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Abstract—We present maximum likelihood (ML) methods for
space–time fading channel estimation with an antenna array in
spatially correlated noise having unknown covariance; the results
are applied to symbol detection. The received signal is modeled as
a linear combination of multipath-delayed and Doppler-shifted
copies of the transmitted waveform. We consider structured and
unstructured array response models and derive the Cramér–Rao
bound (CRB) for the unknown directions of arrival, time delays,
and Doppler shifts. We also develop methods for spatial and
temporal interference suppression. Finally, we propose coherent
matched-filter and concentrated-likelihood receivers that account
for the spatial noise covariance and analyze their performance.

Index Terms—Array processing, coherent matched-filter detec-
tion, noncoherent detection, time-varying channel estimation.

I. INTRODUCTION

T O COMBAT fading and suppress interference in wireless
communications, both channel and noise properties need

to be estimated. In this paper (see also [1]), we propose algo-
rithms and derive performance measures for space–time esti-
mation offast, frequency-selective fadingchannels in the pres-
ence of spatially correlated noise havingunknowncovariance.
This is unlike most previous work, which typically assumes
slow-fading channel (neglecting the Doppler effects) [2]–[9] or
spatially white noise [10], [11], or both [12]–[16]. (References
to several recent papers dealing with spatially correlated noise
will be given later.) We consider structured and unstructured
array responses and model the signal as a linear combination
of parametric basis functions that account for the multipath and
Doppler effects. The proposed basis-function model is used to
combat fading (due to multipath and Doppler effects), whereas
the spatially correlated noise accounts for co-channel interfer-
ence. We then propose receivers that utilizeboth estimates of
the channel and spatial noise covariance and analyze their per-
formance.

The signal and noise models are explained in detail in Sec-
tion II. First, we present the structured array response model
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that allows estimation of directions of arrival (DOAs). The DOA
information can be useful for locating E-911 calls and other ap-
plications (for example, radar and sonar; see the discussion in
Section II). Then, in Section II-A, we present the unstructured
array response model, which avoids estimating the DOA param-
eters, thereby reducing the computational complexity. In Sec-
tion II-B, we propose several basis-function models that account
for fast, frequency-selective fading by suitably discretizing the
time-delay and Doppler spreads of the received signal. Com-
pared with the exact signal model, these basis-function models
significantly reduce the number of (nonlinear) time-delay and
Doppler parameters to be estimated. In Section II-B1, we show
that the proposed basis-function formulation is well suited for
transmit–receive antenna array systems as well.

In Sections III and IV, we present maximum likelihood (ML)
estimation algorithms and Cramér–Rao bounds (CRBs) for the
structured array response model. We show that the CRBs for
the direction-of-arrival and basis-function parameters (time de-
lays and Doppler shifts) are uncoupled. As a consequence, the
CRB expressions for the basis-function parameters are indepen-
dent of the array-response parameterization (and vice versa).
This result has important practical implications (motivating the
unstructured array model); see Section IV. Then, in Section V,
we derive ML algorithms for the unstructured model. In Sec-
tions III and V, we also derive the concentrated likelihood func-
tions for the unknown nonlinear parameters and discuss rela-
tionship with previous work. Additionally, in Section V-A, we
investigate how the time-delay and Doppler-shift discretizations
affect the channel and noise covariance estimates and concen-
trated likelihood function. In Section VI, we discuss methods
for spatial and temporal interference suppression based on de-
compositions of the concentrated likelihood function.

In Section VII, we propose coherent matched-filter and con-
centrated-likelihood receivers that incorporate the estimates of
both the channel and spatial noise covariance. These receivers
exploit the following.

• multipath and Doppler diversity (using the proposed basis-
function models; see Section II-B);

• interference-suppression capability of the antenna array
(using the spatially correlated noise model for the inter-
ference).

We show analytically that the proposed coherent matched-filter
receiver outperforms (in terms of error probability) the coherent
receiver that does not take into account the spatial noise co-
variance. In Section VII-B, we propose concentrated-likelihood
(with respect to the channel and noise parameters) receiver and
derive its recursive implementation (see Section VII-C). Finally,
concluding remarks are given in Section VIII.

1053–587X/02$17.00 © 2002 IEEE
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II. SIGNAL AND NOISE MODELS

Suppose an -element antenna array receives several scaled,
time delayed, and Doppler-shifted copies of a known complex
baseband signal . Then, the vector signal received by
the array at time becomes

(2.1)

for , where is the vector of DOA parame-
ters (and may contain additional parameters, such as scattering
and polarization coefficients; see [17]), and , , and

are the complex amplitude, Doppler shift, and time delay
for the th path ( ). Further, denotes the
(single DOA) array response vector, and is additive noise.
Note that in the above model, it is assumed that the Doppler
effect can be modeled by a frequency shift (which is thenar-
rowband signal assumption; see e.g., [18, ch. 9, eqs. (19) and
(23)]), and the propagation time of the signal across the array
is much smaller than the reciprocal of the signal bandwidth,
which is the standardnarrowband array assumption. The time-
delay and Doppler spreads of the received signal in (2.1) are
equal to
and

, respectively. We use the subscriptin the above pa-
rameterization to emphasize that these are the “true” parame-
ters, as opposed to the discretized model introduced below (see
Section II-B).

