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Semi-Blind SIMO Flat-Fading Channel
Estimation in Unknown Spatially Correlated

Noise Using the EM Algorithm

Aleksandar Dogandžić, Wei Mo, and Zhengdao Wang

Abstract—We present a maximum likelihood (ML) method for
semi-blind estimation of single-input multi-output (SIMO) flat-fading
channels in spatially correlated noise having unknown covariance. An
expectation–maximization (EM) algorithm is utilized to compute the
ML estimates of the channel and spatial noise covariance. We derive
the Cramér–Rao bound (CRB) matrix for the unknown parameters
and present a symbol detector that utilizes the EM channel estimates.
Numerical simulations demonstrate the performance of the proposed
method.

Index Terms—Array processing, Cramér–Rao bound, EM algorithm,
semi-blind channel estimation, spatial interference suppression.

I. INTRODUCTION

The expectation–maximization (EM) and related algorithms (see
[1]–[3]) have been applied to carrier phase recovery [4], demodulation
for unknown carrier phase [5], timing estimation [6], and channel es-
timation [7]–[9] in single-input single-output (SISO) communication
systems and, more recently, to symbol detection [10]–[12] and channel
estimation [13]–[15] in smart-antenna systems. In this paper (see also
[17]), we treat the unknown symbols as the unobserved (or missing)
data and propose an EM algorithm for semi-blind maximum likelihood
(ML) estimation of both the channel and spatial noise covariance in
a single-input multi-output (SIMO) smart antenna scenario. This is
unlike previous work in [7]–[9] and [13]–[15], where EM algorithms
were applied to channel estimation in white noise.

The signal and noise models are introduced in Section II. In
Section III, we derive the EM algorithm for estimating the unknown
channel and noise parameters, and in Section IV, we compute the
Cramér–Rao bound (CRB) matrix for these parameters. The EM
channel estimates are incorporated into the receiver design in Sec-
tion V. We present numerical examples in Section VI and conclude the
paper in Section VII.

II. MEASUREMENT MODEL

Consider a single-input multi-output (SIMO) flat-fading channel
with equiprobable constant-modulus symbols. Denote by yyy(t) an
nR � 1 data vector (snapshot) received by an array of nR antennas at
time t and assume that we have collectedN snapshots from a coherent
interval containing the unknown symbols. Under a single-user slow
flat-fading scenario, yyy(t) can be modeled as

yyy(t) = hhh � u(t) + eee(t); t = 1; 2; . . . ; N (2.1)

Manuscript received May 29, 2003; revised August 9, 2003. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. Zhi Ding.

The authors are with the Department of Electrical and Computer Engi-
neering, Iowa State University, Ames, IA 50011 USA (e-mail: ald@iastate.edu;
mowei@iastate.edu; zhengdao@iastate.edu).

Digital Object Identifier 10.1109/TSP.2004.827200

where
hhh unknown nR � 1 channel response vector;
u(t) unknown symbol received by the array at time t;
eee(t) temporally white and circularly symmetric zero-mean com-

plex Gaussian noise vector with unknown positive definite
spatial covariance matrix �.

The channel hhh and noise covariance matrix � are assumed to be con-
stant for t 2 f1; 2; . . . ; Ng. The spatially correlated noise model ac-
counts for co-channel interference (CCI) and receiver noise.1 We fur-
ther assume that the symbols u(t) belong to an M -ary constant-mod-
ulus constellation

U = fu1; u2; . . . ; uMg (2.2a)

where

jumj = 1; m = 1; 2; . . . ;M: (2.2b)

(The constant-modulus assumption can be relaxed; see Appendix A.)
Wemodel u(t), t = 1; 2; . . . ; N as independent, identically distributed
(i.i.d.) random variables with probability mass function

p(u(t)) =
1

M
i(u(t)) (2.3)

where

i(u) =
1; u 2 U

0; otherwise.
(2.4)

Our goal is to estimate the unknown channel and noise parameters hhh
and�. To allow unique estimation of the channel hhh (e.g., to resolve the
phase ambiguity), we further assume thatNT known (training) symbols

uT(� ) 2 U ; � = 1; 2; . . . ; NT (2.5)

are embedded in the transmission scheme and denote the corresponding
snapshots received by the array as yyy

T
(� ), � = 1; 2; . . . ; NT. Then, the

measurement model (2.1) holds for the training symbols as well, with
yyy(t) and u(t) replaced by yyy

T
(� ) and uT(�), respectively.

