 2; . . . ; �ijchain 5, see also (4.1)) and first five
and seven potential defects from Regions 2 and 3, respectively. The
ranks (chain indexes) of the potential defects within each region are
also shown in Fig. 2. Remarkably, the locations of these 17 potential
defects correspond to the true locations of the flat-bottom holes (i.e.,
the true defects) in Fig. 1.

Even though the estimated model-parameter deviances in Fig. 3
allow us to assess the severity of potential defect regions, they do
not provide sufficient information for deciding between defects and
nondefects. To be able to separate defects from nondefects. we need to
examine the mean signals and areas of the potential defect regions as
well.5 In Fig. 4, we plot approximate 90% Bayesian confidence regions
(credible sets)6 for the normalized mean signals �=� and areas A

[A; �=�]� [A; �=�]

�C�1 � [A; �=�]T � [A; �=�]T � � (4.3)

of all 24 potential defects in the three regions.

• A and � denote the MMSE estimates of A and � [computed using
(3.6)].

• C is the sample covariance matrix of the posterior samples

[A(t); �
(t)

]
T

:

C =
1

T
�

t +T

t=t +1

A(t);
�
(t)

�

T

� A;
�

�

T

A(t);
�
(t)

�
� A;

�

�
:

(4.4)

• � is a constant chosen (for each chain) so that 90% of the samples

[A(t); �
(t)

]
T

, t = t0; . . . ; T satisfy (4.3). (A good approximate
choice of � is � � 4, which is based on the normal-distribution
approximation.)

In Fig. 4, we also show that it is possible to separate defects from non-
defect using a simple classification boundary A �(�=�)�A�140 = 0.
As the defect-signal strength decreases, the required area (for a real
defect) increases; similarly, as the area decreases, the required signal
strength increases.

We now present our final example showing the performance of the
proposed approach when signal-to-noise ratio is low. Here, we added
i.i.d. zero-mean Gaussian noise with variance �2 = 2502 to the defect
signals in Fig. 5(a) (corresponding to one of the flat-bottom holes from
the previous examples), yielding the simulated noisy observations in
Fig. 5(b). We applied our methods in Sections III-A–III-C to this data
set (using (4.1) with t0 = 8000 andT = 2000) and obtained the MMSE

5In NDE applications, estimation of the mean signals and areas of potential
defect regions is particularly important for assessing the severity of these regions
and their potential to degrade the structural integrity of the test piece.

6See e.g., [8, Ch. 2.3.2] for the definition of a credible set. Here, a 90% cred-
ible set for �=� and A is a subset of the space of �=� and A containing 90% of
the probability mass from their posterior pdf.
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Fig. 3. Estimated model-parameter deviances for the potential defects in Re-
gion 1, 2, and 3, respectively. (Color version available online at http://ieeex-
plore.ieee.org.)

estimates �i shown in Fig. 5(c). The proposed method successfully es-
timates the defect signal from the noisy measurements.

Fig. 4. Approximate 90% credible sets for the normalized mean signals �=�
and areasA of all potential defects in the three regions and a possible classifica-
tion boundary for separating defects from nondefects. (Color version available
online at http://ieeexplore.ieee.org.)

V. CONCLUDING REMARKS

We developed a hierarchical Bayesian framework for detecting and
estimating NDE defect signals from noisy measurements, derived
MCMC methods for estimating the defect signal, location, and shape
parameters, and successfully applied them to experimental ultrasonic
C-scan data. Our algorithms are automatic and remarkably easy
to implement, requiring only the ability to sample from univariate
Gaussian, uniform, and exponential distributions.

Further research will include generalizing the proposed approach to
correlated signal and noise models.