The model (2.1) contains a large number of parameters, espe-
cially when the number of paths is large. A way to solve this
is to parameterize the time delays and Doppler shifts
by using suitable basis-function expansions, which we discuss
in detail in Section II-B. To accommodate basis functions and
more general scenarios, we generalize (2.1) to thestructured
array model

(2.2)

where is an array response matrix parame-
terization, and is an matrix of unknown coef-
ficients for the functional representation described by a

vector of basis functions (where the param-
eter vector is unknown in general). Note that the true
model in (2.1) is a special case of (2.2) with ,

, ,
diag ,

,
and . The
structured array basis-function formulation in (2.2) is very
general. It has been used in [19] for EEG/MEG source location,
in [4] for DOA estimation (assuming completely known basis
functions), and in [20] for radar detection (assuming known
DOA’s and basis functions). This model stems from multi-
variate statistical analysis; see the discussion in Section III. In
Section II-B, we show how it can be used to model fast-fading,
frequency-selective communication channels, as well as
transmit–receive antenna array systems (see Section II-B1).
Additionally, it can be used to model multiple moving point

targets (applicable to radar or sonar array processing); then,
and , where

is now the number of targets.
The noise term models interference due to receiver noise,

co-channel interference (CCI) in wireless communication chan-
nels, or clutter in radar. Throughout this paper, we assume that

is zero-mean Gaussian, temporally white and spatially cor-
related with unknown positive definite covariance, constant
in time.

Define the vector of channel parameters vec
Re vec Im and the mean (i.e.,

noiseless) signal vector at timeas .
Our goal is to estimate and the noise covariance. For the
structured array model in (2.2), we need a suitable parameteri-
zation of the array response matrix . For example, we may
choose , where , dis-
cretize the angular spread of the received signals [21], or use a
distributed source model [22]. For communication applications
in particular, we are interested in synchronizing the receiver
(i.e., estimating the time-delay and Doppler parameters; see
Section II-B) and estimating the channel matrix .
In radar array processing problems, it is of particular interest
to find the estimate of (radial velocities and ranges of all the
targets) and the targets’ direction parameters; then, the “true”
model (2.1) is the model of choice.

If we are not interested in estimating the DOAs or do not have
an appropriate parameterization for the array response matrix,
we may use the unstructured array model described later. For
synchronization, it is preferable to use the unstructured array
model; see the discussion in Section IV.

A. Unstructured Array Model

We describe the unstructured array response model in which
the whole array response matrix is assumed to be unknown with
an arbitrary (known) rank, as in [23]. The unstructured array
model is robust compared with an incorrectly-structured array
model.1 In addition, it avoids nonlinear DOA parameterization.

The unstructured array model can be written as

(2.3)

with the same noise assumptions as for the structured model in
the previous section. Here, is the channel response matrix of
rank , parameterized as , where is an un-
known array response [of full rank ], and is an

unknown basis-function coefficient matrix having full rank
. (We discuss the identifiability of and in Section V and

Appendix B.) The vector of the unknown channel parameters
for this model is vec Re vec Im .
The mean signal vector for the unstructured model at timeis
then .

Several special cases of the above model have been consid-
ered in the literature. Full-rank unstructured channel models
[i.e., ] are used in [11] and [16] (assuming spa-
tially white noise) and [8] and [9] (assuming spatially correlated

1Structured array model inaccuracies are due to changes in antenna locations,
temperature, surrounding environment, gain and phase errors, mutual coupling,
quantization and interpolation errors, etc., and can lead to a significant loss in
estimation performance.
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Fig. 1. Rectangular sampling grid in the time-frequency plane with (Left) uniform time-delay and Doppler spread discretizations and (Right) uniform time-delay
and Jakes’ Doppler spread discretizations.

noise with unknown covariance). In [16], methods are derived
for estimating time delays of multiple asynchronous signals and
in [11] for estimating time delays and Doppler shifts of a signal
in multipath environment [i.e., using ]. In
[8] and [9], methods are derived for time-delay estimation in
a slow, frequency-selective fadingenvironment. Aflat-fading
scenario, when the channel matrix degenerates to a vector (i.e.,

), is used in [2] and [6] (see also [24] and [25] for
related radar work).

B. Basis-Function Models

Now, we propose the following fairly general basis-function
structure to model fast, frequency-selective fading

(2.4)

where (of size ) and (of size
) are suitable parameterizations of the received signal’s time

delay (or multipath) and Doppler spreads, anddenotes the
Kronecker product. Here, , and the number of
basis functions is . Observe that (2.4) models the fading
effects using a rectangular grid in the time-frequency plane; see
Fig. 1 and the following discussion.

Note that the model (2.2) with arbitrary and
basis functions of the form (2.4) with

and
captures

a more general class of fading channels than (2.1) since, for
example, it allows for multipath signals arriving from the same
direction. For computational simplicity, we can uniformly
discretize the time-delay and Doppler spreads

(2.5a)

(2.5b)

where and are the “global” time delay and Doppler shift,
respectively, whereas and are the corresponding
sampling intervals. Since the choices of and , respec-
tively, depend on the bandwidth and duration of the signal,
these quantities are knowna priori [26]. If we also assume that
prior knowledge on the delay and Doppler spreads is available,

then we can also determineand (and therefore as well)
a priori. In this case, , , and reduce to , , and

, respectively. Basis functions similar to (2.5) have
been introduced in [26] and [21] (see also references therein)
to model fast-fading, frequency-selective communication chan-
nels. Unlike (2.5), it is assumed in [21] and [26] that the receiver
is perfectly synchronized to the “global” delay and Doppler
shift, which are set to zero. The time-varying channel model
proposed in [27] can also be viewed as a special case of (2.4)
with as in (2.5a) (with set to zero),

, and
.