In the following, we present an EM algorithm for computing the ML
estimates of hhh and � under the above measurement model.

III. ML ESTIMATION

The EM algorithm is a general iterative method for computing ML
estimates in the scenarios where ML estimation cannot be easily per-
formed by directly maximizing the likelihood function of observed
measurements. Each EM iteration consists of maximizing the expected
complete-data log-likelihood function, where the expectation is com-
puted with respect to the conditional distribution of the unobserved
data given the observed measurements. A good choice of unobserved
data allows easy maximization of the expected complete-data log-like-
lihood. The algorithm converges monotonically to a local or the global
maximum of the observed-data likelihood function; see, e.g., [3, ch. 3].
Here, the unknown symbols u(t), t = 1; 2; . . . ; N are modeled as the
unobserved (or missing) data. Given u(t), the corresponding observed

1This noise model has been used in numerous recent publications to account
for unstructured interference; see, e.g., [18] and references therein.
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snapshot yyy(t) is distributed as a complex multivariate Gaussian vector
with probability density function (pdf)

f(yyy(t)ju(t); hhh;�)

=
1

j��j
� exp �[yyy(t)� hhhu(t)]H��1[yyy(t)� hhhu(t)] (3.1)

where “H” denotes the Hermitian (conjugate) transpose. The above ex-
pression also holds for the training data, with yyy(t) and u(t) replaced
by yyyT(� ) and uT(�). The joint distribution and mass function of yyy(t),
u(t) (for t = 1; 2; . . . ; N ) and yyyT(� ) (for � = 1; 2; . . . ; NT) can be
written as

N

t=1

p(u(t))f(yyy(t)ju(t);hhh;�) �

N

�=1

f(yyyT(� )juT(�); hhh;�) (3.2)

which is also known as the complete-data likelihood function . The
observed-data likelihood function to be maximized is then

u(1)2U u(2)2U

� � �
u(N)2U

N

t=1

p(u(t))

� f(yyy(t)ju(t);hhh;�)

�

N

�=1

f(yyyT(� )juT(�); hhh;�)

=

N

t=1

M

m=1

1

M
� f(yyy(t)jum; hhh;�)

�

N

�=1

f(yyyT(� )juT(�); hhh;�): (3.3)

In Appendix A, we derive the EM algorithm for maximizing (3.3): It-
erate between the following.

Step 1)

hhh(k+1) =
1

N +NT

N

t=1

yyy(t)

M

m=1

u�m � �(k)m (t)

+

N

�=1

yyyT(� )uT(�)
� (3.4a)

where

�(k)m (t)=

exp � yyy(t)�hhh(k)um
H

(�(k))�1 yyy(t)�hhh(k)um

M

n=1

exp � yyy(t)�hhh(k)un
H

(�(k))�1 yyy(t)�hhh(k)un

:

(3.4b)
Step 2)

�(k+1) = Ryy � hhh(k+1)(hhh(k+1))H : (3.5)

Here

Ryy =
1

N +NT

N

t=1

yyy(t)yyy(t)H +

N

�=1

yyyT(� )yyyT(� )
H (3.6)

is the sample correlation matrix of the observed data, and “�” denotes
complex conjugation. Note that the terms in the summation over t in
(3.4a) can be computed in parallel. To ensure that the estimates of the

spatial noise covariance matrix in (3.5) are positive definite with prob-
ability one, the following condition should be satisfied:

N +NT � nR + 1 (3.7)

(see also the discussion in Appendix A). Expression (3.4b) can be fur-
ther simplified by canceling out terms in the numerator and denomi-
nator:

�(k)m (t) =
exp 2Re yyy(t)H(�(k))�1hhh(k)um

M

n=1

exp 2Re yyy(t)H(�(k))�1hhh(k)un

(3.8)

where we have used the constant-modulus property of the transmitted
symbols. In the (k+1)st iteration, Step 2 requires computing (�(k))�1,
which can be done using the matrix inversion lemma in, e.g., [20, Cor.
18.2.10]:

(�(k))�1 = R�1yy +
R�1yy hhh

(k)(hhh(k))HR�1yy

1� (hhh(k))HR�1yy hhh
(k)

(3.9a)

where R�1yy needs to be evaluated only once before the iteration starts.
Then, (�(k))�1hhh(k) simplifies to

(�(k))�1hhh(k) =
R�1yy hhh

(k)

1� (hhh(k))HR�1yy hhh
(k)
: (3.9b)

In the following, we discuss phase correction of the EM channel esti-
mates.