APPENDIX A
IMPLEMENTATION OF THE GIBBS SAMPLING STEPS IN SECTION III-A

A. Step 1) of the Gibbs Sampler: Rejection Sampler

We first derive the full conditional posterior pdf of � under the mea-
surement model and prior specifications in Sections II-D and II-E. Note
that

p(� j�; zzz; yyy) / (�2 + �
2)
�N(zzz)=2

� exp �
i;sss 2R(zzz)(yi � �)2

2(�2 + � 2)
� i(0;� )(�)

�
= q(� j�; zzz; yyy) (A.1)

where N(zzz) was defined in (3.2) and

iA(x) =
1; x 2 A

0; otherwise
(A.2)

denotes the indicator function. We utilize rejection sampling to simu-
late � from p(� j�; zzz; yyy), as follows:

i) draw � from ��(�) = uniform(0; �MAX) (see (2.10b));
ii) draw u from uniform(0, 1);

iii) repeat Steps i) and ii) until

u �
q(� j�; zzz; yyy)

m(�; zzz)
(A.3a)
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Fig. 5. (a) Signals � , (b) simulated noisy observations y , and (c) MMSE es-
timates � , for i = 1; 2; . . . ; .

where m(�; zzz) is a bounding constant chosen to guarantee that
the right-hand side of the above expression is always between
zero and one;

iv) return the � obtained upon exiting the above loop.
Here, we select

m(�; zzz) = max
�

q(� j�; zzz; yyy) = q � 2(�; zzz)j�; zzz; yyy

where

� 2(�; zzz)=min max 0;

N(zzz)
i;sss 2R(zzz)(yi��)2

N(zzz)
��2 ; � 2MAX :

(A.3b)
To draw � (t) from the conditional pdf (3.4a), we apply the rejection

sampling scheme i)–iv) with � and zzz replaced by �(t�1) and zzz(t�1).

B. Step 2) of the Gibbs Sampler

We derive the full conditional posterior pdf of � under the measure-
ment model and prior specifications in Sections II-D and II-E, as fol-
lows:

p(�j�; zzz; yyy)/��(�)�
i;sss 2R(zzz)

N (yi;�; �
2+�2)

/N �; y(zzz);
�2+�2

N(zzz)
�i(0;� )(�) (A.4)

which is a truncated Gaussian pdf. We sample from this pdf
using an algorithm similar to that described in [11]. Here,
y(zzz) = [1=N(zzz)] �

i;sss 2R(zzz) yi is the sample mean of the

measurements collected over R(zzz). To draw �(t) from (3.4b), we
sample from the truncated Gaussian pdf in (A.4) with � and zzz replaced
by � (t) and zzz(t�1).

C. Step 3) of the Gibbs Sampler: Shrinkage Slice Sampler

Finally, we discuss sampling from the full conditional posterior pdf
of zzz under the measurement and prior models in Sections II-D and II-E,
as follows:

p zzzjwww(t); yyy / �zzz(zzz) � l yyyjzzz;www(t) (A.5)

where l(yyyjzzz;www) was defined in (3.1b). Using the approach in [12], we
now construct a shrinkage slice sampling algorithm to simulate from
the above distribution. We first define the initial (largest) hyperrect-
angle with limits

x0;1;L =x0;1;MIN; x0;1;U = x0;1;MAX

x0;2;L =x0;2;MIN; x0;2;U = x0;2;MAX

dL = dMIN; dU = dMAX

AL =AMIN; AU = AMAX

'L ='MIN; 'U = 'MAX (A.6)

which coincides with the parameter space of ���, see Section II-E. We
generate zzz(t) from (3.4c) as follows:

1) draw an auxiliary random variable u(t) from
uniform(0; l(yyyjzzz(t�1); www(t))) pdf;

2) draw x0;1 from uniform(x0;1;L; x0;1;U) pdf, x0;2 from
uniform(x0;2;L; x0;2;U), d from uniform(dL; dU), A from
uniform(AL; AU), and ' from uniform('L; 'U), yielding
zzz = [x0;1; x0;2; d; A; ']