An interesting, physically motivated model for
follows by discretizing the Jakes model [28] with the
basis-function vector of the form

(2.6)

where is proportional to the speed of the mobile (and, con-
sequently, to the Doppler spread), and . In general,
if a mobile receiver (or mobile transmitter) is surrounded by a
rich scattering environment, (2.6) should be used to model the
distribution of the received Doppler shifts. Note that in (2.6), the
Doppler spread is sampled more densely around and
due to the “bathtub-shaped” Doppler profile [28]. If, however,
the Doppler spread is small and around a certain mean value
(which may be nonzero, in general), then a simple uniform dis-
cretization in (2.5b) should be used.

Fig. 1 illustrates the rectangular grid (2.4) in thetime–
frequency planefor the two sampling schemes considered here.
Fig. 1 (left) shows the uniform time-delay and Doppler spread
sampling in (2.5), whereas Fig. 1 (right) shows the uniform
time-delay and Jakes’ Doppler spread sampling in (2.5a) and
(2.6).

1) Transmit–Receive Antenna Arrays:The measurement
model (2.3) can also be used to describetransmit–receive
antenna array systems [29], [30]. Here, the basis functions
describe signals sent by the transmitter array. For example, in a
slow, flat fadingenvironment (i.e., negligible Doppler effect and
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time-delay spread), the basis-function vector simply
becomes ,
where , and are the signals trans-
mitted by a transmitter array withelements. Note also that the
model (2.3) allows channel matrix to be of an arbitrary rank,
which is of practical importance in transmit–receive antenna
array systems [31], [32].

III. M AXIMUM LIKELIHOOD ESTIMATION WITH

STRUCTUREDARRAY

We present the ML estimation procedure for the structured
array response model in (2.2) and the noise model from Sec-
tion II. If the DOA parameters and basis-function parameters

are known, the above model is known as the generalized multi-
variate analysis of variance (GMANOVA) [33]. For known basis
functions (i.e., known ), exact and approximate ML methods
for DOA estimation are derived in [4]. For spatially and tem-
porally white noise, an ML estimation algorithm for unknown
DOAs, time delays, Doppler shifts, and complex amplitudes in
the exact signal model (2.1) is derived in [10]. Here, we es-
timate the DOAs, basis-function parameters (for models from
Section II-B), and the unknown spatial covariance. Addition-
ally, we derive CRB expressions for these parameters; see Sec-
tion IV.

We will present two expressions for the concentrated likeli-
hood function to be maximized with respect toand . These
expressions provide new insight into the problem (for example,
relationship with Capon spectral estimation) and enable easy
derivation of the ML results for unstructured array; see Ap-
pendix A. The results in this section are useful for estimating the
locations and radial velocities of moving point targets (for ex-
ample, in radar) with , ,
and .

Define and
. The ML estimates of and for known and are

[33, ch. 6.4], [34, ch. 5], [35]

(3.1a)

(3.1b)

where

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.2e)

and denotes the identity matrix of size. Note that ,
, and are functions of only, and is a function of

both and . To simplify the notation, we omit these depen-
dencies throughout this paper. Further, observe that
is an adaptive (i.e., estimated) Wiener filter for estimating
from , , and is the estimate of its
error covariance; see [36, Sec. VII]. In addition, note that

is the projection matrix onto the column space

of . Here, denotes a Hermitian square root of a

Hermitian matrix , and ; this notation will
be used throughout the paper.

If and are not known, their ML estimates and are
computed by maximizing the concentrated likelihood function

, obtained by substituting the esti-
mates of and in (3.1) into the likelihood function (see, e.g.,
[19, App. A]). This concentrated likelihood function is written
in the form of a generalized likelihood ratio (GLR) test statistic
(see, e.g., [37] and [38, p. 418] for the definition of GLR) for
testing . To find the ML estimates of and for
unknown and , substitute and in (3.1a) and (3.1b) by
and .

The above concentrated likelihood function can be rewritten
as (see Appendix A)

(3.3)

where

(3.4a)

(3.4b)

Here, is a function of , and is a function of , but we
omit these dependencies throughout the paper to simplify the
notation. Note that is the projection matrix onto
the space orthogonal to the column space of . An-
other interesting form of the concentrated likelihood derived in
Appendix A is

(3.5)

The concentrated likelihood (3.5) is the ratio of the Capon spec-
tral estimate in the direction using the data and the Capon
spectral estimate in the directionusing the projection of
onto the space orthogonal to the row space of . This can
further be viewed as the overall power arriving from the direc-
tion , normalized by the power of the noise only, arriving from
the same direction [39].

When there is only one path, i.e., in (2.1) or
in (2.2), (2.4), and (2.5), the concentrated likelihood

is obtained by replacing , , and with , ,
and in (3.3) and (3.5); see also [25] and
[40]. If , the concentrated likelihood further reduces
to the expression in [24, (16)]. This scenario, which has been
analyzed extensively in [24], implies that matched filtering has
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been performed beforehand [i.e., snapshot corresponds to
the matched-filtered return from theth pulse], and the DOA
and Doppler shift are estimated using the matched-filtered data.
This approach, however, does not allow estimation of the time
delay.