A. Phase Correction

We describe a method for correcting the phases of the channel esti-
mates in the EM iteration. Observe that the first product term in (3.3)
is due to the unknown symbols, whereas the second term

N

�=1

f(yyyT(� )juT(�); hhh;�) (3.10)

is due to the training symbols and is equal to the likelihood function
for the case where only the training data are available. For i.i.d. con-
stant-modulus symbols considered here [see (2.3)], the first term in
(3.3) hasM equal maxima (due to the phase ambiguity), which could
cause the above EM iteration to converge to a local maximum of the
likelihood function. We correct the phase of the EM channel estimates
hhh(k) to ensure that (3.10) is maximized. For example, for a quadrature
phase-shift keying (QPSK) constellation, we findwhich of the four vec-
tors — hhh(k), hhh(k) exp(j�=2),hhh(k) exp(�j�=2), and hhh(k) exp(j�)—
maximizes the training-data likelihood function in (3.10) and update
hhh(k) accordingly. This test is computationally very efficient and may
not need to be performed at every step of the EM iteration.

IV. CRAMÉR–RAO BOUND

We derive the CRB matrix for the unknown parameters under
the measurement model in Section II. First, define the vector of the
unknown channel and noise parameters ��� = [���T ;    T ]T , where ��� =
[Re(hhh)T ; Im(hhh)T ]T , and    = [Refvech(�)gT ; Imfvech(�)gT ]T .
(The vech and vech operators create a single column vector by
stacking elements below the main diagonal columnwise; vech includes
the main diagonal, whereas vech omits it.) Define also the vector of
the observed data

��� = yyy(1)T ; yyy(2)T ; . . . ; yyy(N)T

yyyT(1)
T ; yyyT(2)

T ; . . . ; yyyT(NT)
T

T

(4.1a)
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and the vector of the unobserved data

uuu = [u(1); u(2); . . . ; u(N)]T : (4.1b)

Then, the CRB matrix for the unknown parameters ��� is computed as
(see [3, ch. 3.8.1]):

CRB(���) = E�[sss(���; ���)sss(���; ���)
T ]

�1

(4.2)

where the expectation is performed with respect to the distribution of���,
and sss(���; ���) is the observed-data score vector. The observed-data score
vector can be computed as (see [3, eq. (3.42)])

sss(���; ���) = Euj�[sssc(���; uuu; ���)j���] (4.3)

where sssc(���; uuu; ���) is the complete-data score vector obtained by differ-
entiating the complete-data log-likelihood function [i.e., the logarithm
of (3.2)] with respect to ��� . Computing the expectations in (4.2) and
(4.3) is discussed in Appendix B, where the expression for sssc(���; uuu; ���)
is also given.

V. DETECTION

Wenowutilize the channel andnoise estimatesproposed inSection III
to detect the unknown transmitted symbols u(t). We apply the (esti-
mated) maximum a posteriori (MAP) detector in (5.1), shown at the
bottom of the page, where hhh = hhh(1) and � = �(1) are the ML es-
timates obtained from the EM iteration (3.4)–(3.5) upon convergence.
To derive (5.1b), we have used the identity (3.9b) and the constant-mod-
ulus property of the transmitted symbols. Interestingly, the detector in
(5.1b) is a function of the channel estimate hhh only through the R�1yy hhh
term.Note that the above detection problem is equivalent to findingm 2

f1; 2; . . . ;Mg that maximizes �(1)
m (t) in (3.8) [see also (3.4b)]. The

detector (5.1) and EM algorithm (3.4)–(3.5) can be easily modified to
account for unequal prior probabilities of the transmitted symbols.

