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Space-Time Fading Channel Estimation and Symbol
Detection in Unknown Spatially Correlated Noise
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Abstract—We present maximum likelihood (ML) methods for that allows estimation of directions of arrival (DOASs). The DOA
space-time fading channel estimation with an antenna array in jnformation can be useful for locating E-911 calls and other ap-
spatially correlated noise having unknown covariance; the results plications (for example, radar and sonar; see the discussion in

are applied to symbol detection. The received signal is modeled as . . .
a linear combination of multipath-delayed and Doppler-shifted Section Il). Then, in Section II-A, we present the unstructured

copies of the transmitted waveform. We consider structured and array response model, which avoids estimating the DOA param-
unstructured array response models and derive the Cramér—Rao eters, thereby reducing the computational complexity. In Sec-
bound (CRB) for the unknown directions of arrival, time delays, tion |I-B, we propose several basis-function models that account
and Doppler shifts. We also develop methods for spatial and o ta5t frequency-selective fading by suitably discretizing the
temporal interference suppression. Finally, we propose coherent . : .
matched-filter and concentrated-likelihood receivers that account tlme-delgy and DOpp'?r spreads of the rece!VEd S'Q”a'- Com-
for the spatial noise covariance and analyze their performance. ~ Pared with the exact signal model, these basis-function models
significantly reduce the number of (nonlinear) time-delay and
Doppler parameters to be estimated. In Section II-B1, we show
that the proposed basis-function formulation is well suited for
transmit—receive antenna array systems as well.

. INTRODUCTION In Sections Ill and IV, we present maximum likelihood (ML)

O COMBAT fading and suppress interference in wireles@stimation algorithms and Cramér—Rao bounds (CRBs) for the

T communications, both channel and noise properties negft/ctured array response model. We show that the CRBs for
to be estimated. In this paper (see also [1]), we propose al e direction—of—arrivgl and basis-function parameters (time de-
rithms and derive performance measures for space—time €S and Doppler shifts) are uncoupled. As a consequence, the
mation offast, frequency-selective fadiepannels in the pres- CRB expressions for the basis-function parameters are indepen-
ence of spatially correlated noise haviagknowncovariance. dent of the array-response parameterization (and vice versa).
This is unlike most previous work, which typically assumedhis result has important practical implications (motivating the
slow-fading channel (neglecting the Doppler effects) [2]-[9] d,mstrugtured array model); see Section IV. Then, in Section V,
spatially white noise [10], [11], or both [12]-[16]. (Reference¥/€ derive ML algorithms 1_‘or the unstructured r_nodgl. In Sec-
to several recent papers dealing with spatially correlated nofi@hs 1l and V, we also derive the concentrated likelihood func-
will be given later.) We consider structured and unstructurd{@ns for the unknown nonlinear parameters and discuss rela-
array responses and model the signal as a linear combinafigfship with previous work. Additionally, in Section V-A, we
of parametric basis functions that account for the multipath atftyestigate how the time-delay and Doppler-shift discretizations
Doppler effects. The proposed basis-function model is usedtect the channel and noise covariance estimates and concen-
combat fading (due to multipath and Doppler effects), wherelfated likelihood function. In Section VI, we discuss methods
the spatially correlated noise accounts for co-channel interfé®! Spatial and temporal interference suppression based on de-
ence. We then propose receivers that utilioéh estimates of compositions of the concentrated likelihood function.
the channel and spatial noise covariance and analyze their pefl Séction VII, we propose coherent matched-filter and con-
formance. centrated-likelihood receivers that incorporate the estimates of

The signal and noise models are explained in detail in sdwath the channel and spatial noise covariance. These receivers

tion I1. First, we present the structured array response mo@&ploit the following.
« multipath and Doppler diversity (using the proposed basis-
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[I. SIGNAL AND NOISE MODELS targets (applicable to radar or sonar array processing); then,

Suppose am-element antenna array receives several scal?ﬂ.o ) = [aﬁﬂn) s 'ba(eTfP ) andg(t, n) = ¢r(t, o), where
time delayed, and Doppler-shifted copies of a known compl xS now the number of targets.

baseband signalt). Then, then x 1 vector signal received by Thhe n0|s|g t(tarn;t(t) modgscunt.erfe.re?ce due to reqew;ar no;}se,
the array at ime becomes co-channel interference (CClI) in wireless communication chan-

nels, or clutter in radar. Throughout this paper, we assume that
¢(t) is zero-mean Gaussian, temporally white and spatially cor-
y(t) = a(0ry) - w1, -exp(jwpryt)s(t— 1) +e(t) (2.1) related with unknown positive definite covariariEe constant

p=1 in time.
. Defi h f ch I =
fort = 1,..., N, wherefr, is the vector of DOA parame- R e{e)gSTth c(\llriC{J[g(r})()T gTa”Q‘]"‘T p:;szégpsmean [V(?Ce
ters (and may contain additional parameters, such as scatter(in ] A1) 7 o W o

no%éless) signal vector at timeasu(t, p) = A@)X $(t, n).

and polarization coeﬁicieqts; see [17]), am(_ip, “DTp: and Our goal is to estimate and the noise covariance. For the
rrp are the complex amplitude, Doppler shift, and time deI""sytructured array model in (2.2), we need a suitable parameteri-
for the pth path ¢ = 1, 2, ..., P). Further,a(#) denotes the

(single DOA) array response vector, ag(d) is additive noise. Zﬁtlon of the array response matrig). For e’}amp'% ¥V € may
: g ooseA(#) = [a(6y) - - a(0,.)], wheref = [0] ---6;]*, dis-

Note that in the above model, it is assumed that the DOpp,(::érretize the angular spread of the received si nals7 [21], or use a

effect can be modeled by a frequency shift (which is the- 9 P 9 '

rowband signal assumptiosee e.g.. [18, ch. 9. egs. (19) ar]éilstrlbuted source model [22]. For communication applications

(23)]), and the propagation time of the signal across the arrélypamcular, we are interested in synchronizing the receiver

is much smaller than the reciprocal of the signal bandwidt ‘€., estimating the time-delay and Doppler paramegersee

o ; . ection [I-B) and estimating the channel matfix= A(8)X.
whichiis the standardarrowband array assumptiohe time- In radar array processing problems, it is of particular interest
delay and Doppler spreads of the received signal in (2.1) y P gp : P

equal toma{ }—min{ Cfind the estimate of (radial velocities and ranges of all the
ag q ?ax TTL TT2 «os TP ! inllgi;gl’ Tr2; -2 TEPT targets) and the targets’ direction parameéetiien, the “true”
HaXWDTL, WDT2 - -5 WDTP wDT1, WDT2, -5 model (2.1) is the model of choice.
wpTp}, respectively. We use the subscriptin the above pa- . . S
. . - If we are not interested in estimating the DOAs or do not have
rameterization to emphasize that these are the “true” parame- . L )
an appropriate parameterization for the array response matrix,

tseéij[iii (I)IF_JE;)SEd to the discretized model introduced below (%eeemay use the unstructured array model described later. For

. synchronization, it is preferable to use the unstructured array

The model (2.1) contains a large number of parameters, espe- | . . T )
. 7 .~~“model; see the discussion in Section IV.

cially when the number of pathB is large. A way to solve this

is to parameterize the time delays, and Doppler shift&nr, A, Unstructured Array Model

by using suitable basis-function expansions, which we discus% d ibe th tructured del in which
in detail in Section I1-B. To accommodate basis functions ang ', 2 c>CID€ the unstructured array response moaet in whic

more general scenarios, we generalize (2.1) tostnectured t ewhple array response matrl_x is assumed to be unknown with
array model an arbitrary (known) rank, as in [23]. The unstructured array

model is robust compared with an incorrectly-structured array
y(t) = AO)X(t, n) + e(t), t=1,...,N (2.2) model*Inaddition, it avoids nonlinear DOA parameterization.
The unstructured array model can be written as
where A(f) is anm x r array response matrix parame-
terization, andX is anr x d matrix of unknown coef- y(t) = Ho(t. m) +e(t), t=1...,

ficients for the functional representation described by \gith the same noise assumptions as for the structured model in

d x 1 vector of basis functiong(t, n) (where the param- the previous section. Herd is the channel response matrix of
eter vectors is unknown in general). Note that the trugank, parameterized af = AX, whereA is anm x r un-

model in (2.1) is a special case of (2.2) with= d = P, nown array response [of full rank< min(m, d)], andX isan

N (2.3)

A@B) = [a(0r) -a(brr)l, 6 = (01, .-, 01p", 1 xdunknown basis-function coefficient matrix having full rank
X = diagwry, ora, ..o woe), ¢ M) = ot mr) = 5 (We discuss the identifiability ot and X in Section V and
[exp(jwpT1t)s(t — Tr1), ..., exp(jwprrt)s(t — 7rp)I".  Appendix B.) The vector of the unknown channel parameters
andn = nr = [wpri, .-, woTP, 711, -+, Tre]” - The  for this model isp, = [vedRe{H }T, vedIm{H}T, »*]*.

structured array basis-function formulation in (2.2) is veryne mean signal vector for the unstructured model at tirise
general. It has been used in [19] for EEG/MEG source locatiopen (t, p,) = He(t, n).

in [4] for DOA estimation (assuming completely known basis gseveral special cases of the above model have been consid-
functions), and in [20] for radar detection (assuming KnoWgred in the literature. Full-rank unstructured channel models
DOA's and basis functions). This model stems from mquE_e_' r = min(d, m)] are used in [11] and [16] (assuming spa-

variate statistical analysis; see the discussion in Section IIl. 4gjly white noise) and [8] and [9] (assuming spatially correlated
Section 1I-B, we show how it can be used to model fast-fading,

frequency-selective communication channels. as well a§Structured array model inaccuracies are due to changes in antenna locations,
¢ it . ¢ t ,S ti I femperature, surrounding environment, gain and phase errors, mutual coupling,
ransmit-receive antenna array systems (see Section lI-Bjhtization and interpolation errors, etc., and can lead to a significant loss in

Additionally, it can be used to model multiple moving pointstimation performance.
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Fig. 1. Rectangular sampling grid in the time-frequency plane with (Left) uniform time-delay and Doppler spread discretizations and (Right)reifielay
and Jakes’ Doppler spread discretizations.

noise with unknown covariance). In [16], methods are derivéden we can also determideand K (and thereforel as well)

for estimating time delays of multiple asynchronous signals aadpriori. In this cases,, n,,,, andn reduce tor, wp, and

in [11] for estimating time delays and Doppler shifts of a signdbp, 7]*, respectively. Basis functions similar to (2.5) have
in multipath environment [i.e., using(t, n) = ¢+ (¢, )]. In  been introduced in [26] and [21] (see also references therein)
[8] and [9], methods are derived for time-delay estimation ito model fast-fading, frequency-selective communication chan-
a slow, frequency-selective fadirgnvironment. Aflat-fading nels. Unlike (2.5), itis assumed in [21] and [26] that the receiver
scenario, when the channel matrix degenerates to a vector (i® perfectly synchronized to the “global” delay and Doppler
r = d = 1), is used in [2] and [6] (see also [24] and [25] forshift, which are set to zero. The time-varying channel model

related radar work). proposed in [27] can also be viewed as a special case of (2.4)
_ . with ¢_(t, 7) as in (2.5a) (with- set to zero)g,, (t. n,..) =
B. Basis-Function Models [exp(jwpit). exp(jwpat)s - . ., exp(jwpxt)]?, and Moy =
Now, we propose the following fairly general basis-functiofwpi, - - -, wpklt.
structure to model fast, frequency-selective fading An interesting, physically motivated model g, (¢, 7, )
follows by discretizing the Jakes model [28] with thh& x 1
¢t m) =¢.(t,n) @b, ([t ny) (2.4)  pasis-function vector of the form

where¢,_ (t, n,) (of sizeL x 1) ande__(t, n,,,) (of size K x ) )
1) are suitable parameterizations of the received signal’s tinfes (t, wpo) = {eXP[WDot]’ expljwpo cos(l - /(K —1))t]

delay (or multipath) and Doppler spreads, andlenotes the ; 9 a K — 1IN, ...
Kronecker product. Heray = [, n% 1%, and the number of expljewpo cos( T m/( RU

basis functions i = LK. Observe that (2.4) models the fading exp(_ijOt)} (2.6)
effects using a rectangular grid in the time-frequency plane; see