IV. CRAMÉR–RAO BOUND

We derive general CRB expressions for the DOA and
basis-function parameters (time delays and Doppler shifts) in
the structured array model (2.2) and the spatially correlated
noise with unknown covariance (described in Section II). The
results will apply to the unstructured array model as well and
justify its use for synchronization; see the discussion below.
In radar and sonar, the derived CRB results are useful for
analyzing the accuracy of estimating time delays, Doppler
shifts, and DOAs of moving point targets (see Sections II
and III).

Define the projection matrices

(4.1a)

(4.1b)

which span the spaces orthogonal to the column spaces
of and , respectively. In addition, define

vec and vec .
We derive the CRBs for and and show that they are
uncoupled (see [40, App. C])

CRB Re

(4.2a)

CRB (4.2b)

CRB Re

Re

(4.2c)

The result (4.2b) is somewhat unexpected since the Fisher in-
formation matrix (FIM) for the signal parametersis a full
matrix in general; see [40, App. C]. Since the CRB forand

is block-diagonal, CRB remains the same whether or not
is known. Furthermore, CRB remains the same regardless

of the array-response parameterization. Similarly, CRBis the
same, regardless of whether or notis known and is invariant
to basis-function parameterization.

The practical implication of the CRB decoupling is that, if we
are primarily interested in synchronization (i.e., estimating, as
it is often the case in communications), then it is sufficient to use
the (tractable) unstructured array model since, asymptotically,
the same accuracy in estimatingcan be achieved for unstruc-
tured, structured, or known array response. Therefore, CRB
in (4.2c) is also valid for the unstructured array model in Sec-
tion II-A, where should be replaced with . The CRB
expressions in (4.2) are derived for a very general measurement
model (2.2) (with arbitrarily parameterized array response and
basis functions) and are thus applicable to other nonlinear re-
gression problems.

V. MAXIMUM LIKELIHOOD ESTIMATION WITH

UNSTRUCTUREDARRAY

We present the ML estimates of the channel and spatial noise
covariance matrices for the unstructured array model in (2.3).
For real measurements and completely known basis functions
(i.e., known ), this problem has been solved by Stoica and
Viberg in [23]. Here (see also [1] and [40]), we extend their
results to complex data, provide additional interpretations and
alternative derivations, extend the estimation to account for un-
known , and, finally, in Section VII, apply the results to the
receiver design. For spatially and temporally white noise and a
full-rank unstructured channel model, estimation algorithms for
time delays and Doppler shifts were derived in [11]. Here, we
consider a channel model of arbitrary rank (which is denoted by
; see Section II-A), spatially correlated noise with unknown co-

variance, and discretized basis-function models that reduce the
computational complexity (see Section II-B).

Define and

(5.1)

which is the estimated cross-correlation between the vectors
and , or the estimatedcoherence ma-

trix between and ; see [36, Sect. VII]. For simplicity
of notation, we omit the dependence ofand on . Con-
sider the singular value decomposition (SVD) of

(5.2a)

(5.2b)

(5.2c)

diag (5.2d)

where . Again, for no-
tational simplicity, we omit the dependence of the above quanti-
ties on . Note that for
because . Then, after simple manipula-
tions, we find that , are
the generalized eigenvalues of and , sorted in nonin-
creasing order [since is an increasing function of for

]. In addition, note that are the estimatedcanon-
ical correlations, i.e., is the cosine of the angle between the



462 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 3, MARCH 2002

th components of estimatedcanonical coordinatesof the data
and basis functions, which is defined (see [36]) as

(5.3a)

(5.3b)

for . Using the Poincaré separation theorem
[38, pp. 64–65], maximizing (3.5) with respect to the unstruc-
tured array response [of size , and having full
rank ] yields

(5.4)

see also Appendix B. Interestingly, for a full-rank channel, i.e.,
, (5.4) reduces to

(5.5)

which follows from the fact that the determinant of a matrix
equals to the product of its eigenvalues. It can also be obtained
from (3.3) and (3.5) by replacing with . Based on [41,
Th. 2.1] and [36, Sect. IV], we can then view [with

given in (5.5)] as a measure of (estimated) mutual infor-
mation between and .

We now present the ML estimate of the reduced-rank channel
matrix . Note that it is not possible to find unique esti-
mates of and , but their product is unique; see Appendix B.
First, we adopt the following notation: and are the
matrices containing the firstcolumns of and , respectively.
In Appendix B, we derive the ML estimates of the channel and
the noise covariance for known

(5.6a)

(5.6b)

(5.6c)

(5.6d)

The above three expressions for the ML estimate ofare equiv-
alent, but useful. Equation (5.6a) represents the channel estimate
computed using only the left singular vectors of ; similarly,
(5.6b) (which is derived for the real case in [23, (34)]) uses only
the right singular vectors of , whereas (5.6c) uses the re-
duced-rank representation of . Methods for
efficiently computing (5.6) when are derived
in [42].

When , i.e., the channel matrix is of
full rank, its ML estimate is simply the estimated Wiener
filter , and the ML estimate of the noise
covariance simplifies to
[which follow from (3.1) by replacing with ]. The
reduced-rank channel estimates in (5.6a) can then be viewed as

a product of an idempotent matrix and
the full-rank channel estimate.

If is unknown, its ML estimate is obtained by maximizing
the concentrated likelihood in (5.4). To find the ML estimates
of and , replace in (5.6) by . Note that the following
holds: , which can be viewed
as orthogonality between fit and residuals: an extension of a
well-known univariate result.

For a channel with negligible time-delay and Doppler
spreads, i.e., when in (2.5), the channel response
matrix reduces to a vector, and the concentrated likelihood
for the unstructured array is obtained by replacing and

with and in (3.3); see [25] and
[40]. In [25] and [40], we show that the resulting concentrated
likelihood function can be viewed as a multivariate extension
of thespectrogram[43, p. 95].