VI. SIMULATION RESULTS

We evaluate the performance of the proposed estimation and
detection algorithms using numerical simulations. We consider an
array of nR = 5 receiver antennas. Our performance metrics are the
mean-square error (MSE) and symbol error rate (SER), averaged over
5000 random channel realizations generated using an i.i.d. Rayleigh
fading model with unit-variance channel coefficients. The transmitted
symbols were generated from an uncoded QPSK modulated constella-
tion (i.e., M = 4) with normalized energy. We added a three-symbol
training sequence (NT = 3), which was utilized to obtain the initial
channel estimate hhh(0), computed using least-squares estimation.
The initial estimate of the noise covariance matrix was chosen as
�(0) = Ryy. The signal was corrupted by additive complex Gaussian
noise with spatial covariance matrix �, whose (p; q)th element is

�p;q = �
2 � 0:9jp�qj � exp j

�

2
(p� q) (6.1)

Fig. 1. Average mean-square errors and corresponding CRBs for the channel
estimates obtained using the proposed EM algorithm, DW-ILSP method, and
an EM algorithm for spatially white noise, as functions of N for N = 3 and
SNR = �1 dB.

which is the noise covariance model used in [22] (see also references
therein). The bit signal-to-noise ratio (SNR) per receiver antenna was
defined as

SNR = 10 log10
1

�2 � log2(M)
= 10 log10

1

2�2
(dB): (6.2)

In the cases where the EM algorithm did not converge within 40 iter-
ations, it was restarted using a randomly selected initial value for the
channel coefficients.2 [We implemented the same restart procedure in
all algorithms whose performance is analyzed in this section.] We also
applied the phase correction technique in Section III-A at every step of
the EM iteration.
In the first set of simulations, the bit SNRwas set to�1 dB. In Figs. 1

and 2, we show the average MSEs (and corresponding average CRBs)
for theML estimates of the channel coefficients3 and selected elements
of the spatial noise covariance matrix � (obtained using the proposed
EM algorithm) as functions of the block lengthN . Fig. 1 also compares
the MSE performance of the proposed EM algorithm with

• the decoupled weighted iterative least squares with projection
(DW-ILSP) method in [23] and

• an EM algorithm that assumes spatially white noise.
For low SNR (�1 dB), few training symbols (NT = 3) and short block
lengths, the proposed EM algorithm clearly outperforms the DW-ILSP
method. In this scenario, the proposed method attains the CRB for
N = 100 symbols, compared with more than 4000 symbols needed

2Note that fast convergence of the EM algorithm or utilizing the above
restart method do not guarantee convergence to the global maximum of the
observed-data likelihood function. Hence, our simulation results represent
upper bounds on the performance achievable by the exact ML method.

3Here, averaging is performed over both the channel coefficients for different
antennas (i.e., elements ofhhh) and random channel and training-data realizations.

u(t) = arg max
u(t)2U

exp �[yyy(t)� hhhu(t)]H��1[yyy(t)� hhhu(t)]

M

n=1

exp �[yyy(t)� hhhun]H��1[yyy(t)� hhhun]

= arg min
u(t)2U

[yyy(t)� hhhu(t)]H��1[yyy(t)� hhhu(t)] (5.1a)

= arg max
u(t)2U

Re yyy(t)HR�1yyyyyyhhh � u(t) (5.1b)
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Fig. 2. Average mean-square errors and corresponding CRB for the ML
estimates of� , Ref� g, Imf� g, Ref� g, Imf� g obtained using
the proposed EM algorithm, as functions ofN forN = 3 and SNR = �1 dB.

for the DW-ILSP method. [Note also that in fading channels, the block
length N is limited by the coherence time of the channel.] The av-
erage numbers of iterations needed for the EM, white-noise EM, and
DW-ILSP algorithms to converge were 9, 9, and 6, respectively. For
N = 100, restart was needed in less than 0.1% of the total number of
trials. A single EM iteration has higher computational complexity than
a DW-ILSP iteration for the sameN , and the complexity of both itera-
tions increases linearly with N . However, the proposed EM algorithm
typically needs a smaller N to attain the same MSE. To demonstrate
the importance of incorporating the spatial color of the noise in channel
estimation, we also show the performance of an EM algorithm that as-
sumes spatially white noise in the scenario where the noise is colored
[with covariance (6.1)]. The EM algorithm for spatially white noise fol-
lows from (3.4)–(3.5) by substituting�(k) = (�2)(k)In into Step 1 in
(3.4) and applying the following Step 2: (�2)(k+1) = tr(�(k+1))=nR,
where�(k+1) was defined in (3.5), and In denotes the identity matrix
of size nR. For low SNR (�1 dB) and few training symbols (NT = 3),
the white-noise EM algorithm breaks down.