Fig. 1 and the following discussion.
Note that the model (2.2) with arbitraryX and
basis functions of the form (2.4) withp _(t,n.) =

wherewn is proportional to the speed of the mobile (and, con-
sequently, to the Doppler spread), and = wno. In general,
if a mobile receiver (or mobile transmitter) is surrounded by a

_ _ _ T _
[s(t ,.TTI)’tS(t T??)’ o s(t TTL)], and’f“%(t’gawfi[) ros fich scattering environment, (2.6) should be used to model the
gexna)(()‘]r :DTell’l)ér;TEg:SDE? f)é\di.r{’ i);%(ﬁ]r?éjlglihgn @ 1)pslijnce %iﬁtribution of the received Doppler shifts. Note that in (2.6), the

9 9 ' ' Doppler spread is sampled more densely arodagy andwnpg

example, it allows for multipath signals arriving from the Samg < 1o the “bathtub-shaped” Doppler profile [28]. If, however,

direction. For computational simplicity, we can uniformlyh Do di Il and d 3 |
discretize the time-delay and Doppler spreads t © Doppier spread 1s smatl and around & certain mean value
(which may be nonzero, in general), then a simple uniform dis-
¢ (t, 7) =[s(t —7), s(t —7 — A7), ... cret_ization in (2.5b) should be used. . o
s(t— 7 — (L= AT (2.5a) Fig. 1 illustrates the rectangular grid (2.4) in ttiene—
' frequency planéor the two sampling schemes considered here.
¢, (t, wp) = [exp[jwnt], exp[j(wp + Awp)i], ... Fig. 1 (left) shows the uniform time-delay and Doppler spread
expli(wp + (K — DAwp)]®  (2.5b) s_ampllng in (2.5), whereas Fig. 1 (right) shqws _the uniform
time-delay and Jakes’ Doppler spread sampling in (2.5a) and
wherer andwp, are the “global” time delay and Doppler shift,(2.6).
respectively, whereag\r and Awp are the corresponding 1) Transmit—Receive Antenna Array$he measurement
sampling intervals. Since the choicesff andAwn, respec- model (2.3) can also be used to describ@nsmit—receive
tively, depend on the bandwidth and duration of the sigfigl, antenna array systems [29], [30]. Here, the basis functions
these quantities are knovenpriori [26]. If we also assume that describe signals sent by the transmitter array. For example, in a
prior knowledge on the delay and Doppler spreads is availabsiow, flat fadingenvironment (i.e., negligible Doppler effect and
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time-delay spread), the basis-function vec#dr, ) simply
becomesp(t, n) = [si(t — 7), s2(t — 7), ..., sq(t — )],
wheren = 7, ands; (t), s2(t), ...,

array systems [31], [32].

Il. M AXIMUM LIKELIHOOD ESTIMATION WITH
STRUCTURED ARRAY

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 3, MARCH 2002

both @ andz. To simplify the notation, we omit these depen-
dencies throughout this paper. Further, observe R@tR;;

s4(t) are the signals trans- is an adaptive (i.e., estimated) Wiener filter for estimatig
mitted by a transmitter array withelements. Note also that thefrom ¢(¢, ), ¢t = 1,
model (2.3) allows channel matri to be of an arbitrary rank, error covarlance see [36 Sec.
which is of practical importance in transmit—receive antenrig

, N, andS,, is the estimate of its
VII]. In addition, note that

|¢ TAS % is the projection matrix onto the column space
of Syliﬁ (0). Here, /2 denotes a Hermitian square root of a

Hermitian matrix>, andx /2 = (£1/2)~1; this notation will
be used throughout the paper.

If & andy are not known, their ML estimatds and# are

We present the ML estimation procedure for the structuredmputed by maximizing the concentrated likelihood function

array response model in (2.2) and the noise model from Sé@, ) =

|R,,|/|2(8, n)|, obtained by substituting the esti-

tion Il. If the DOA parameteré and basis-function parameteramnates ofX and¥ in (3.1) into the likelihood function (see, e.g.,
n are known, the above model is known as the generalized mulfi9, App. A]). This concentrated likelihood function is written
variate analysis of variance (GMANOVA) [33]. For known basi# the form of a generalized likelihood ratio (GLR) test statistic
functions (i.e., knowm), exact and approximate ML methodgqsee, e.g., [37] and [38, p. 418] for the definition of GLR) for

for DOA estimation are derived in [4]. For spatially and temtestingHy:

X = 0. To find the ML estimates o andX for

porally white noise, an ML estimation algorithm for unknowrunknown@ ands, substituted andn in (3.1a) and (3.1b) bﬁ
DOAs, time delays, Doppler shifts, and complex amplitudes and1.

the exact signal model (2.1) is derived in [10]. Here, we es- The above concentrated likelihood function can be rewritten
timate the DOAs, basis-function parameters (for models froas (see Appendix A)

Section 1I-B), and the unknown spatial covariance. Addition-
ally, we derive CRB expressions for these parameters; see Sec-

tion IV.

We will present two expressions for the concentrated likeli-
hood function to be maximized with respect®@nds. These
expressions provide new insight into the problem (for example,

[ eIy — (1/N) - Y WY]2(n)"|

10, n) = .
O ) = ety — W) - Y R Y o)

_ | Ry — R, W R,
|S¢|y|

(3.3)

relationship with Capon spectral estimation) and enable e/ ere
derivation of the ML results for unstructured array; see Ap-

pendix A. The results in this section are useful for estimating the
locations and radial velocities f moving point targets (for ex-

ample, in radar) withr = d = P, A(8) = [a(@11) - - - a(61p)],
andg(t, m) = ¢o(t, nr).

Define Y = [y(1)---y(N)] and &(n) = [§(1,n)---
¢(N, n)]. The ML estimates o andX for known# andn are
[33, ch. 6.4], [34, ch. 5], [35]

X(0.m) = |0

~1
A(0)*S RJtzgquq5 (3.1a)

§- A(G)} -

ylo

50, m) = Sy1o + (In — 748y, )
Rys B Ry, (1o =TS, L) (3.1b)
where

Syl =Ryy — RysR Ry, (3.2a)

Ry = % Yy (3.2b)

Rs = Sm(n)° (3.20)

Rys =Fj, = Ly a(y)” (3.2d)

Ty = A(6) [A(o) oy ,;514(0)}_1 A (3.2¢)

and/,, denotes the identity matrix of size. Note that§‘y|¢,
R4y, and R,y are functions ofy only, andZ’4 is a function of

W =R, — R, A0)[A0) R, A0)) " A0) R,
(3.43)
Soly = Rop = Ryy Ry Ry, (3.4b)

Here, S, is a function ofy, andW is a function of@, but we
omit these dependencies throughout the paper to simplify the
notation. Note thafz.,W RL,? is the projection matrix onto
the space orthogonal to the column spaceigf’? A(6). An-
other interesting form of the concentrated likelihood derived in
Appendix A is

A0)* 5,1 A(0)]
|A©) iy, A0)]

The concentrated likelihood (3.5) is the ratio of the Capon spec-
tral estimate in the directiof using the datd” and the Capon
spectral estimate in the directighusing the projection ot”
onto the space orthogonal to the row spac@@j). This can
further be viewed as the overall power arriving from the direc-
tion @, normalized by the power of the noise only, arriving from
the same directiofl [39].

When there is only one path, i.e?, = 1in (2.1) orL =
K = 1in (2.2), (2.4), and (2.5), the concentrated likelihood
is obtained by replacingi(#), X, and ¢(t, ) with a(8),
andexp(jwnpt)s(t — 7) in (3.3) and (3.5); see also [25] and
[40]. If s(¢) = 1, the concentrated likelihood further reduces
to the expression in [24, (16)]. This scenario, which has been
analyzed extensively in [24], implies that matched filtering has

10, n) = (3.5)
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been performed beforehand [i.e., snap3f(¢} corresponds to  The practical implication of the CRB decoupling is that, if we
the matched-filtered return from thi¢h pulse], and the DOA are primarily interested in synchronization (i.e., estimatings
and Doppler shift are estimated using the matched-filtered daitas often the case in communications), then itis sufficient to use
This approach, however, does not allow estimation of the tinige (tractable) unstructured array model since, asymptotically,
delay. the same accuracy in estimatipgan be achieved for unstruc-
tured, structured, or known array response. Therefore, fzRB
IV. CRAMER—RAO BOUND in (4.2c) is also valid for the unstructured array model in Sec-
n lI-A, where A(6).X should be replaced with{. The CRB
pressions in (4.2) are derived for a very general measurement
del (2.2) (with arbitrarily parameterized array response and
sis functions) and are thus applicable to other nonlinear re-
ession problems.

We derive general CRB expressions for the DOA antglﬁ
basis-function parameters (time delays and Doppler shifts)
the structured array model (2.2) and the spatially correlatB
noise with unknown covariance (described in Section 1I). T
results will apply to the unstructured array model as well ai
justify its use for synchronization; see the discussion below.
In radar and sonar, the derived CRB results are useful for
analyzing the accuracy of estimating time delays, Doppler
shifts, and DOAs ofP moving point targets (see Sections Il We present the ML estimates of the channel and spatial noise

V. MAXIMUM LIKELIHOOD ESTIMATION WITH
UNSTRUCTUREDARRAY

and Il1). covariance matrices for the unstructured array model in (2.3).
Define the projection matrices For real measurements and completely known basis functions
(i.e., knownm), this problem has been solved by Stoica and
150, ©) =1, — S 72 A(0)[A(0) =" A(9)] ¢ Viberg in [23]. Here (see also [1] and [40]), we extend their
Ay 212 (4.1a) results to complex data, provide additional interpretations and

alternative derivations, extend the estimation to account for un-

Iz () =In — ®(n) [(m)®(n)*]"'@(m)  (4.1b) Kknowngn, and, finally, in Section VII, apply the results to the
receiver design. For spatially and temporally white noise and a
which span the spaces orthogonal to the column spaggg-rank unstructured channel model, estimation algorithms for
of X71/24(8) and ®(n)*, respectively. In addition, define time delays and Doppler shifts were derived in [11]. Here, we
D4(0) = dved A(9))/06" and Dy (1) = 9ved®(n))/dn .  consider a channel model of arbitrary rank (which is denoted by
We derive the CRBs fo¥ and n and show that they are;;see Section II-A), spatially correlated noise with unknown co-

uncoupled (see [40, App. C]) variance, and discretized basis-function models that reduce the
1 computational complexity (see Section II-B).
CRByo = W[RG{DA(@*[(XR@X*)T Define P = R4 k;;/* and
@221k, ©)x"Y2DA0)}]Tt  (4.2a) . . e A
CRB,s =0 (4.2b)

N vyhi{:/g is the esAtinl1/a2ted cross-correlation between the vectors
Re{z aP(t, n) X*A(o)*E—lA(o) Ry, “y(t) andRm5 é(t, n), or the estimatedoherence ma-