A. Effects of Time-Delay and Doppler Spread Discretizations

We investigate the effects of time-delay and Doppler spread
discretizations on the parameter estimates.

In general, the channel and spatial noise covariance estimates
in (5.6) are affected both by the noise and basis-function dis-
cretizations. To focus on the discretization effects, we assume
here that a large number of snapshotsis available (i.e.,

) and that the signal-to-noise ratio (SNR) is high; as
a result, the noise effects can be neglected. Thus, the imper-
fections in the estimation will be due only to the time-delay
and Doppler spread discretizations in (2.4)–(2.6). We intro-
duce the following notation for the “true” model in (2.1):

, where
is the “true” channel matrix, and

are the “true” basis functions. In addition, define
and

. Note that we use the subscript to
differentiate between the true model and the rectangular-grid
sampling schemes in (2.4)–(2.6) that we use to fit it. Then,
applying the unstructured channel estimation for knownin
(5.6), we obtain

(5.7a)

(5.7b)

where ,
, and

. The above expressions show the distortion
in estimating the channel and spatial noise covariance matrices
due to the discretization effects. The second term in (5.7b),
clearly due to the modeling error, is positive semi-definite;
thus, , which is intuitively appealing. If we use the
“true” model, i.e., , then the channel and noise
covariance would be perfectly estimated, i.e., and

. Further, observe that the concentrated likelihood (5.4)
becomes

(5.8)
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Fig. 2. Concentrated likelihood as a function of (Left) the “global” time delay� (in multiples of the chip durationT ) and Doppler parameter! for K = 2

discrete Doppler frequencies and�� = T =2. (Right)� for K = 2 and (a)�� = T =8, (b)�� = T =4, (c)�� = T =2, (d)�� = T , and (e) neglected
Doppler effect and�� = T =2.

which, for the “true” model [i.e., and, there-
fore, and ], simplifies to

(5.9)
In the case of transmit–receive antenna array systems in slow
flat-fading environment (see Section II-B1), we can choose the
basis functions

and therefore design , as desired. If the transmitter
has knowledge of the channel and noise covariance, it can
transmit waveforms having such that (5.9) is maximized
using “water filling,” as in, e.g., [44] [then, the maximized (5.9)
can be viewed as a measure of capacity of the channel].

Numerical Example 1—Concentrated Likelihood Func-
tion: In this numerical example, we study the concentrated
likelihood function expression in (5.8). We demonstrate
the feasibility of estimating the global time delay and
Doppler parameter [using the basis-function model in
(2.4), (2.5a), and (2.6)], as well as benefits of accounting
for the Doppler effect. We have generated a known signal

containing 100 chips having
rectangular pulse shapes [i.e., , where

is the Heaviside step function], where the amplitudes
are independent, identically distributed (i.i.d.) random

variables, taking values 1 with equal probability. Let the
sampling period be ; thus, the number of samples is

. We use a five-element uniform linear array with
half-wavelength spacing. The received signal was generated
by using the “true” model in (2.1) with paths. The
time delays are assumed to be uniformly distributed
between and (i.e., between samples 80
and 112). The complex amplitudes are i.i.d. zero-mean
complex Gaussian random variables having unit variance.
The DOAs are uniformly distributed between 0 and

, and the corresponding Doppler shifts were computed as
, where , which is quite

large (guaranteeing a fast-fading environment, which requires
that the product of the symbol duration and the Doppler spread
is larger than 0.01; see [26]). The spatial noise covariance is

assumed to be of the form ,
where 1 denotes the 5 5 matrix of ones. To ensure high
SNR [needed for the formulas (5.7) and (5.8) to be valid], we
choose the noise level . Note that we could choose
a larger , but then, for high SNR, we would need a signal
of longer duration for channel estimation. To fit the received
signal, we have used the rectangular-grid basis-function model
(2.4), with in (2.5a), whereas the Doppler basis
functions are chosen according to the Jakes model
(2.6) with only discrete Doppler shift frequencies, i.e.,

.
In Fig. 2 (left), we show the concentrated likelihood in (5.8)

as a function of the “global” time delayand Doppler parameter
, where the time-delay sampling period is , and

the Doppler effect is modeled using the Jakes model (2.6) with
only discrete Doppler frequencies. As expected, this
function has a peak at values ofand close to their true
values and 0.01.

In Fig. 2 (right), the curves (a)–(d) show the concentrated
likelihood in (5.8) as a function of for the true value of

(i.e., ) and the time delay sampling periods
[where the corresponding

sizes of are ], and
discrete Doppler frequencies in (2.6). Curve (e)

shows the concentrated likelihood (5.8) for when
the Doppler effect is neglected [i.e., , and
therefore, ]. Note that the above functions
have local maxima at multiples of and are relatively flat,
i.e., the “global” time delay does not need to be estimated
accurately to capture most of the signal energy with the
discretized basis functions. In addition, denser discretization
yields higher and sharper concentrated likelihood, as expected.
More importantly, accounting for the Doppler effect results
in a significantly higher and sharper concentrated likelihood
compared with the case when it is neglected. [Note the dif-
ference between the concentrated likelihood functions (d) and
(e), which employ the same number of basis functions .]
Higher values of the concentrated likelihood also enable better
detection performance, which is demonstrated by Example 2
in Section VII-A2.
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Thus, the proposed discretized basis-function models are suf-
ficiently accurate for communications. However, they may be
unacceptable in radar, where the accuracy of estimating time de-
lays and Doppler shifts is crucial; then, we should use the “true”
model with .