In Fig. 2, we show the average MSEs for the ML estimates of �1;1,
Ref�2;1g, Imf�2;1g,Ref�3;1g, andImf�3;1g (obtainedusing thepro-
posed EMalgorithm) and the corresponding CRBs as functions ofN .

In Fig. 3, the averageMSEs for the channel estimates obtained by the
proposed EM algorithm for spatially correlated noise, the DW-ILSP
method, and the EM algorithm for spatially white noise are shown
as functions of the bit SNR per receiver antenna for block lengths
N = 50, 100, and 150. When the average MSE is 0.03 and N = 100,
the EM algorithm has an advantage of about 9 dB over the DW-ILSP
algorithm; this advantage further grows as N decreases. An intuitive
explanation for this performance improvement is that the EM algo-
rithm exploits additional information provided by the prior distribution
of the unknown symbols in (2.3). Note also that the number of param-
eters in the random-symbol measurement model in Section II equals
n2R + 2nR, and, therefore, is independent of N . This is in contrast
with the DW-ILSP and other deterministic ML methods (e.g., [24]; see
also [25]), where the number of parameters grows with N . For low
SNRs, the white-noise EM algorithm performs poorly; see also Fig. 1.
However, for high SNRs and small block lengths, it outperforms the
EM algorithm for spatially correlated noise. Hence, in this scenario,
the fact that the white-noise EM algorithm estimates a small number
of parameters (2nR+1) becomes more important than accounting for

Fig. 3. Average MSEs for the channel estimates obtained using the proposed
EM algorithm, DW-ILSP method, and EM algorithm for spatially white noise,
as functions of the bit SNR per receiver antenna for block lengthsN = 50, 100,
and 150.

Fig. 4. Symbol error rates of the EM-based and DW-ILSP detectors, as
functions of the bit SNR per receiver antenna for block lengths N = 50, 100,
and 150.

spatial noise covariance (which, in addition, is poorly estimated due to
the small block length).
In Fig. 4, we compare symbol error rates of the detector (5.1) that

uses the ML estimates of hhh and � [obtained from the EM iteration
(3.4) and (3.5)] with

• the DW-ILSP detector in [23] and
• a white-noise detector

arg max
u(t)2U

Re yyy(t)Hhhhwhite EM � u(t) (6.3)

where hhhwhite EM is computed using the EM algorithm for spa-
tially white noise.

The symbol error rates are shown as functions of the bit SNR per re-
ceiver antenna for block lengths N = 50, 100, and 150. For the given
range of SNRs and block lengths, the proposed detector significantly
outperforms the DW-ILSP detector. As expected, the white-noise de-
tector performs poorly for low SNRs due to poor channel estimates
provided by the white-noise EM algorithm. Similarly, for high SNRs
and small block lengths, it outperforms the detector in (5.1) due to the
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fact that the white-noise EM algorithm outperforms the EM algorithm
for spatially correlated noise in this scenario. The performance of the
detector (5.1) improves significantly as the block length increases due
to the improved channel estimation. In contrast, the performance of the
white-noise detector is insensitive to the choice of the block length (for
the block lengths considered in Fig. 4), which can be explained by the
fact that the white-noise EM algorithm estimates a small number of pa-
rameters (and thus requires a relatively small data size).

VII. CONCLUDING REMARKS

We developed an expectation-maximization algorithm for
semi-blind estimation of single-input multi-output fading channels
in spatially correlated noise having unknown covariance. We also
derived a method for phase correction of the EM channel estimates
and computed the Cramér–Rao bounds for the unknown parameters.
The proposed channel and noise estimators were incorporated into
the receiver design. We presented numerical simulations that demon-
strated the performance of the proposed methods and compared them
with the existing techniques.