1
CRByy = 2

—~  On trix betweery(t) andg(t, n); see [36, Sect. VII]. For simplicity
N N of notation, we omit the dependence%fandcy? onn. Con-
X % _ % Z Z P(ta, m)* sider the singular value decomposition (SVD)4f;
n to=1t=1 . nn
) Gy =UAV* (5.2a)
gt my - P gy e o
an ) UU=00*=1,, V'V=VV*=1I, (52b)
a¢(t2a I’I) }:| B N
CAX —————= N
O)X =7 A= {Wm)’ O; m<d (5.20)
= L[Re{ Do ()" [A(d), O], m>d
s ()T © X*A(0)* S A(0)X] A(m) =diag{A(1), A\(2), ..., A(m)} (5.2d)
-Da(m} . (4.2c

whereA(1) > A(2) > --- > A(min(m, d)) > 0. Again, for no-
The result (4.2b) is somewhat unexpected since the Fisher fational simplicity, we omit the dependence of the above quanti-

formation matrix (FIM) for the signal parametepsis a full ties om. Notethad < A?(i) < 1fori= 1,2, ..., min(m, d)
matrix in general; see [40, App. C]. Since the CRB foand because) < C,Cy, < Iy Then, after simple manipula-
n is block-diagonal, CRB, remains the same whether or notions, we find that /[1 — X*(i)],¢ = 1, 2, ..., min(m, d) are

6 is known. Furthermore, CRE remains the same regardlesshe generalized eigenvalues@m and iz}, sorted in nonin-
of the array-response parameterization. Similarly, gRBthe creasing order [sinck/(1—z) is an increasing function af for
same, regardless of whether or ma known and is invariant 0 < z < 1]. In addition, note thak(¢) are the estimatechnon-

to basis-function parameterization. ical correlations i.e., A(:) is the cosine of the angle between the



462 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 3, MARCH 2002

ith components of estimatezdnonical coordinatesf the data a product of an idempotent matriRy,> U (r) U (r)* Ryp/? and

and basis functions, which is defined (see [36]) as the full-rank channel estimate.
. . If  is unknown, its ML estimatg is obtained by maximizing
g.(t, n) :U(r)*joyl/Qy(t) (5.3a) the concentrated likelihood in (5.4). To find the ML estimates
N )2 of H and, replacen in (5.6) by#. Note that the following
bt m) =V (r) R, "¢(t, m) (5:3D)  holds:[Y — H (i) @(#)]-®(#)*H(7)* = 0, which can be viewed
) ) 3 . as orthogonality between fit and residuals: an extension of a
fort = 1,2, ..., N. Using the Poincaré separation theoremy,q|i_known univariate result.

[38, pp. 64—65], maximizing (3.5) with respect to the unstruc- g5r 4 channel with negligible time-delay and Doppler
tured array responsé(d) = A [of sizem x r, and having full - gnreaqds je., wheh = K = 1 in (2.5), the channel response
ranks < min(d, m)] yields matrix reduces to a vector, and the concentrated likelihood
, for the unstructured array is obtained by replaci@) and
lu(n) = H S (5.4) ¢(t, n) with I,, andexp(jwpt)s(t — 7) in (3.3).; see [25] and
o1 1— 2(4) [40]. In [25] and [40], we show that the resulting concentrated
likelihood function can be viewed as a multivariate extension
see also Appendix B. Interestingly, for a full-rank channel, i.eof the spectrogran{43, p. 95].
r = min(d, m), (5.4) reduces to

[

>

A. Effects of Time-Delay and Doppler Spread Discretizations

lu(n) = W_‘M = [ Hyy| (5.5) We investigate the effects of time-delay and Doppler spread
1Stul 1Sulel discretizations on the parameter estimates.

] ] _Ingeneral, the channel and spatial noise covariance estimates
which follows from the fact that the determinant of a matrix, 5.6) are affected both by the noise and basis-function dis-

equals to the product of its eigenvalues. It can also be obtainggtizations. To focus on the discretization effects, we assume
from (3.3) and (3.5) by replacing(6) with ,,,. Based on [41, phere that a large number of snapshdisis available (i.e.,

Th. 2.1] and [36, Sect. IV], we can then vidag[lu(n)] [With 7 ) and that the signal-to-noise ratio (SNR) is high; as
Lu(m) given in (5.5)] as a measure of (estimated) mutual infol; reqyit, the noise effects can be neglected. Thus, the imper-

mation betweery(t) andé(t, 7). fections in the estimation will be due only to the time-delay

We now present the ML estimate of the reduced-rank channgly poppler spread discretizations in (2.4)~(2.6). We intro-
matrix H = AX. Note that it is not possible to find unique estiy,ce the following notation for the “true” model in (2.1):
mates ofd and X, but their product is unique; see Appendix B ) = Hodp(t, ny) + e(t), where Hy = [zpia(fry) -
First, we adopt the following notatiort/(r) and V() are the wrpa(6rp)] is the “true” channel matrix, angp(t, ) =
matrices containing the firstcolumns oft/ andV’, respectively. lexp(jwprit)s(t — Tr1), ..., expliwprpt)st — mop)]T
In Appendix B, we derive the ML estimates of the channel ange “the  “true” basis’ fu;lctions. In addition, define

the noise covariance for known r(ny) = [po(L, p) - (N, pp)] andgy = [wort, - . .,

T
N L2 Ak Be/2 B el wpTp, TT1, - - -, TTP]’ . NOte that we use the subscriptto
H(n) —Ryz/; U(r)t(r) Ryy/ Ryp Ry, (5.62) gifferentiate between the true model and the rectangular-grid
U AT 12 sampling schemes in (2.4)—(2.6) that we use to fit it. Then,
=PV(r)Vir) b (5.6D) applying the unstructured channel estimation for knayvim
> > N > * PH—1/2 . i
:RZ])Z/IQII(T)A(T)V(T) Rz;bqb/ (5.6¢) (5.6), we obtain
S(m) = Ryy — PV (r)V(r)"P* H = Ho Ry, Ro, (5.72)
=R, — RYZU(MA*(n)U(r)*RY?. (5.6d) S =%+ HpSyr o H (5.7b)

The above three expressions for the ML estimaté afre equiv-  whereSy, ., = Ropor — Ry R5) Rogr Ropor = (1/N) -
alent, but useful. Equation (5.6a) represents the channel estimg{gy, )&1.(5.)*, and Rqsan = f?; s = (1/N) -
T

computed using only the left singular vectors(@f,; similarly, ¢ (y)@1(n.)*. The above expressions show the distortion

(5.6b) (which is derived for the real case in [23, (34)]) uses onfy estimating the channel and spatial noise covariance matrices

the right singular vectors of’,,, whereas (5.6¢c) uses the reyye to the discretization effects. The second term in (5.7b),

duced-rank representatiof(r)A(r)V ()" of Cyy. Methods for  clearly due to the modeling error, is positive semi-definite;

efficiently computing (5.6) whem < min(m, d) are derived thys, 3 > ¥, which is intuitively appealing. If we use the

in [42]. “true” model, i.e..® () = ®(5), then the channel and noise
Whenr = min(m, d), i.e., the channel matri¥{ is of covariance would be perfectly estimated, i#.,= Hr and

full rank, its ML es}irr;ate is simply the estimated Wienes; — ;. Further, observe that the concentrated likelihood (5.4)

filter H(n) = RWR;(;SA, and thf: ML e§t|matg Of}hef‘o'sebecomes

covariance simplifies t:(n) = S, = Ry, — RWR@RZ . .

[which follow from (3.1) by replacingA(#) with I,,]. The La(n) = |2+ Hr Ry gp Hy

reduced-rank channel estimates in (5.6a) can then be viewed as |X + HpSy6Hy|

(5.8)
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Fig. 2. Concentrated likelihood as a function of (Left) the “global” time deldin multiples of the chip duratioff.) and Doppler parameterp, for k' = 2
discrete Doppler frequencies addr = 7../2. (Right) 7 for K = 2 and ()Ar = T./8, (b) AT = T./4, (c) At = T./2,(d) AT = T, and (e) neglected
Doppler effect and\7 = T../2.

which, for the “true” model [i.e.®+(ny) = ®(n) and, there- assumed to be of the fordd = o2 - (0.915 + 0.1 - 15x3),
fore, H = Hr=H andy = Y], simplifies to where %5 denotes the 5 5 matrix of ones. To ensure high
SNR [needed for the formulas (5.7) and (5.8) to be valid], we
S+ HRyyH* _ . e choose the noise level®> = 0.1. Note that we could choose
Lu(n) = % = |Im + 2 I/QHRWH z 1/2|' a largero?, but then, for high SNR, we would need a signal
(5.9) of longer duration for channel estimation. To fit the received
In the case of transmit—receive antenna array systems in skignal, we have used the rectangular-grid basis-function model
flat-fading environment (see Section 1I-B1), we can choose t2.4), with ¢_(¢, ) in (2.5a), whereas the Doppler basis
basis functionsp(t, n) = [s1(t — 1), s2(t — 7), ..., sq(t — functionsg,, (¢, 7., ) are chosen according to the Jakes model
7)]*" and therefore desigik,.;, as desired. If the transmitter(2.6) with only X' = 2 discrete Doppler shift frequencies, i.e.,
has knowledge of the channél and noise covariancg, itcan ¢, (¢, wpo) = [exp(—jwpot), exp(jwpot)]”.
transmit waveforms havingt,s such that (5.9) is maximized In Fig. 2 (left), we show the concentrated likelihood in (5.8)
using “water filling,” as in, e.g., [44] [then, the maximized (5.9)as a function of the “global” time delayand Doppler parameter
can be viewed as a measure of capacity of the channel].  wpg, where the time-delay sampling periodis = 7./2, and
Numerical Example 1—Concentrated Likelihood Fundhe Doppler effect is modeled using the Jakes model (2.6) with
tion: In this numerical example, we study the concentratexhly K = 2 discrete Doppler frequencies. As expected, this
likelihood function expression in (5.8). We demonstratinction has a peak at values ofandwp, close to their true
the feasibility of estimating the global time delay and valuesl07, and 0.01.
Doppler parametetwpo [using the basis-function model in In Fig. 2 (right), the curves (a)-(d) show the concentrated
(2.4), (2.5a), and (2.6)], as well as benefits of accountinielihood in (5.8) as a function of for the true value of
for the Doppler effect. We have generated a known signahg (i.e.,wpo = 10~2) and the time delay sampling periods
s(t) = ,lffl biso(t — (k— 1)T) containing 100 chips having A7 ¢ {T./8, T./4, T./2, T.} [where the corresponding
rectangular pulse shapes [i.&(t) = u(t) — u(t — I¢.), where sizes of¢_ (¢, 7) are L = 4T,/At € {32, 16, 8, 4}], and
u(t) is the Heaviside step function], where the amplitude& = 2 discrete Doppler frequencies in (2.6). Curve (e)
by, are independent, identically distributed (i.i.d.) randorshows the concentrated likelihood (5.8) far = 7T, /2 when
variables, taking values=1 with equal probability. Let the the Doppler effect is neglected [i.ep,, (¢, wno) = 1, and
sampling period beT,/8; thus, the number of samples istherefore(t, n) = ¢.(¢, 7)]. Note that the above functions
N = 800. We use a five-element uniform linear array witthave local maxima at multiples ak+ and are relatively flat,
half-wavelength spacing. The received signal was generatexd, the “global” time delay does not need to be estimated
by using the “true” model in (2.1) witi® = 20 paths. The accurately to capture most of the signal energy with the
time delaysrr, are assumed to be uniformly distributedliscretized basis functions. In addition, denser discretization
betweent = 107, andt = 147, (i.e., between samples 80yields higher and sharper concentrated likelihood, as expected.
and 112). The complex amplitudes:, are i.i.d. zero-mean More importantly, accounting for the Doppler effect results
complex Gaussian random variables having unit variande.a significantly higher and sharper concentrated likelihood
The DOAs fr, are uniformly distributed between O andcompared with the case when it is neglected. [Note the dif-
2w, and the corresponding Doppler shifts were computed #sence between the concentrated likelihood functions (d) and
wprp = wno cos(fry), Wherewpng = 0.01, which is quite (e), which employ the same number of basis functiéns 8.]
large (guaranteeing a fast-fading environment, which requirgiggher values of the concentrated likelihood also enable better
that the product of the symbol duration and the Doppler spreddtection performance, which is demonstrated by Example 2
is larger than 0.01; see [26]). The spatial noise covarianceirsSection VII-A2.
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Thus, the proposed discretized basis-function models are st
ficiently accurate for communications. However, they may be
unacceptable in radar, where the accuracy of estimating time d
lays and Doppler shifts is crucial; then, we should use the “true

model Wlth¢(ta "7) = ¢T(ta "7T)