VI. SUPPRESSION OFSPATIAL AND TEMPORAL INTERFERENCE

We develop methods to filter out spatial and temporal in-
terference from the received data in the presence of spatially
correlated noise with unknown covariance. We show that the
concentrated likelihood function expressions in (3.3) and (3.5)
can be suitably decomposed into a product of two terms: the
concentrated likelihood for the received data and interference
only and the concentrated likelihood for the filtered data and
signal (both having been filtered to suppress the interference).
These results may be useful for multiuser interference suppres-
sion, which we briefly discuss in Section VI-B. Throughout this
section, we will use the following notation for the concentrated
likelihood function in (3.3) and (3.5): ,
meaning that it is computed for the data set, array response

, and basis-function matrix . This notation allows us
to state the obtained results compactly.

A. Spatial Interference

Consider first the case where the array response is
, where we have the following.

• is the known array response of an interference.
• is the array response matrix of useful signal.

Then, the concentrated likelihood function in (3.5) can be
written as

(6.1a)

(6.1b)

(6.1c)

where is an arbitrary full-rank matrix such that its columns
span the space orthogonal to the column space of; thus,

. Here, (6.1b) follows by applying the formula for
the determinant of a partitioned matrix [34, result v, p. 8] to

Fig. 3. Spatial interference is filtered out by projecting the measurementsY

and the array response of the useful signalA (���) onto the subspace orthogonal
to the spatial interference.

(6.1a), and (6.1c) follows then by using [35, Lemma 1] (see
also [38, p. 77]), stating

(6.2)

We can, for example, choose to be the matrix
whose columns are the rank eigenvectors of

with corresponding eigenvalues
equal to 1; then, .

Equation (6.1c) shows that the concentrated likelihood in
(3.5) can be decomposed into a product of the concentrated
likelihood function for the data set and interference array
response only, and the concentrated likelihood function for
the filtered data set and filtered array response
of the useful signal ; see Fig. 3. This
result can be compactly stated as

. Note that the
first term in the above product does not depend on ;
hence, it is also independent of the DOA parameters. As a
result, to find the ML estimate of, we need to maximize the
second term only, and for that purpose, it is sufficient to use the
filtered data and array response matrices and .

The above result can be used to implement a (suboptimal)
algorithm for sequential DOA estimation, where previously es-
timated DOAs would be used to construct the array response of
the interference .

B. Temporal Interference

Consider now the case where the basis function matrix is
, where we have the following.

• is the known basis-function matrix of an interference.
• is the basis-function matrix of useful signal.

Define the projection matrices spanning the column spaces of
and as and

and the corresponding complementary
projection matrices as and .
In addition, define

. Let be a matrix of size
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such that , i.e., spans the space orthogonal
to the column space of . Here, and are functions
of , but we omit this dependence to simplify the notation.
In addition, define as the matrix whose columns are the

rank eigenvectors of with corresponding eigen-
values equal to 1; then, . Using the identity
(6.2) [where , , and are replaced with , , and

], we obtain

and then, ,
which is the projection matrix onto the column space of

. Further, the following identities easily follow by
applying the projection-matrix decomposition formula:2

, and similarly,

. Applying
the formula for determinant of a partitioned matrix and
using the above definitions and identities, the concentrated
likelihood function in (3.3) can be written as in the equation
shown at the bottom of the page. This equation shows that
the concentrated likelihood in (3.3) can be decomposed into
a product of the concentrated likelihood function for the
data set and interference basis-function matrix only,
and the concentrated likelihood function for the filtered
data set and filtered basis-function matrix of
the useful signal ; see Fig. 4. This
decomposition can be written as

. The first term
in the above product does not depend on ; hence it is also
independent of . Thus, to find the ML estimate of, we need
to maximize the second term only.

Note that the above decomposition also applies to the con-
centrated likelihood function for full-rank unstructured channel

2For the proof of this result, see, for example, [45, Th. A.45].

Fig. 4. Temporal interference is filtered out by projecting the measurementsY
and the basis functions of the useful signal� (���) onto the subspace orthogonal
to the temporal interference.

(5.5) since it follows from (3.3) by setting . Thus,
(5.5) can be decomposed as

The second term in the above expression can be used to im-
plement the noncoherent concentrated-likelihood receiver (as is
discussed in Section VII-B1) with multiuser interference sup-
pression capability. For one basis function [i.e., , im-
plying that is a row vector] and one receive antenna
(i.e., , implying that is a row vector), and after
the monotonic transformation , this
term reduces to the noncoherent detector in [46].

VII. SYMBOL DETECTION

Recently, several authors have proposed incorporatingknown
spatial noise covariance into the receiver design. In [47]–[49],
maximum likelihood sequence estimators (MLSE) accounting
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for the known spatial noise covariance were proposed; lately,
they have been extended to account for temporally correlated
CCI following the vector autoregressive (VAR) model [50].
Here, we derive coherent matched-filter and concentrated-like-
lihood receivers that utilizeestimatedchannel response and
spatial noise covariance matrices (using results of Sections III
and V) as well as the basis-function signal models from
Section II-B. We also discuss the relationship between these
receivers.