Further research will include extending the proposed methods to the
multi-input multi-output (MIMO) scenario and reducing their compu-
tational complexity. For coded transmission, we will develop iterative
schemes that combine EM channel estimation with decoding under the
correlated noise scenario, generalizing the white-noise based methods
in, e.g., [26] and [27].

APPENDIX A
EM ALGORITHM DERIVATION

We relax the constant-modulus assumption (2.2b) and first derive
the EM algorithm for the general case where the symbols u(t), t =
1; 2; . . . ; N , uT(� ), � = 1; 2; . . . ; NT belong to an arbitrary constel-
lation. This algorithm is then simplified to the constant-modulus sce-
nario in Sections II and III.

By taking the logarithm of (3.2) and neglecting terms that do not
depend on the parameters hhh and �, we obtain the complete-data log-
likelihood function

L(hhh;�) = � (N +NT)

� ln j�j+ tr ��1 � Ryy � rrryuhhh
H

� hhhrrrHyu + ruuhhhhhh
H (A.1)

where j � j denotes the determinant, and

Ryy =
1

N +NT

N

t=1

yyy(t)yyy(t)H +

N

�=1

yyyT(� )yyyT(� )
H (A.2a)

rrryu =
1

N +NT

N

t=1

yyy(t)u(t)� +

N

�=1

yyyT(� )uT(�)
� (A.2b)

ruu =
1

N +NT

N

t=1

ju(t)j2 +

N

�=1

juT(� )j
2 (A.2c)

are thenatural complete-data sufficient statistics for estimatinghhh and�;
see, e.g., [16]. At the kth iteration, the E step computes the conditional
expectation of the complete-data log-likelihood given the observed data
��� [see (4.1a)] at the current parameter estimateshhh(k) and�(k):

Q(hhh;�;hhh(k);�(k)) = � (N +NT)

� ln j�j+ tr ��1 � Ryy � rrr(k)yu hhh
H

�hhh(rrr(k)yu )
H + r(k)uu hhhhhh

H (A.3)

where

rrr(k)yu = Euj�[rrryuj���;hhh
(k);�(k)]

and

r(k)uu = Euj�[ruuj���;hhh
(k);�(k)]:

The above expression is obtained from (A.1) by replacing rrryu and ruu
with their conditional expectations rrr(k)yu and r

(k)
uu . The M step maxi-

mizes the above Q function with respect to hhh and � to produce

hhh(k+1);�(k+1) = argmax
hhh;�

Q(hhh;�;hhh(k);�(k)): (A.4)

The maximization of L(hhh;�) in (A.1) with respect to hhh and � has
well-known solutions given by rrryu=ruu and Ryy � rrryurrr

H
yu=ruu (re-

spectively), provided thatRyy�rrryurrr
H
yu=ruu is a positive definite ma-

trix; see, e.g., [18] and [19, Th. 10.1.1]. [These expressions follow from
the multivariate analysis of variance (MANOVA)model in multivariate
statistical analysis; see [18] and [19].] Hence, the M step is obtained by
replacing rrryu and ruu in rrryu=ruu and Ryy � rrryurrr

H
yu=ruu with their

conditional expectations, and the EM iteration follows.

Step 1)

hhh(k+1)

=
1

N +NT

�

N

t=1

yyy(t)
M

m=1

u�m � �
(k)
m (t) +

N

�=1

yyyT(� )uT(�)
�

r
(k)
uu

(A.5a)

where

r(k)uu =
1

N +NT

N

t=1

M

m=1

jumj
2 � �(k)m (t) +

N

�=1

juT(� )j
2 :

(A.5b)
Step 2)

�(k+1) = Ryy � r(k)uu � hhh(k+1)(hhh(k+1))H (A.6)

where �(k)m (t) is computed using (3.4b). Note that (A.5) and
(A.6) each incorporate both the E and M steps. Condition
(3.7) is needed to ensure that �(k+1) is a positive definite
matrix with probability one, which follows using arguments
similar to those in [19, Th. 3.1.4]; see also [18, eq. (4)] and
[19, Th. 10.1.1].