VI. SUPPRESSION OFSPATIAL AND TEMPORAL INTERFERENCE

We develop methods to filter out spatial and temporal in-
terference from the received data in the presence of spatial
correlated noise with unknown covariance. We show that th
concentrated likelihood function expressions in (3.3) and (3.5 ~ ~
can be suitably decomposed into a product of two terms: th A (0)= P4 A5(8) Yy=95Y
concentrated likelihood for the received data and interferencs

Only and the concentrated likelihood for the filtered data a'gg 3. Spatial interference is filtered out by projecting the measureménts
signal (both having been filtered to suppress the interferencg)d the array response of the useful sighal®) onto the subspace orthogonal

These results may be useful for multiuser interference supprteghe spatial interference.

sion, which we briefly discuss in Section VI-B. Throughout this

section, we will use the following notation for the concentrate@.1a), and (6.1c) follows then by using [35, Lemma 1] (see
likelihood function in (3.3) and (3.5)(6, n|Y, A(6), ®(n)), also [38, p. 77]), stating

meaning that it is computed for the data gtarray response =~ | I L el . L
A(@), and basis-function matrise(r). This notation allows us DTSR A(ATET A T ATR T =W (W B, )T
to state the obtained results compactly. (6.2)

<A>t

We can, for example, choos&’,, to be the matrix

A. Spatial Interference .
P whose columns are then — rank(4;) eigenvectors of

Consider first the case where the array responst{8§ = Hj = I, — Aj(Ar A;))~1Ar with corresponding eigenvalues
[4;, A.(8)], where we have the following. equal to 1; then[I} = 0.4, % .
» A; is the known array response of an interference. Equation (6.1c) shows that the concentrated likelihood in
« A.(0) is the array response matrix of useful signal. (3.5) can be decomposed into a product of the concentrated
Then, the concentrated likelihood function in (3.5) can béelihood function for the data seit” and interference array
written as responsed; only, and the concentrated likelihood function for
the filtered data seYs, = W7 Y and filtered array response
of the useful signald, 4,(§) = ¥ A.(8); see Fig. 3. This
6.l 49). #(n) gnial.s, ) (9); see Fig

result can be compactly stated la(ﬂ 7Y, A(9), ®(n)) =

SR A%Mw> @Y, As, ®(n)) - 10, nlYs,, Aos,(6), (). Note that the
A (0)*S 1A A, ( ) A(0) first term in the above product does not depend A@);
AT 1A (0) (6.1a) hence, it is also independent of the DOA parameferas a
result, to find the ML estimate &, we need to maximize the
A (0)* R SA A ( ) A(6) second term only, and for that purpose, it is sufficient to use the
.3 filtered data and array response matritgs and A, 4, ().
_ |4 J|¢A | The above result can be used to implement a (suboptimal)

|A* Ryt Al algorithm for sequential DOA estimation, where previously es-
« [am A .l 1 s e timated DOAs would be used to construct the array response of
4.0 [54 - S 85540 x| 4.0)| yresp

the interferenced;.
| As(0)* [Riy — Ry Ai( A7 Ry A~ AT 1y 1 A(6)]
(6.1b) B. Temporal Interference

Consider now the case where the basis function matrix is

_ A y|¢A | O (n) = [@F, .(n)T]*, where we have the following.
| Af Ry, Aj| « &, is the known basis-function matrix of an interference.
A -1 » &_(n) is the basis-function matrix of useful signal.
‘Asw)*%i (\Pt‘isy'&“ﬂ) \Ijt‘iAS(o)‘ f (hn) jecti i ing the col . f
. ) (6.10) D(f ine t ? projection matrices spa}nnlng t*e co*umln spaces 0
|As(0)*\PA;(\I/ZiRyy\I/A;)_I\PRAs(oN Y* and®; aslly. = (1/N)-Y "R, Y =Y (YY*)~'Y and

He: = ©7(9;07)~ L9, and the correspondmg complementary
whereW 4, is an arbitrary full-rank matrix such that its columngprojection matrices aﬂﬁy* =In—Ily+ andﬂq,t = In—1g:.
span the space orthogonal to the column spacel;ofthus, In addition, defineL, = Iy — (1/N) - Y*WY =
% A; = 0. Here, (6.1b) follows by applying the formula forll:. + Y*(YY*)"*A(0) - [AO)*(YY*)LA@)] !
the determinant of a partitioned matrix [34, result v, p. 8] tel(8)*(YY*)~1Y. Let ¥4 be a matrix of sizen x (m — r)
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such that¥* A(0) = 0, i.e., V4 spans the space orthogonal Ps(n)
to the column space od(#). Here,L,, and¥ 4 are functions
of 8, but we omit this dependence to simplify the notation.
In addition, definel s, as the matrix whose columns are the
N — rank(®;) eigenvectors oﬂ% with corresponding eigen-
values equal to 1; therﬂqy = \I/q> V5. . Using the identity
(6.2) [whereX, A;, and¥ 4. are replaced withY™, A(6), and

v 4], we obtain

< or >t

N

Oy —Y"(YY")T A(O)[A(6)" (YY) " A(0)] 5
ABYY)TY = YU, (TLYY D) T Y 5

andthen/y — L4 = Y*\I/A(\IJZYY*\I/A)_I\I/ZY — HY*\I!Aa Psa; ()= &5(m) ¥ Yo=Y ¥y

which is the projection matrix onto the column space of

Y*W 4. Further, the following identities easily follow by Fig.4. Temporalinterference s filtered out by projecting the measurerivents

applying the projection-matrix decomposition formala:and the basis functions of the useful sigialn) onto the subspace orthogonal

H[Y o = Iy. + H#be(@ H#Jbl) 1. Hﬁt _ to the temporal interference.

o, + IgY*(YUgY*)~'YIlg., and similarly,

H[y W4, ] = In — L_1 =+ L4‘I)*((I) L4‘I)*) 1. La =

He: + H%Y*\IJA(\I/* YHgY*\I/A) Ly, Yﬂg Applying

the formula for determinant of a partitioned matrix and(y|Y, I,., () =Y, I, ®;) - l0|Ys,, Im, Psa, (1))

using the above definitions and identities, the concentrated

(5.5) since it follows from (3.3) by setting(#) = I,,,. Thus,
(5.5) can be decomposed as

likelihood function in (3.3) can be written as in the equation _ 2] [P Pa(m)]
shown at the bottom of the page. This equation shows that | D115 ®;"| éséi(n)ﬂj%_)*‘i’s@(ﬂ)*

the concentrated likelihood in (3.3) can be decomposed into
a product of the concentrated likelihood function for th&@he second term in the above expression can be used to im-
data setY” and interference basis-function matrik; only, plementthe noncoherent concentrated-likelihood receiver (as is
and the concentrated likelihood function for the filterediscussed in Section VII-B1) with multiuser interference sup-
data setYp, = = Y Vs, and filtered basis-function matrix of pression capability. For one basis function [i€.= 1, im-
the useful signal®se,(7) = i(n)¥s,; see Fig. 4. This plying that®.s, () is a row vector] and one receive antenna
decomposition can be written d$6, 5|V, A(6), ®(n)) = (ie., m = 1, implying thatYs, is a row vector), and after
1(O]Y, A(B), ;) - (0, n|Ya,, A(B), Psq,(n)). The first term  the monotonic transformatian-1/1(n|Ys., I, ®es, (1)), this
in the above product does not dependdalin); hence itis also term reduces to the noncoherent detector in [46].
independent of;. Thus, to find the ML estimate of, we need
to maximize the second term only. VIl. SYmBoL DETECTION

Note that the above decomposition also applies to the con-

centrated likelihood function for full-rank unstructured channel Recently, several authors have proposed incorporatiog/n
Spatial noise covariance into the receiver design. In [47]-[49],

2For the proof of this result, see, for example, [45, Th. A.45]. maximum likelihood sequence estimators (MLSE) accounting

10, nY, AB), b)) = — DeMLALT () La®s(m)*

‘ Ol @ Ol 0. (n)* ‘
Oy ()15 O

Dy ()" T3z Ps(m)
_ |9iLa%]] |Ds(n) - [La — La®f (RiLaP]) " ®iL 4] - Pu(m)”|
I @7] [0u(m) - [, — 1. 07 (L. 0) Q1L ] - €, ()]
CeiLa®p] (Rs(n) - Mgy — U YW (W4 Y T Y 0) T WA YT ] - @ ()]
O |®lTg 9 |Ps(m) - (Mg, — Mg Y (V1g. Y*) 7 VTG | - s(m)]

_1RiLa®f| (R Va - [y — UG V"W (W5 Y W W5, YW )~ W VW | - WG, ()|
|(I)1Hl* (I)H |(I)s("7)qj<1>i . [IN - \PEiY*(Y\PQi\PEiY*)_IY\P@] : ‘PEi‘bs(ﬂ)ﬂ
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for the known spatial noise covariance were proposed; late]#0, App. D]) the following expressions needed to compuie
they have been extended to account for temporally correlaied7.1).

CCI following the vector autoregressive (VAR) model [50].