Define the data sets (of size ) and (of size
) containing the known (training or previously detected) se-

quence and unknown symbol to be detected, respectively. Then,
for symbols, we associate possible basis-function matrices
with the symbol to be detected as for
. In the following discussion, we assume that the channel syn-

chronization has been done, i.e.,is known (hence, for no-
tational simplicity, we also omit functional dependence on
throughout this section).

A. Coherent Matched-Filter Receiver

We derive a coherent matched-filter receiver that accounts
for spatial noise covariance and analyze its performance. In
Section VII-A1, we derive analytical expressions for error
probability when binary signaling is employed and show
that the proposed receiver outperforms the coherent receiver
that does not take into account the spatial noise covariance.
In Section VII-A2, we analyze the impact of the basis-
function discretization (proposed in Section II-B) on the error
probability.

We use the training data and ML methods in Sections III
and V to estimate the channel and spatial covariance matrices
(denoted by and , respectively) and plug them into the
likelihood function for the unknown symbol (using ). Then,
the coherent matched-filter receiver is based on choosing the
that maximizes the decision statistic

Re tr tr

(7.1)

for . For the binary case (i.e., ), the
decision is made by computing

sign

sign Re tr

(7.2)

where the second term disappears if antipodal signaling is em-
ployed and intersymbol interference (ISI) is negligible (then

) or 1 and 0 bases have the same covariance ma-
trices (i.e., ). Then, the detector is simply
sign Re tr .

If and are the unstructured channel and noise esti-
mates from equations (5.6) applied to , then we derive (see

[40, App. D]) the following expressions needed to compute
in (7.1).

tr

(7.3a)

tr

(7.3b)

where are the canonical correlations, and
and are the canonical coordinates estimated from

the training data . Here, ,

and , where

, ,
, and , which easily

follow from the results of Section V. Thus, for the unstructured
channel, the coherent matched-filter reception can be viewed as
matching between the estimated canonical coordinates that is
suitably weighted by the corresponding canonical correlations.

For spatially white noise (i.e., substituting
in the above equations), exactly known channel param-
eters in the “true” model (2.1) (i.e., ), and
negligible Doppler effect (i.e., slow fading, implying

), the above receiver
reduces to the space–time RAKE receiver in [51, (111)]. In
addition, for spatially white noise, structured array model with
uniformly discretized angular spread and basis functions in
(2.5), the above receiver reduces to the coherent matched-filter
receiver in [21]. Clearly, these methods are not suited for
situations involving CCI since they are based on spatially and
temporally white noise assumptions. Note, however, that the
spatially correlated and temporally white noise assumption
used in this paper may also be too simplistic to account for
strong CCI.

Recently, more realistic RAKE receivers, which account both
for spatial and temporal interference, were proposed; see [52],
[53], and references therein. Unlike in this paper, the spatio-tem-
poral noise model in [52] is parametric (thus sensitive to mod-
eling inaccuracy) and complex, requiring exact knowledge of
channel parameters of all interfering users. In [53], a simpler,
space–time separable noise model is used with a parametric
model for the temporal covariance matrix.

1) Probability of Error for the Binary Case:We show how
accounting for the spatial noise covariance can significantly im-
prove the performance of the coherent matched-filter receiver in
(7.2). To concentrate on the noise correlation effects, we adopt
simplifying assumptions that the training sequence is long (i.e.,

), and there are no basis-function discretization ef-
fects. Then, the estimates of the channel and spatial noise co-
variance obtained from the training sequence are equal to their
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exact values, i.e., and . We show here that the
detector (7.2) outperforms the detector that assumes spatially
white noise [i.e., with substituted in (7.2)] in terms
of error probability. The expected value of [see (7.2)]
and its variance under hypothesis (symbol is received) is

E

tr

(7.4a)

var

tr (7.4b)

for , where (7.4b) is derived in Appendix C. Assuming
that the symbols 1 and 0 are equiprobable, the average error
probability is

e tr

(7.5)

where . For the spa-
tially white noise detector, the expected values and variances
of its output are tr and

tr , respectively. Then, the
error probability is

tr

tr
(7.6)

A straightforward application of the Cauchy–Schwartz in-
equality [38, p. 54] yields the inequality shown at the bottom
of the page. Using this inequality to compare (7.5) and (7.6),
we get

e (7.7)

where the equality holds if the noise is indeed spatially white.
To illustrate the advantages of accounting for the spatial noise

covariance, we consider a simple example with a two-element
antenna array. We then use the following parameterizations of
Hermitian positive definite matrices

and .

Note that in the case of antipodal signaling and negligible ISI
(i.e., ), we have

, which is proportional to the correla-
tion matrix of the mean (noiseless) response of the received data.
Then, and are positive real numbers proportional to the
variances of the mean responses at the two antennas, whereas

is the correlation between the mean responses (and, thus,
). Similarly, and are the noise variances at the

two antennas, whereas is the noise correlation between them
(and, thus, ). Now, the probability of error for the de-
tector (7.2) (which takes into account the spatial noise covari-
ance) follows from (7.5) as

e Re

(7.8)

whereas the error probability for the detector that assumes spa-
tially white noise follows from (7.6) as

Re

(7.9)

We now show that significant improvements can be achieved
by the proposed detector in (7.2) (compared with the detector
that assumes spatially white noise) if the noise levels at the
two antennas are disproportionate. Consider the case where the
noise variance at one of the antennas is very large; without loss
of generality, we assume here that . Clearly, the de-
tector assuming spatially white noise cannot adapt to this sit-
uation as its probability of error [in (7.9)] approaches

as (as in a random detector). How-
ever, the proposed detector (7.2) achieves probability of error

e ; see (7.8). Further-
more, it holds that e , where

e is the error probability for the coherent receiver employing
antenna 1 only. Here, strict inequality holds for , im-
plying that the proposed coherent matched-filter detector suc-
cessfully exploits the noise correlation between the antennas.
(Equality holds for when it effectively discards the
measurements from the second antenna and achieves the per-
formance of the single-antenna receiver.)