T ;
3) check if zzz is within the slice, i.e.,

l yyyjzzz;www(t) � u(t): (A.7)
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and if (A.7) holds, return zzz(t) = zzz and exit the loop; if (A.7) does
not hold, then shrink the hyperrectangle, as follows:
• if x0;1 < x

(t�1)
0;1 , set x0;1;L = x0;1; else if x0;1 > x

(t�1)
0;1 , set

x0;1;U = x0;1;
• if x0;2 < x

(t�1)
0;2 , set x0;2;L = x0;2; else if x0;2 > x

(t�1)
0;2 , set

x0;2;U = x0;2;
• if d < d(t�1), set dL = d; else if d > d(t�1), set dU = d;
• if A < A(t�1), set AL = A; else if A > A(t�1), set AU = A;
• if ' < '(t�1), set 'L = '; else if ' > '(t�1), set 'U = ';
• go back to 2).
Here, the hyperrectangles shrink toward ���(t�1) =

[x
(t�1)
0;1 ; x

(t�1)
0;2 ; d(t�1); A(t�1); '(t�1)]

T
, which is clearly in the

slice (see Step 1)).
Since the evaluation of l(yyyjzzz;www) may cause a floating-point underflow,
it is often safer to compute ln l(yyyjzzz;www) and modify the above algorithm
accordingly (see [12, Sec. 4]).
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Attenuation Estimation From Correlated Sequences

Tarek Medkour and Andrew T. Walden

Abstract—We calculate the frequency-dependent variance of the log
spectral ratio for correlated time series. This is used to produce a weighted
least-squares approach to attenuation estimation, with weights calculated
from estimated coherence. Applications to synthetic and real data illustrate
that, for correlated series, the method improves significantly on traditional
unweighted least-squares attenuation estimates.

Index Terms—Attenuation, coherence, correlation, spectral ratios.

I. INTRODUCTION

Attenuation can be estimated from the change in frequency content
observed between two sequences separated by two-way travel time�T
(e.g., [14] and [16]).

Given power spectra S11(f) and S22(f) corresponding to the
sequences fX1;tg and fX2;tg, we define the attenuation param-
eters through the spectral ratio as follows, S22(f)=S11(f) =
c0 � exp[�2�T �(f)], where �(f) is the attenuation coefficient and
c0 is a constant. The acoustic attenuation coefficient of soft biological
tissue has been observed to have a linear-with-frequency characteristic
[7]. Likewise a linear form has also been justified in seismology [4],
[17], and the ubiquitous linear assumption for attenuation is made in
this correspondence. Let �(f) = �f say, where � is a constant, so that

log
S22(f)

S11(f)
= c� 2�T �f (1)

where c = log c0 and the coefficient � is called the logarithmic decre-
ment and is measured in nepers (better known as the natural log of a
voltage ratio). Since �(f) = �f , by slight abuse of notation (we are
using time not distance) �(f) has units of nepers/wavelength. In terms
of the oft-used quality factor Q(f), (1) can be written

log
S22(f)

S11(f)
= c�

2��T f

Q
(2)

so that � = �=Q and �(f) = �f = �f=Q. Since one neper is
equivalent to 20 log10 e dB � 8:686 dB, it is apparent that �(f) �
(27:3=Q)f dB=wavelength.

While in attenuation studies via spectral ratios, it is invariably as-
sumed that the sequences involved are independent, [3], [8], here we
will consider estimation of the quality factor, Q, when the sequences
are correlated.

When the log spectral ratio in (2) is estimated via multitapering, it
is seen in Section II that at any frequency, this ratio can be viewed as
a log variance ratio in complex Gaussian random variables. This is ex-
plored in Section III where the distribution of the estimated log spectral
ratio (standardized by the true ratio) is developed, and, most impor-
tant, its cumulant generating function, and hence variance, are derived.
This frequency-dependent variance is a decreasing function of the or-
dinary coherence—which reflects sequence correlation—between the
two sequences. Section IV sets up the regression model through which
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