Here, we derive coherent matched-filter and concentrated-like- tr[yy &1 7
lihood receivers that utilizeestimatedchannel response and
spatial noise covariance matrices (using results of Sections Il N * A2 (NT—L A (N

azd V) as well asthe basis-func(tion gsignal models from = 2 Ure ()7L = (] Ak (e (1)

=1
Section II-B. We also discuss the relationship between these ' A N
receivers. k() <. A
Define the data sefsx (of sizem x Nk) andYy (of sizem x - = A2 (i) £ Ure,i(t)" " PRje, i(t) (7.3a)

Ng) containing the known (training or previously detected) se- A
quence and unknown symbol to be detected, respectively. Then, tr[®r;* B> 7" Hx Pr;]

for J symbols, we associate possible basis-function matrices To52 (i N X
with the symbol to be detected g, for j =0, 1, 2, ..., J— =y E. > frje,i(t) - brje,i(t)  (7.3b)
1. In the following discussion, we assume that the channel syn- =120 =

chronization has been done, i.g.is known (hence, for no-
tational simplicity, we also omit functional dependencespn where Ak (i) are the canonical correlations, arghk,(t)

throughout this section). and ¢y,.(t) are the canonical coordinates estimated from
the training dataYx. Here, gr.(t) = UK(r)*RE;fyR(t),
A. Coherent Matched-Filter Receiver a}nd ¢}}jc(t)A - VK(T)A*R};LQE%RJA@)' where Ci,o =
We derive a coherent matched-filter receiver that accou@;fRKwR;;f = UxAxV{¥, Rkyy = YrYE/Nk,

for spatial noise covariance and analyze its performance.jfz}%q5 = o dk /N, aﬂdRqua = Yx®% /Nk, which easily
Section VII-Al, we derive analytical expressions for errofo|low from the results of Section V. Thus, for the unstructured
probability when binary signaling is employed and showhannel, the coherent matched-filter reception can be viewed as
that the proposed receiver outperforms the coherent receiy@iching between the estimated canonical coordinates that is
that does not take into account the spatial noise covarianggitaply weighted by the corresponding canonical correlations.
In Section VII-A2, we analyze the impact of the basis- gq, spatially white noise (i.e., substitutingx = o2I
function discretization (proposed in Section II-B) on the errQf, the above equations), exactly known channel param-
probability. eters in the “true” model (2.1) (i.e.Hx = Hr), and
We use the training daﬁ( and ML methods in Sections IlI neg||g|b|e Dopp|er effect (i'e_' slow fading’ |mp|y|ng
and V to estiAmate thg channel and spatial covariance matrigg$., = wppo = -+ = wprp = 0), the above receiver
(denoted byHyk andXk, respectively) and plug them into thereduces to the space—time RAKE receiver in [51, (111)]. In
likelihood function for the unknown symbol (usinig). Then, addition, for spatially white noise, structured array model with
the coherent matched-filter receiver is based on choosing theniformly discretized angular spread and basis functions in
that maximizes the decision statistic (2.5), the above receiver reduces to the coherent matched-filter
receiver in [21]. Clearly, these methods are not suited for
RS . r ] B situations involving CCI since they are based on spatially and
w; = 2Re{tr[Yr Xy Hi Prj|} — r[Pr;" Hi 2 Hi Pyl temporally white noise assumptions. Note, however, that the
(7.1) spatially correlated and temporally white noise assumption
used in this paper may also be too simplistic to account for

. ) ) strong CCI.
forj=0,1,...,/—1. Forthe binary case (i.e/ = 2), the  Recently, more realistic RAKE receivers, which account both
decision is made by computing for spatial and temporal interference, were proposed; see [52],

[53], and references therein. Unlike in this paper, the spatio-tem-
- poral noise model in [52] is parametric (thus sensitive to mod-
Slgr‘(wl — ’(Do) K . ..

) el eling inaccuracy) and complex, requiring exact knowledge of

= sign(Re{tr[2Yg ¥ Hk (®r1 — Pro) channel parameters of all interfering users. In [53], a simpler,
— (Bry + Pro)" Hy St Hi (Pr1 — Pro)]})  (7.2) space-time separable noise model is used with a parametric

model for the temporal covariance matrix.
) . ) . o 1) Probability of Error for the Binary CaseWe show how

where the second term disappears if antipodal signaling is €R¢ounting for the spatial noise covariance can significantly im-
ployed and intersymbol interference (ISI) is negligible (theproye the performance of the coherent matched-filter receiver in
®r1 = —Pro) Or 1 and 0 bases have the same covariance mMa:2). To concentrate on the noise correlation effects, we adopt
trices (i.e. ®ro®ro” = ®r1Pr1"). Then, the detector is simply simplifying assumptions that the training sequence is long (i.e.,

Sigr(ee{tr[yﬁ;}_(lHK(q)Rl — ®ro)l}). Nk — o0), and there are no basis-function discretization ef-
If Hx andXk are the unstructured channel and noise estects. Then, the estimates of the channel and spatial noise co-
mates from equations (5.6) applied¥g, then we derive (see variance obtained from the training sequence are equal to their
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exact values, i.eHK =H andiK = ¥. We show here that the $ro)*H* = 4H ®®*H*, which is proportional to the correla-
detector (7.2) outperforms the detector that assumes spatiéithyn matrix of the mean (noiseless) response of the received data.
white noise [i.e., withx = ¢21,,, substituted in (7.2)] in terms Then,x? andx3 are positive real numbers proportional to the
of error probability. The expected valuewf, — @, [see (7.2)] variances of the mean responses at the two antennas, whereas
and its variance under hypothes$ls (symbolj is received) is  p,, is the correlation between the mean responses (and, thus,
lpw| < 1). Similarly, o2 and 3 are the noise variances at the
E[ww1 — wolH;] two antennas, whereas is the noise correlation between them
= (1) r(@py — Pro)* H*S ™ H(®ry — Pro) (and, thus|p, | g 1). Now,. the probability of error for.the de- _
tector (7.2) (which takes into account the spatial noise covari-

(7.4a) ance) follows from (7.5) as
var{wl — w0|Hj]
" pEg— 2 2
=2t((Pry — Pro) H'S T H(Cry — Pro)l  (74D)  po_gf /1 JFL L F2 operie, 1 LR
2110, Lo o3 T g o

for j = 0, 1, where (7.4b) is derived in Appendix C. Assuming (7.8)
that the symbols 1 and 0 are equiprobable, the average error
probability is whereas the error probability for the detector that assumes spa-

tially white noise follows from (7.6) as

Pe IQ <\/% tr[(<I>R1 — (I)Ro)*H*E_lH(‘I)Rl — (I)RO)]

2, .2
KT + K3
(7.5) Few @Q 2,2 2,2 * ke ’
V2 (0253 + 03k +2Re{pipy} - 0102k K2)

where Q(z) = (1/v2r) - [7 exp(—t*/2)dt. For the spa- (7.9)

tially white noise detector, the expected values and varian(iﬁ/s how that sianificant i t b hieved
of its output arettr[(dp; — bro)* H* H(®r1 — ®ro)] and e now show that significant improvements can be achieve

2tr{(By — Dro)* H* S H (O, — Pro)|, respectively. Then, the by the proposed dgtector in (7.2) (compared yv|th the detector
A that assumes spatially white noise) if the noise levels at the

error probability is . . .
two antennas are disproportionate. Consider the case where the
) noise variance at one of the antennas is very large; without loss

of generality, we assume here thgt — oo. Clearly, the de-
tector assuming spatially white noise cannot adapt to this sit-
(7.6) uation as its probability of error [in (7.9)] approachBs, =
A straightforward application of the Cauchy-Schwartz ingo) = 1/2 ass? — oo (as in a random detector). How-
equality [38, p. 54] yields the inequality shown at the bottorgyer, the proposed detector (7.2) achieves probability of error
of the page. Using this inequality to compare (7.5) and (7'6Pe|ag_>oo = Q(ry/0o1-1/1/2 - (1 — [ps|?)); see (7.8). Further-
we get more, it holds thaPe|,>_ ., < Pey = Q(r1/01-1/V/2), where
Po< P., 7.7) Peg is the error probability for the coherent receiver employing
- antenna 1 only. Here, strict inequality holds fpg| # 0, im-
where the equality holds if the noise is indeed spatially whiteplying that the proposed coherent matched-filter detector suc-
To illustrate the advantages of accounting for the spatial noigessfully exploits the noise correlation between the antennas.
covariance, we consider a simple example with a two-elemdfguality holds forp, = 0 when it effectively discards the
antenna array. We then use the following parameterizationsra¢asurements from the second antenna and achieves the per-

P Q tr[(<I>Rl — (I)Ro)*H*H((I)Rl — (I)RO)]
o \/2 tr[(fbm — (PR())*H*EH((I)Rl — (PR())]

Hermitian positive definite matrice®f (®r; — Pro)(®r1 — formance of the single-antenna receiver.)
bRo)*H* andX. To further study the effects of noise and mean re-
sponse correlationspf and p,) on the error probability,
K2 PrKE1K2 consider the simple case whera = k2 = & and
H(®r1 — Pro)(Pr1 — Pro)"H" = 2 o1 = o0y = o. Then, (7.8) and (7.9) further simplify
Prl1k2 K5 ! 2 P

) to Po = Q(V(r/0)>-[1—Re{psp.}]/[1 - Ips?]) and
5 [ o1 poalcfﬂ Pow = Q(\/(r/o)? - 1/[1 + Re{pzp.}]). Fig. 5(a) shows’.
PeT102 o3 ' as a function of Rgp% p,.} and the SNR term20 - log(x/7)
for various spatial correlation$p,| € {0.1, 0.4, 0.7}. (Note
Note that in the case of antipodal signaling and negligible 181at —|p,| < Re{pip.} < |ps|, as shown in the figure.) It
(.e., ®r1 = —Pro = @), we haveH (Pr; — Pro)(Pr1 — can be seen that the presence of noise correlation between

tl’[(q)Rl — (I)Ro)*H*H((I)Rl — (I)Ro)]Q <1
tr[(<I>Rl — (I)Ro)*H*EH(‘I)Rl — (I)Ro)]tr[(‘I)Rl — (I)Ro)*H*E_lH(‘I)Rl — (I)RO)] -
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Fig. 5. Error probabilities of the coherent matched-filter receivers as functions of the product of the mean and noise correlation coeff{giepts}(Red
SNR term R0 - log,,(k/o)] whenk; = k; = x ando; = o> = o. (@) Probability of error for the receiver that accounts for spatially correlated nBigevith

varying levels of noise correlation. (b) Comparison of probabilities of error for receivers assuming arlittieang white spatial noise covariancds.{,) when
lpo| = 0.7.

the antennas improves the error probability; indeé&Y,is 10’
smaller for larger values dfp,|. Further, for fixed|p,]|, it is w0 [ |
desirable that R} p..} is as small as possible (the smalles | 20 Doppler
P, is achieved for Rgo% p..} = —|po|). As expectedP. drops (Ar=To2
sharply as the SNR term increases. f 10° .
Fig. 5(b) illustrates the advantage of accounting for spatialg . |
correlated noise by comparing. and P.,,, where the spatial ﬁ ke
correlation is fixed atp,,| = 0.7. As expected (and proved the-g 0 At=To2 7
oretically above) P, is always smaller than (or equal td),. 2 1| At=To/4 N
From Fig. 5(b), itis interesting to observe that the two detectcé
approach the same performancéRe{ 7 p,. }| approachelp,| & * |
(= 0.7 in this example). 107 k=4 1
2) Effects of Time-Delay and Doppler Spread Discretizatior ;| . ar=TeR |
on the Probability of Error: We study the influence of time- Y Av=To/t
delay and Doppler spread discretizations on the error probabil 6= o 10°
[forthe coherentdetector (7.2)]. To concentrate on the discreti: 2

o

tion effects, we assume thatthetraining sequenceislong (thus ne-
glecting the noise effects: see also Section V-A). In addition. \ifé- 6. Probability of error as a function of the inverse of the noise levef]

. . . L T = T./2 andAr = T_/4 with Doppler effect neglected or modeled
assume that bmary an“pOdal S|_gnallng_|s empl(_)YEd and that_ #ngK = 2 andK = 4 basis functions in the Jakes model. Full-line curve
can be neglected; thus, the basis-function matrix of the receiv@dws the performance of the ideal receiver.

symbol can be written aBg; = —®ro = ¢ (of sized x Ng).