In the constant-modulus scenario (2.2b), we have that r(k)uu � 1 for
all k. Hence, setting r(k)uu = 1 in (A.5) and (A.6) yields the EM iteration
(3.4) and (3.5).

APPENDIX B
CRAMÉR–RAO BOUND

We present the expression for the complete-data score vector
sssc(���; uuu; ���) under the measurement model (2.1)–(2.3) and discuss eval-
uating the expectations in (4.2) and (4.3) that are needed to compute
the CRB matrix. The complete-data score vector sssc(���; uuu; ���) for this
measurement model is obtained by differentiating the complete-data
log-likelihood function (A.1) with respect to ��� (see [21, App. 15C])
and setting ruu = 1:

sssc(���; uuu; ���) = Re fsssc;h(���; uuu; ���)g
T

Im fsssc;h(���; uuu; ���)g
T ; sssc; (���; uuu; ���)

T

T

(B.1)
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where

sssc;h(���;uuu; ���) = 2 � ��1 �

N

t=1

[yyy(t)u(t)� � hhh]

+

N

�=1

[yyy
T
(� )uT(�)

� � hhh]

= 2 � (N +NT) � �
�1 � (rrryu � hhh) (B.2a)

[sssc; (���; uuu; ���)]i = � (N +NT) � tr ��1 @�

@ i

+ (N +NT) � hhh
H��1 @�

@ i
��1

hhh

+

N

t=1

yyy(t)H��1 @�

@ i
��1

yyy(t)

+

N

�=1

yyy
T
(� )H��1 @�

@ i
��1

yyy
T
(� )

� hhh
H��1 @�

@ i
��1 �

N

t=1

[yyy(t)u(t)�]

�

N

t=1

[yyy(t)Hu(t)] � ��1 @�

@ i
��1

hhh

� hhh
H��1 @�

@ i
��1 �

N

�=1

[yyy
T
(� )uT(�)

�]

�

N

�=1

yyy
T
(� )HuT(�) � ��1 @�

@ i
��1

hhh

=(N +NT)

� �tr ��1 @�

@ i

+ tr ��1
hhhhhh

H��1 @�

@ i

+ tr ��1
Ryy�

�1 @�

@ i

� tr ��1
rrryuhhh

H��1

+ ��1
hhhrrr
H
yu�

�1 �
@�

@ i
: (B.2b)

for i = 1; 2; . . . ; n2R. To compute (B.2b), the following identities can
be utilized:

tr A �
@�

@�p;p
= Ap;p; p = 1; 2; . . . ; nR (B.3a)

and

tr A �
@�

@ Ref�gp;q
=2RefAp;qg (B.3b)

tr A �
@�

@ Imf�gp;q
=2 ImfAp;qg (B.3c)

for 1 � q < p � nR, where A is an arbitrary nR � nR Hermitian
matrix. It follows from (B.2) that computing the observed-data score
vector sss(���; ���) in (4.3) reduces to replacing rrryu in (B.2) with its condi-
tional expectation given ���:

Euj�[rrryuj���] =
1

N +NT

N

t=1

yyy(t)

M

m=1

u
�
m � �m(t)

+

N

�=1

yyy
T
(� )uT(�)

� (B.4a)

where

�m(t) =
exp �[yyy(t)� hhhum]H��1[yyy(t)� hhhum]
M

n=1

exp f�[yyy(t)� hhhun]H��1[yyy(t)� hhhun]g

: (B.4b)

Finally, the CRBmatrix is computed using (4.2), which requires multi-
dimensional integration to evaluate the expectation with respect to the
distribution of ���; this can be performed using Monte Carlo integration,
i.e., by averaging sss(���; ���)sss(���; ���)T over many realizations of ���.
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[17] A. Dogandžić, W. Mo, and Z. Wang, “Maximum likelihood semi-blind
channel and noise estimation using the EM algorithm,” in Proc.
37th Annu. Conf. Inform. Sci. Syst., Baltimore, MD, Mar. 2003, pp.
WA3.1–WA3.6.
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Robust FIR Filter Design with Envelope Constraints and
Channel Uncertainty

Ching-Min Lee and I-Kong Fong

Abstract—In this note, a finite impulse response (FIR) filter design
problem is considered. The signals to be filtered are assumed to be
corrupted by the channel noise. In addition, the channel characteristics
are assumed to contain uncertainties. The linear matrix inequalities
approach is adopted to provide two optimization procedures for designing

optimal filters and robust filters subject to filter output envelope
constraints. A numerical example is presented to illustrate the proposed
filter design methods.