The estimates of the channel and noise matrices obtained fromth
training sequence follow from (5.7) (whedéshould be replaced bility of Error: In this example, we study the error probability

with Vg in the definitions otSy, s, Ryrg-, aNd Ry, , and, as expression in (7.10), which takes into account the discretization
before,Ht and®t are the channel and basis-function matrice

. effects. Assume that the received symbol is generated using
for the "true” model). Then, for equiprobable symbols, the prot?he model in Numerical Example 1 in Section V-A. Recall that
ability of error easily follows as

we have chosel = o2 - (0.915 + 0.115x5), wheres? can be
viewed as the noise level. In Fig. 6, we show the error proba-
P.=Q|/2Nx- (A"~ HRyy) bility as a function ofo—2 for variou_s levels of discretization
e = R - - of the time delays and Doppler shifts. The time-delay spread
\/tr[H*E*EE—lHRW] is discretized using\T = 7./2 and A7 = T./4, whereas
R R R the Doppler effect is neglected or modeled with = 2 and
YN X (B -+ Hr Ry, HY)] K = 4 basis functions in the Jakes model (2.6). The full-line
\/tr[i—lxi—l-(E—E+HTR¢ o HE)] curve shows the performance of the ideal receiver (7.5) that
TereT uses the “true” model (requiring the exact knowledge of all
(7.10)  time delays and Doppler shifts). Observe that neglecting the
R o Doppler effect severely deteriorates the detection performance,
where we have used the idently /25, R} Ryg Hy =X —  whereasAr = T./4 and K = 4 comes very close to the
S+ HrRyp o H performance of the ideal receiver. These results demonstrate

Rumerical Example 2—Discretization Effects and Proba-
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that using the simple basis-function model from Section lI-Bquivalent to the above concentrated-likelihood receiver, as-
and estimated channel and spatial noise covariance matricesuiming long training sequence (i.&x > Ng). In particular,
(5.7), detection performance comparable with that of the ideaé have shown that under this assumption

receiver can be achieved. . .
Inl; —In|NRy,| + In|NgSkye|

1 o ~ 7y *
z—N—Ktr{S sis[YR — Hx®rj|[Yr — HxPr;] }

B. Concentrated-Likelihood Receiver Kyle

(7.12)

Here (see also [1]), we propose an adaptive receiver structure .

that utilizes simultaneously the data containing several knowdereSy, ., = Yk = (1/Ng)-[YrY3 — Yk @5 (P Pf) 1 Ok
symbols (which may be previously detected or symbols froii?], andHy = Y ®% (P i)~ (which are the ML estimates
the training sequencandthe currently received symbol to es-of the channel and noise covariance matrices for the full-rank
timate the channel and noise parameters. Then, the concentréifggiructured channel, computed using the data with known sym-
likelihood (with respect to the channel and noise parameters)P®ls only). The coherent matched-filter decision statistic in (7.1)
used to detect the new symbol; hence, we have the mame follows directly from (7.12). To gain more insight into the pro-
centrated-likelinood receiveAn important special case whenP0sSed concentrated-likelihood receiver, in [40], we also con-
no training is available is discussed in Section VII-B1. For sinsider the unstructured channel model with negligible delay and

plicity, we assume a full-rank unstructured channel [as in Sd2OPPIer spreads [i.ef, = K = 11in (2.5)]. Then, the decision
tion V, with » = min(m, d)], which allows for an easy recur- statistic becomes closely related to the sample matrix inversion

sive computation of the concentrated likelihood, as shown gﬁg/ll),\tljeamfr:)rme{ [25]; seet[4f)]a Likelihood Receiveo

Section VII-C. In the case of transmit—receive antenna arra%/.s ) Noncoheren oncen rge . Ikelinoo . ecelv n_-_
. . ) . . . ider now a concentrated-likelihood receiver that utilizes

(which is described in Section II-B1), this assumption is not ré-

. . . only the data containing the currently received symbol (i.e.,
strictive since we can choose a subset of the set of transmit y 9 y y (

il training data is available). The detection statistic for

tennas so that the channel is of full rank. The optimal choice Rﬁs noncoherent concentrated-likelihood ~ receivequals

this subset (that maximizes channel capacity) has been conLEpll) but since training data is not used, we hive- Y

re;ﬁﬁirgggrgzn:_([j;llr,lgnl?.the resulting channel is always of fi B, = Orj, Rys, = (1/N) - ;0% = (1/N) - ‘IA’RJ‘I’*R]"

' ' Ry, = (1/N)-YY* = (1/N) - YrYg, and Ry, =
Define the data matrix containing both the known symbo@/N) Y ® = (1/N) - Yr®},,. The absence of known data,
and currently-received symbdl = [Yx, Yr] with NV = Nk +  however, imposes constraints that are useful for waveform
Nr snapshots. Then, the corresponding basis-function maigisign. To see which waveforms are desirable, consider the

for the known symbols and the received sympdbgether is high-SNR case, and assume that sympblahs been sent. Then,
®; = [@k, Pr;], 7 € {0,1, 2, ..., J — 1}. Note that when the generalized likelihood ratio test statistic to decide between
Yk andYr are sequential in time, thebr; = [Prxk;, Pru;], Symbolsi andj is
where®ry; is the basis-function matrix covering the part of the . . 1 R
time where there is an overlap between the known and unknovJﬂ _ X+(1/N) 'H[‘I’J"I’j — 2,7 (®;9]) ‘I’iq’j]H |
bases due to the delay spread, a@ng;; is the basis for the i |; sen X
unknown symbol only. In CDMA application®rx; usually (7.13)
covers only a small part of the symbol duration.

Under the above assumptions, the two forms of the conc
trated likelihood function easily follow from (5.5) as

&rlearly, we wish to maximize the above expression whe:.

If we have full control over the choice df; (e.g., in the case of
transmit—receive antenna array systems in slow flat-fading envi-
ronment; see Section 1I-B-1), then we should chobse; = 0

_ | Ry, 0, | _ Ry, | (7.11a) for ; # i to maximize the above expression. In addition, to
|5‘¢j|y| |f2¢j¢j - RZ@ R;;Ry¢j| ' have equal separation for each pair of symbols, we may choose
. . (1/N)-®;®% = Ry, = constantforall =0, 1, ..., J — 1.
_ Ryl _ |2,y (7.11b) Note that the above two conditions are closely related to the re-
- |§y|¢j| - |Ryy — R, 45 fz;j_l s, fz; ¢j| ' cently proposed unitary space—time codes [56] and are tailored

for the case where the channel is unknown to the receiver. In the
. case of a single transmitter and unstructured channel model with
whereRy 4, = (1/N) - ;97 = (1/N) - (P % + Pr,;P%;), negligible delay and Doppler spreads [i.e., wher= K = 1
Ry, = (1/N)-YY* = (1/N) - (YxY + YrY), andR,,, = in (2.5)], the above conditions simply demand that the symbol
(1/N) - Yo7 = (1/N) - (Y% + Yr®g;); see also (3.2) waveforms are mutually orthogonal and have equal energy. Ob-
and (3.4b). The receiver detects the new symbol by choosisgrve that the waveform design metric in the case of a nonco-
the j that maximizes the concentrated likelihood in (7.11) witherent receiver should be based on the following matrix (for
respecttgy =0,1,2,...,.J — 1. codesi andj): ;97 — <I>j<1>§(<1>i<1>;?)*1<1>i<1>j, unlike the co-

We have shown in [40] that the coherent matched-filtdrerent case (which is discussed in [30]), where it is based on
receiver for full-rank unstructured channel is approximately®; — ®;) - (&, — ®;)*. These two matrices are fundamentally
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different, e.g., antipodal signaling (i.&; = —®;) would make We computed the Cramér—Rao bound expressions for the
the noncoherent matrix go to zero, implying that it is clearly irdinknown direction-of-arrival and basis-function parameters,
admissible for noncoherent detection (as expected). showed that they are uncoupled, and discussed practical impli-
The above detector can be viewed as a multivariate extensaations of decoupling. We derived coherent matched-filter and
(accounting for multiple receive antennas and spatially correencentrated-likelihood receivers that account for the unknown
lated noise) of the multiuser detector in [57]. For one basis fungpatial noise covariance. We analyzed the effects of time-delay
tion (i.e.,d = 1) and one receive antenna (i;&,= 1), it further and Doppler spread discretizations on the performance of the
reduces to the standard noncoherent detector (see, for exangeposed coherent matched-filter receiver and demonstrated

[58, sec. 5.4]). its superiority over the corresponding receiver that does not
take into account the spatial noise covariance. We also derived
C. Recursive Implementation a computationally efficient recursive implementation of the

We derive a recursive algorithm for computing the concefoncentrated-likelihood receiver and discussed methods for
trated likelinood function for a full-rank unstructured channel j§Patial and temporal interference suppression.
(5.5), which allows for a fast implementation of concentrated- Further research will include developing estimation and de-

likelihood receivers in Section VII-B; see (7.11). tection methods that account for temporal noise correlation as
Define the data set and basis-function matrice¥€ll, analyzing the proposed concentrated-likelihood receiver
V() = [Y({t — 1), y@®)] and &(¢) = [B(t — 1), $(£)] (in the multiuser and transmit-receive antenna array scenarios

both containingt snapshots. We denote bt) the con- in particular), and implementing iterative interference cancella-
centrated likelihood in (5.5) computed f&f = Y(¢) and tion schemes using the results of Section VI.

¢ = &(t). We also defineP,,(t) = Y)Y ()],

Pyo(t) = [2()2()]7F Q) = Py, ()Y (1)e(#)*, and APPENDIX A

P¢|y(t) — [<I>(t)<1>(t)* _ @(t)Y(t)*Q(t)]_l. Then,l(t) can be TRANSFORMATIONS OF THECONCENTRATED
computed using the following recursive steps (see [40, App. LIKELIHOOD FUNCTION

F]), as shown in (7.14a) and (7.14b) at the bottom of the pagee present herein the derivations of concentrated likelihood
and the updates of the following quantities prepare for the ngyhction expressions in (3.5) and (3.3). These derivations are
step, as shown in (7.15a)—(7.15d) at the bottom of the paggmilar to those in [20] and are given here for completeness of
An analogous recursive procedure can be derived to compgi@sentation and because this reference is not easily available.

the concentrated likelihood function based on (711b) It would We start with the f0||owing expression for the concentrated
essentially reduce to swappiagt) and¢(t) in the recursion |ikelihood function.

defined by (7.14) and (7.15).

Ryy

; (A.1)

A

X(0,m)

We developed maximum likelihood methods for space—time _ o _
fading channel estimation in spatially correlated noise witifhich easily follows by substituting the estimates6fand

unknown covariance. Several basis-function models wdfe(3.1) into the likelihood function for model (2.2); see also
) ; i B —1/2

proposed to account for the multipath and Doppler effects. Twrgction lll. Recall the definition of the matriR = Ry, R,

array response models were used: structured and unstructufiedn Section V; thenfzng}?;; R;S = PP*. Using definitions

VIIl. CONCLUDING REMARKS 00, n) =

M= T B el (7143

O G e OF (s B W et O R T (7:349)

Pyy(t) =Pyt — 1) = v(t) - By (t — Dy()y()" Pyy(t — 1) (7.15a)
Q) =Q(t — 1) + Py (t)y(?) - [p(1)" — y(8)*Q(t — 1)] (7.15b)
Pt = Falt =)= o) e o T Pt W Qo] 259
Py(t) = Pyt — 1) — Pt = VIO Pool?t — 1) (7.15d)

L+ (1) Poo(t — 1)(t)



DOGANDZIC AND NEHORAI: SPACE-TIME FADING CHANNEL ESTIMATION

a71

(3.2a) and (3.1b) and the formula for the determinant of a par-To prove (3.3), we rewrite (A.4) as

titioned matrix (see [34, property v., p. 8]), we derive the fol-

lowing useful identities.

A & 5 P—1pH
Ry, = S’JI¢+Ry¢R¢¢Ry¢ =

§y|¢ +7777*‘

= [Syps| - |12+ P53 P] (A.2a)

ylo
‘2(0, n)‘ =8, + (1 ~ T8, )rr* ( TASM)*
= §y|¢‘ . ‘Id +P* (Im - TASy_M)*

5 (Im . TAS‘y_li) P‘ . (A.2b)

Further, observe that

P (I TASy|¢) 54 (I TASy|¢)P

—1
S SP—PrS,
|71
Applying the matrix inversion lemma [34, p. 8] to (A.6) and
using Ry, = Sy1s + PP* yields 9~ = Iy — P*R, 1P, and
thus, usingP = RyuR%, we get| Q71| = |S¢|y|/|R¢¢|
where S¢|J was defined in (3 4b). Applying the matrix
|nver5|on lemma toS;! = [R,, — PP*]~! and using

ylé
[Iy — P*R,} Pt = Qyields

‘ [Id TP L7, G- 73}

Yl ylg

1@, n= (A.9)

-1

Sy6 = [Ryy - 7’7’*} = Ry} + R}POP R} (A10)

and thenA*ﬁy‘liSP can be simplified as

1 * | p—1 p—1 * r—1
S PSP PSSP (A3 AGFSLP =A0) [+ RiPopiiyt] P
_ * fo— L * —1p _0-1
vyhiph gasily tollows by using the following identity: =A(®) }?yy?—i_A(o) Ryy Pl = Q™)
745 iTs = Ta [see also (3.2)]. Then, using (A.2) and = A(0)* R,/ PQ (A.11)
A.3), th likelih Al i .
(A.3), the concentrated likelihood (A.1) can be rewritten as where the second equality follows by usi‘VRjjoylP — 1,
v Al Q~L. Finally, we apply (A.6), (3.2e), (A.10), (A.11), and the
‘Id + PS5 73‘ - Finally, ), (3
18, n) = (A.4) matrix inversion lemma to simplify
Ig+P*S EP—PrS LT, 5 Lp £ g1 £
‘ d yle Jln:5 Jln:5 ‘ I;+P* Squﬂ) P y|¢TASy|¢7’
—1
- 1 * &—1
We now apply formula for the determinant of a partitioned ma- = g — p* Sy|¢A(0) [A(o) y|¢A(9)} A(0) Squbp

trix [34, property v., p. 8] as
Lo+ PSP PrS L A6)
AO)*S5, 5P A(o)* S LA0)

= |y s, a0 ‘Id—i—PS P P*Sy|¢TAS L7
= |9l - [4(0)°S, 34(8) — A)"S, 1P PS5, L A(0)|
(A5)

where@ is defined as
Q=1I1,+P5 L P. (A.6)

For simplicity of notation, we omit the dependence®bn ).

Applying the matrix inversion lemma (see, e.g., [34, p. 8]) to

Ry = (8,4 +PP*7L, gives

1 1 *
SJ|¢ quﬂ’Q Ps Jln:5 (A7)

Now, using (A.4) and (A.5), we obtain

A0)*5, 5 A6)
16, m) = -
A(0)*5; 5 A(B) — A(6)*S, L PQ LP*S L A(6)
A(0)*S ()
= (A.8)
A(0) Ry A0)

where the second equality [and (3.5)] follows from (A.7).

= Q- QP*R;IA(0)
: [A(o)*}?.;;A(o) +A(0) Ry PQP* R (o)]
CAB) R, IPQ

_ —1
_ [Q1+7>*Ry;A(o)[A(o)*Ry;A(o)] lA(H)*Rw}P}
=[ly—PWP|™! (A.12)

where the last equality follows after usig@y ! = Id—P*R;;P
and the definition oV in (3.4a). Then

—1
~ip—Pp*S

|:Id + PS5 qub
— |l — P*WP|

= ‘Rw — Ry W Ry,

ylthASylt#P}

/ ‘f%‘ (A.13)

where we use® = }A?.yqbf?.;iﬂ in the last equality. Substituting
|07 = |S4yyl /| ss| @and (A.13) into (A.9), we obtain (3.3).

APPENDIX B
DERIVATION OF UNSTRUCTURED ARRAY
ML ESTIMATION RESULTS

It is easy to show that the columns df defined
in (5.2) are also the (normalized) eigenvectors corre-
sponding to the eigenvalues a}i‘l/QS 1R§§2, which equal
Y[ = XG5 =1,...,m SlnceO < X2(j) < 1 and
1/(1 — z) is an increasing function of for 0 < = < 1, the
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eigenvalues of?y)* S 1}?%2 are sorted in nonincreasing order. APPENDIX C

Now, choosed = Rg])gCQUCA, whereC,4 is anm x r matrix of PROBABILITY OF ERROR FORCOHERENTRECEIVER
full rank r. Then, the concentrated likelihood in (3.5) becomes We derive the variance formula (7.4b). Note that[xar —
wo] = vaf2Re{z}] = varz + z*), wherez = tr[(®r; —
Ol By S Ryl U C| Oro) H*S—E], andE = [e(1), e(2)-- - e(N)]. In addition,
(A, n) = - C | defineD = (®r; — Pro)* H*. Now, using a well-known prop-
ATA erty of the vec operator [34, result iii, p. 12], we have

o [Im - AAT} oy

z= vec(DT)T (In®X71) - vec(E) (C.1)

|C4Cal
and thus
which is maximized forCy = Cao = [I,, 0]7 and equals -
exactly the expression in (5.4); see also [23, eq. (35)] and [20, E[22"] =vec(DT)" - (Iy @ X7!) - vec(D")

p. 25]. In general, the above expression is maximizedfpr= =tr [Dx~'D"]. (C.2)
C.40E 4, Where= 4 is an arbitrary- x » matrix of full rank, and
then, A = RY?U(r)Z 4. In addition, note that 2] = E[(z*)%] = 0, which follows

_We now show that although the ML estimatds not unique, from the fact that Be(t)e(t)’] = 0,t =1, 2, ..., N, whichis
A-X is. Using (3.1a), the channel estimate in (5.6) easily followsproperty of circular complex Gaussian distribution. Finally
as

vafw; — wo] = varz + z*) = 2E[22"] = 2tr [DE_ID*]
H=A-X (C.3)

_ pL/277 1/2 1/2 which proves (7.4b).
= RY20(r) [U( YRY2SRYZO( )}
Uy RS LRy RS ACKNOWLEDGMENT
= RY2U(r)U(r) R} QRWR@ (B.1) The authors are grateful to the anonymous reviewers, Asso-

ciate Editor Dr. O. Besson, and Dr. T. A. Thomas from Motorola
which does not depend @, . In addition, the ML estimate of Laboratories, Schaumburg, IL, for their helpful comments.
% in (5.6d) then follows front: = (1/N)-[Y — H®(n)] - [Y —

Ho(n)]*. REFERENCES
Another way to derive (5.6) is by substitutin#), X, and

&(n) by 1,,,, A, and X ®(n); then, (3.3) becomes

[1] A.Dogandicand A. Nehorai, “Space-time fading channel estimation in
unknown spatially correlated noise,”Rroc. 37th Annu. Allerton Conf.
Commun., Contr., CompuMonticello, IL, Sept. 1999, pp. 948-957.

I(X, | ( ) ( )*X* | [2] D.M.DlugosandR. A. Scholtz, “Acquisition of spread spectrum signals
( "7 1 A1 by an adaptive arrayfEEE Trans. Acoust., Speech, Signal Processing
XO(m)o(m)* X — N XY+ R, Yo (np)* X* vol. 37, pp. 1253-1270, Aug. 1989.

[3] M. Cedervall and A. Paulraj, “Joint channel and space-time parameter
estimation,” inProc. 30th Asilomar Conf. Signals, Syst. Comyfescific

‘X Ry X* Grove, CA, Nov. 1996, pp. 375-379.
e EEe— (B.Z) [4] M. Viberg, P. Stoica, and B. Ottersten, “Maximum likelihood array pro-
‘XS¢|yX* cessing in spatially correlated noise fields using parameterized signals,”

IEEE Trans. Signal Processingol. 45, pp. 996-1004, Apr. 1997.
which should be maximized with respect . Now, choose [5] M. Haardt, C. Brunner, and J. A. Nossek, “Efficient high-resolution

r P 1/2 . . . 3-D channel sounding,” iRroc. 48th \eh. Technol. ConOttawa, ON,
X = ExV*R TP whereFEx is an arbitraryr x d matrix of Canada, May 1998, pp. 164-168.
rankr. Then, (B.2) reduces to [6] A. Jakobsson, A. L. Swindlehurst, D. Astély, and C. Tidestav, “A
blind frequency domain method for DS-CDMA synchronization using
|EXE;(| antenna arrays,” ifProc. 32nd Asilomar Conf. Signals, Syst. Comput.
I(X,n)= - Pacific Grove, CA, Nov. 1998, pp. 1848-1852.

EXV* ¢¢ S¢|y I/QVE* [7] Y.-F. Chen and M. D. Zoltowski, “Joint angle and delay estimation for
DS-CDMA with application to reduced dimension space-time RAKE
— |EXE | receivers,” inProc. Int. Conf. Acoust., Speech, Signal ProceéRisoenix,
Ex [ I, — AT A} B AZ, Mar. 1999, pp. 2933-2936.
X [8] D.Astély, A.Jakobsson, and A. L. Swindlehurst, “Burst synchronization
on unknown frequency selective channels with co-channel interference

which is maximized foE'x = Exo = [I., 0] and equals the ex- using an antenna array,” Rroc. 49th Veh. Technol. ConHouston, TX,

pression in (5.4). In general, the above expression is maximized = May 1999, pp. 2363-2367.

for Ex = Zx Exo, WhereZ is an arbitrary- x » matrix of full [9] G. Seco, A. L. Swindlehurst, and D. Astély, “Exploiting antenna ar-
S0 1/2 rays for synchronization,” irSignal Processing Advances in Commu-

rank, anq then%‘ = EXV(T) R .Further, (3.1a) gived = nications: Trends in Single- and Multi-User Syste@sB. Giannakit

Yo(np)*X* . [X‘I’(”?)‘I’(”?)*X ] = qubX [XR¢¢X*] 1 al., Eds. Englewood Cliffs, NJ: Prentice-Hall, 2001, vol. 2, ch. 10.

o A Y NTI N 1/2 [10] B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. I.
andH = AX = _PV(7 ?VO) R¢¢ , whichis exaCtIy equal to Pedersen, “Channel parameter estimation in mobile radio environments
the channel estimate in (5.6b). Then, the second expression for using the SAGE algorithm,IEEE J. Select. Areas Commuynrol. 17,

$in (5.6d) easily follows. pp. 434-450, Mar. 1999.



DOGANDZIC AND NEHORAI: SPACE-TIME FADING CHANNEL ESTIMATION

(11]

(12]

[13]

[14]

(15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

(34]

A. Jakobsson, A. L. Swindlehurst, and P. Stoica, “Subspace-based ef35]
timation of time delays and Doppler shiftdEEE Trans. Signal Pro-
cessingvol. 46, pp. 2472—-2483, Sept. 1998.

M. Wax and A. Leshem, “Joint estimation of time delays and directions[36]
of arrival of multiple reflections of a known signalEEE Trans. Signal
Processingvol. 45, pp. 2477-2484, Oct. 1997.

A. J. van der Veen, M. C. Vanderveen, and A. Paulraj, “Joint angle and37]
delay estimation using shift-invariance techniquéSEE Trans. Signal
Processingvol. 46, pp. 405418, Feb. 1998.

M. Chenu-Tournier, A. Ferreol, and P. Larzabal, “Low complexity
blind space-time identification of propagation parameters,Pinc.
Int. Conf. Acoust., Speech, Signal Proce8hoenix, AZ, Mar. 1999,
pp. 2873-2876.

N. Bertaux, P. Larzabal, C. Adnet, and E. Chaumette, “A parameter{40]
ized maximum likelihood method for multipaths channels estimation,”

in Proc. 2nd IEEE Workshop Signal Process. Adv. Wireless Commun.
Annapolis, MD, May 1999, pp. 391-394.