Index Terms—Bounded stability, integral quadratic constraints, linear
matrix inequality, robust FIR filter, time-domain envelope constraint.

I. INTRODUCTION

In the field of signal processing, many filter design problems can be
cast as constrained optimization problems. The constraints are usually
defined by the specifications of the desired filters, and these specifica-
tions arise either from the standards set by certain regulatory bodies or
from practical considerations. The time-domain envelope-constrained
filter design is one example of these problems, which often involve re-
quirements on the transient responses, such as the pulse-shape require-
ments in digital data transmission systems. In particular, these kinds of
filters may be seen in applications like the pulse compression for many
communication and radar systems, the TVwaveform equalization with
respect to the K-mask, and the data channel equalization or deconvo-
lution, [1]–[3].

As to the optimization part, the H1 optimization theory has been
widely used in robust control and signal processing problems [4]–[8].
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Fig. 1. Deconvolution filtering system.

Take the deconvolution filter design, for example. The objective of the
problemmay be set to the minimization of theH1 norm of the filtering
error transfer function. In this approach, the system formulation allows
the inclusion of the transmission channel and/or signal models. In ad-
dition, by utilizing methods developed in [7] and [9], the time-domain
envelope constraints may be accommodated simultaneously. However,
there are still other important factors to take care of, such as the system
uncertainties. In the literature [10], [11], there are some discussions
about input uncertainty of the filter, but consideration of input uncer-
tainty bounds only [11] does not fully use information about system un-
certainties that may be available. A more direct and complete approach
for handling the transmission channel model uncertainties is desirable.
In this correspondence, the H1 optimal finite impulse response

(FIR) filtering problem with envelope constraints and channel un-
certainties is studied. The linear matrix inequality (LMI) framework
is adopted, and the uncertainties in the channel are formulated as
satisfying the integral quadratic constraints (IQCs) [12], [13]. The
design method is also enhanced to ensure that the output of the filter is
not too close to the constraining envelopes [8], [10], [14]. Compared
with some existing method [14], which deals with the output envelope
constraint problem by optimization procedures depending on the
quasi-Newton method and golden section method, the LMI-based
method handling a convex optimization problem is numerically
more attractive. To illustrate the effectiveness of the proposed design
method, a numerical example is presented.

II. PROBLEM FORMULATION

Consider the deconvolution filtering system shown in Fig. 1. In the
system, the source signal s(k) 2 R is assumed to be generated by the
signal model

�S :
xs(k + 1) = Asxs(k) +Bsw(k)

s(k) = Csxs(k) +Dsw(k)
(1)

where xs(k) 2 Rn is the model state vector, w(k) 2 l2[0;1) is the
driving signal of the model, and As, Bs, Cs, and Ds are known con-
stant matrices of appropriate dimensions. The source signal is trans-
mitted through a channel with an uncertain characteristic modeled by

�C :
xc(k + 1) = Acxc(k) +Bcs(k) +

p

i=1
Hc1i�ci(k)

zc(k) = Ccxc(k) +Dcs(k) +
p

i=1
Hc2i�ci(k)

(2)

where xc(k) 2 Rn is the channel state vector, �ci(k) 2 Rn , i =
1; 2; . . . ; p is the ith uncertain vector satisfying the IQC [12]

�

k=0

k�ci(k)k
2 �

�

k=0

kE1ixc(k) +E2is(k) + E3i�c(k)k
2 (3)

as � ! 1, �Tc (k) = [�Tc1(k) � � � �Tcp(k)], and Ac, Bc, Cc,
Dc, Hc1i, Hc2i, E1i, E2i, and E3i are known constant ma-
trices with appropriate dimensions. For subsequent usage, we
define Hc1 = [Hc11 � � � Hc1p], Hc2 = [Hc21 � � � Hc2p],
ET
1 = [ET

11 � � � ET
1p], E

T
2 = [ET

21 � � � ET
2p], and ET

3 =
[ET

31 � � � ET
3p].
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