A. L. Swindlehurst, “Time delay and spatial signature estimation using[41]
known asynchronous signaldEEE Trans. Signal Processingol. 46,

pp. 449-462, Feb. 1998.

B. Hochwald and A. Nehorai, “Polarimetric modeling and parameter es-
timation with applications to remote sensingfEE Trans. Signal Pro-  [42]
cessingvol. 43, pp. 1923-1935, Aug. 1995.

H. L. Van TreesDetection, Estimation and Modulation TheoryNew
York: Wiley, 1971, pt. Ill.

A. Dogandit and A. Nehorai, “Estimating evoked dipole responses
in unknown spatially correlated noise with EEG/MEG array&EE
Trans. Signal Processingol. 48, pp. 13-25, Jan. 2000.

E. J. Kelly and K. M. Forsythe, “Adaptive detection and parameter esti-[45]
mation for multidimensional signal models,” Lincoln Lab., Mass. Inst.
Technol., Lexington, Tech. Rep. 848, Apr. 1989.

E. N. Onggosanusi, A. M. Sayeed, and B. D. Van Veen, “Canonical
space-time processing for wireless communicatiodEEE Trans.
Commun,.vol. 48, pp. 1669-1680, Oct. 2000. [47]
S. Valaee, B. Champagne, and P. Kabal, “Parametric localization

of distributed sources,JEEE Trans. Signal Processingol. 43, pp.
2144-2153, Sept. 1995.

P. Stoica and M. Viberg, “Maximum likelihood parameter and rank es-
timation in reduced-rank multivariate linear regressionEEE Trans.
Signal Processingvol. 44, pp. 3069-3078, Dec. 1996.

A. L. Swindlehurst and P. Stoica, “Maximum likelihood methods in
radar array signal processing?toc. |IEEE vol. 86, pp. 421-441, Feb.
1998.

A. Dogandic and A. Nehorai, “Estimating range, velocity, and direction
with a radar array,” irfProc. Int. Conf. Acoust., Speech, Signal Process.
Phoenix, AZ, Mar. 1999, pp. 2773-2776.

A. M. Sayeed and B. Aazhang, “Joint multipath-Doppler diversity in
mobile wireless communications|EEE Trans. Communvol. 47, pp.
123-132, Jan. 1999.

G. B. Giannakis and C. Tepedelergia, “Basis expansion models and
diversity techniques for blind identification and equalization of time-
varying channels,Proc. IEEE vol. 86, pp. 1969-1986, Oct. 1998.

W. C. Jakes, Ed.Microwave Mobile Communications New York:
Wiley, 1974.

G. J. Foschini, “Layered space-time architecture for wireless commu-
nication in a fading environment when using multi-element antennas, 154]
Bell Labs. Tech. Jvol. 1, no. 2, pp. 41-59, 1996.

V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for
high data rate wireless communication: Performance criterion and code
construction,”IEEE Trans. Inform. Theorwol. 44, pp. 744-765, Mar.  [55]
1998.

D. Chizhik, G. J. Foschini, and R. A. Valenzuela, “Capacities of multi-
element transmit and receive antennas: Correlations and keyholes[56]
Electron. Lett, vol. 36, pp. 1099-1100, June 2000.

D. Gesbert, H. Bolcskei, D. A. Gore, and A. J. Paulraj, “MIMO wire-
less channels: Capacity and performance predictiofRtae. Globecom
Conf, San Francisco, CA, Nov. 2000, pp. 1083-1088.

M. S. Srivastava and C. G. KhatAn Introduction to Multivariate Sta-
tistics  New York: North-Holland, 1979.

E. F. Vonesh and V. M. Chinchilllinear and Nonlinear Models for the
Analysis of Repeated Measurementblew York: Marcel Dekker, 1997.

(38]

[39]

[43]

[44]

[46]

(48]

[49]

[50]

[51]

[52]

(53]

[57]

(58]

473

C. G. Khatri, “A note on a MANOVA model applied to problems
in growth curve,” Ann. Inst. Statist. Math.vol. 18, pp. 75-86,
1966.

L. L. Scharf and J. K. Thomas, “Wiener filters in canonical coordinates
for transform coding, filtering, and quantizingBEE Trans. Signal Pro-
cessingvol. 46, pp. 647—-654, Mar. 1998.

H. L. Van TreesDetection, Estimation and Modulation TheoryNew
York: Wiley, 1968, pt. I.

C. R. Rao,Linear Statistical Inference and Its Application&nd

ed. New York: Wiley, 1973.

D. R. Brillinger, “A maximum likelihood approach to frequency-
wavenumber analysis|EEE Trans. Acoust., Speech, Signal Processing
vol. ASSP-33, pp. 1076-1085, Oct. 1985.

A. Dogandic and A. Nehorai, “Space-time fading channel estimation
and symbol detection in unknown spatially correlated noise,” Dept.
Elect. Eng. Comput. Sci., Univ. lllinois, Chicago, Rep. UIC-EECS-00-9,
Aug. 2000.

J. M. Cioffi, P. H. Algoet, and P. S. Chow, “Combined equal-
ization and coding with finite-length decision feedback equaliza-
tion,” in Proc. Globecom Conf.San Diego, CA, Dec. 1990, pp.
1664-1668.

Y. B. Hua, M. Nikpour, and P. Stoica, “Optimal reduced-rank estima-
tion and filtering,”|IEEE Trans. Signal Processingol. 49, pp. 457-469,
Mar. 2001.

L. Cohen,Time-Frequency Analysis Englewood Cliffs, NJ: Prentice-
Hall, 1995.

i. E. Telatar, “Capacity of multi-antenna Gaussian channdtsito.
Trans. Telecommuywol. 10, no. 6, pp. 585-595, Nov./Dec. 1999.

C. R. Rao and T. Toutenburgiinear Models: Least Squares and Alter-
natives 2nd ed. New York: Springer-Verlag, 1999.

M. L. McCloud and L. L. Scharf, “Interference estimation with appli-
cations to blind multiple-access communication over fading channels,”
IEEE Trans. Inform. Theorwol. 46, pp. 947-961, May 2000.

M. Stojanovic, J. Catipovic, and J. G. Proakis, “Adaptive multichannel
combining and equalization for underwater acoustic communication,”
Acoust. Soc. Amerol. 94, pp. 1621-1631, Sept. 1993.

G. E. Bottomley and K. Jamal, “Adaptive arrays and MLSE equaliza-
tion,” in Proc. 45th Veh. Technol. ContChicago, IL, July 1995, pp.
50-54.

K. J. Molnar and G. E. Bottomley, “Adaptive array processing MLSE
receivers for TDMA digital cellular/PCS communicationlZEE J. Se-
lect. Areas Communvol. 16, pp. 1340-1351, Oct. 1998.

D. Astély and B. Ottersten, “MLSE and spatio-temporal interference
rejection combining with antenna arrays,”®moc. EUSIPCQRhodes,
Greece, Sept. 1998, pp. 1341-1344.

A. J. Paulraj and C. B. Papadias, “Space-time processing for wireless
communications,lEEE Signal Processing Magvol. 14, pp. 49-83,
Nov. 1997.

D. Astély and A. Artamo, “Uplink spatio-temporal interference rejec-
tion combining for WCDMA,” inProc. IEEE Signal Process. Workshop
Signal Process. Adv. Wireless Commaoyuan, Taiwan, R.O.C., Mar.
2001, pp. 326-329.

J. Vidal, M. Cabrera, and A. Agustin, “Full exploitation of diversity
in space-time MMSE receivers,” iRroc. 52nd Veh. Technol. Conf.
Boston, MA, Sept. 2000, pp. 2497-2502.

D. A. Gore, R. U. Nabar, and A. Paulraj, “Selecting an optimal set of
transmit antennas for a low rank matrix channel,”"Hroc. Int. Conf.
Acoust., Speech, Signal Procesistanbul, Turkey, June 2000, pp.
2785-2788.

I. S. Reed, J. D. Mallet, and L. E. Brennan, “Rapid convergence rate in
adaptive arrays,l[EEE Trans. Aerosp. Electron. Systol. AES-10, pp.
853-863, 1974.

B. M. Hochwald and T. L. Marzetta, “Unitary space-time modulation for
multiple-antenna communications in Rayleigh flat fadin&EE Trans.
Inform. Theoryvol. 46, pp. 543-564, Mar. 2000.

E. Visotsky and U. Madhow, “Noncoherent multiuser detection for
CDMA systems with nonlinear modulation: A Non-Bayesian ap-
proach,”IEEE Trans. Inform. Theoryvol. 47, pp. 1352-1367, May
2001.

J. G. ProakisPigital Communications4th ed. New York: McGraw-
Hill, 2000.



474

and 2001, respectively.

Aleksandar Dogandzi¢c (S'96-M’'01) received the
Dipl.Ing. degree summa cum laude in electrical en
gineering from the University of Belgrade, Belgrade,
Yugoslavia, in 1995 and the M.S. and Ph.D. degre
in electrical engineering and computer science fro
the University of Illinois at Chicago (UIC) in 1997

In August 2001, he joined the Department o
Electrical and Computer Engineering, lowa Stat
University, Ames, as an Assistant Professor. Hi
research interests are in statistical signal processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 3, MARCH 2002

Arye Nehorai (S'80—-M’'83-SM'90-F'94) received
the B.Sc. and M.Sc. degrees in electrical engineering
from the Technion-Israel Institute of Technology,
Haifa, in 1976 and 1979, respectively, and the
Ph.D. degree in electrical engineering from Stanford
University, Stanford, CA, in 1983.

After graduation, he worked as a Research Engi-
neer for Systems Control Technology, Inc., Palo Alto,
CA. From 1985 to 1995, he was with the Depart-
ment of Electrical Engineering, Yale University, New
Haven, CT, where he became an Associate Professor

and its applications to wireless communications, radar, biomedicine, amdl989. In 1995, he joined the Department of Electrical Engineering and Com-

nondestructive evaluation of materials.

puter Science, The University of lllinois at Chicago (UIC), as a Full Professor.

Dr. Dogandic received the Distinguished Electrical Engineering M.S. StuFrom 2000 to 2001, he was Chair of the Department’s Electrical and Computer
dent Award by the Chicago Chapter of the IEEE Communications Society Engineering (ECE) Division, which is now a new department. He holds a joint
1996. He received the Aileen S. Andrew Foundation Graduate Fellowshipprofessorship with the ECE and Bioengineering Departments at UIC. His re-

1997 and the UIC University Fellowship in 2000.

search interests are in signal processing, communications, and biomedicine.
Dr. Nehorai is Editor-in-Chief of the IEEE RANSACTIONS ON SIGNAL
PROCESSING He is also a Member of the Publications Board of the IEEE
Signal Processing Society and on the Editorial Boardigial Processing
He has previously been an Associate Editor of the |IEEANSACTIONS ON
ACOUSTICS SPEECH AND SIGNAL PROCESSING the IEEE $GNAL PROCESSING
LETTERS the IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, the
IEEE JDURNAL OF OCEANIC ENGINEERING, andCircuits, Systems, and Signal
ProcessingHe served as Chairman of the Connecticut IEEE Signal Processing
Chapter from 1986 to 1995 and is currently the Chair and a Founding Member
of the IEEE Signal Processing Society’s Technical Committee on Sensor Array
and Multichannel (SAM) Processing. He was the co-General Chair of the First
IEEE SAM Signal Processing Workshop, held in 2000, and will serve in this
position also in 2002. He was co-recipient, with P. Stoica, of the 1989 IEEE
Signal Processing Society’s Senior Award for Best Paper. He received the
Faculty Research Award from UIC College of Engineering in 1999. In 2001,
he was named University Scholar of the University of lllinois. He has been a
Fellow of the Royal Statistical Society since 1996.