To further study the effects of noise and mean re-
sponse correlations ( and ) on the error probability,
consider the simple case where and

. Then, (7.8) and (7.9) further simplify
to e Re and

Re . Fig. 5(a) shows
as a function of Re and the SNR term
for various spatial correlations: . (Note
that Re , as shown in the figure.) It
can be seen that the presence of noise correlation between

tr
tr tr
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Fig. 5. Error probabilities of the coherent matched-filter receivers as functions of the product of the mean and noise correlation coefficients (Ref� � g) and
SNR term [20 � log (�=�)] when� = � = � and� = � = �. (a) Probability of error for the receiver that accounts for spatially correlated noise (P ) with
varying levels of noise correlation. (b) Comparison of probabilities of error for receivers assuming arbitrary (P ) and white spatial noise covariances (P ) when
j� j = 0:7.

the antennas improves the error probability; indeed, is
smaller for larger values of . Further, for fixed , it is
desirable that Re is as small as possible (the smallest

is achieved for Re ). As expected, drops
sharply as the SNR term increases.

Fig. 5(b) illustrates the advantage of accounting for spatially
correlated noise by comparing and , where the spatial
correlation is fixed at . As expected (and proved the-
oretically above), is always smaller than (or equal to) .
From Fig. 5(b), it is interesting to observe that the two detectors
approach the same performance asRe approaches
( 0.7 in this example).

2) Effects of Time-Delay and Doppler Spread Discretizations
on the Probability of Error: We study the influence of time-
delay and Doppler spread discretizations on the error probability
[for the coherent detector (7.2)]. To concentrate on the discretiza-
tioneffects,weassumethat the trainingsequence is long(thusne-
glecting the noise effects; see also Section V-A). In addition, we
assume that binary antipodal signaling is employed and that ISI
can be neglected; thus, the basis-function matrix of the received
symbol can be written as (of size ).
Theestimatesof thechannelandnoisematricesobtainedfromthe
training sequence follow from (5.7) (whereshould be replaced
with in the definitions of , , and , and, as
before, and are the channel and basis-function matrices
for the “true” model). Then, for equiprobable symbols, the prob-
ability of error easily follows as

tr

tr

tr

tr

(7.10)

where we have used the identity
.

Fig. 6. Probability of error as a function of the inverse of the noise level (� )
for �� = T =2 and�� = T =4 with Doppler effect neglected or modeled
usingK = 2 andK = 4 basis functions in the Jakes model. Full-line curve
shows the performance of the ideal receiver.

Numerical Example 2—Discretization Effects and Proba-
bility of Error: In this example, we study the error probability
expression in (7.10), which takes into account the discretization
effects. Assume that the received symbol is generated using
the model in Numerical Example 1 in Section V-A. Recall that
we have chosen , where can be
viewed as the noise level. In Fig. 6, we show the error proba-
bility as a function of for various levels of discretization
of the time delays and Doppler shifts. The time-delay spread
is discretized using and , whereas
the Doppler effect is neglected or modeled with and

basis functions in the Jakes model (2.6). The full-line
curve shows the performance of the ideal receiver (7.5) that
uses the “true” model (requiring the exact knowledge of all
time delays and Doppler shifts). Observe that neglecting the
Doppler effect severely deteriorates the detection performance,
whereas and comes very close to the
performance of the ideal receiver. These results demonstrate
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that using the simple basis-function model from Section II-B
and estimated channel and spatial noise covariance matrices in
(5.7), detection performance comparable with that of the ideal
receiver can be achieved.

B. Concentrated-Likelihood Receiver

Here (see also [1]), we propose an adaptive receiver structure
that utilizes simultaneously the data containing several known
symbols (which may be previously detected or symbols from
the training sequence)and the currently received symbol to es-
timate the channel and noise parameters. Then, the concentrated
likelihood (with respect to the channel and noise parameters) is
used to detect the new symbol; hence, we have the namecon-
centrated-likelihood receiver. An important special case when
no training is available is discussed in Section VII-B1. For sim-
plicity, we assume a full-rank unstructured channel [as in Sec-
tion V, with ], which allows for an easy recur-
sive computation of the concentrated likelihood, as shown in
Section VII-C. In the case of transmit–receive antenna arrays
(which is described in Section II-B1), this assumption is not re-
strictive since we can choose a subset of the set of transmit an-
tennas so that the channel is of full rank. The optimal choice of
this subset (that maximizes channel capacity) has been consid-
ered recently in [54], and the resulting channel is always of full
rank; see [54, Lemma 1].

Define the data matrix containing both the known symbols
and currently-received symbol with

snapshots. Then, the corresponding basis-function matrix
for the known symbols and the received symboltogether is

, . Note that when
and are sequential in time, then ,

where is the basis-function matrix covering the part of the
time where there is an overlap between the known and unknown
bases due to the delay spread, and is the basis for the
unknown symbol only. In CDMA applications, usually
covers only a small part of the symbol duration.

Under the above assumptions, the two forms of the concen-
trated likelihood function easily follow from (5.5) as

(7.11a)

(7.11b)

where ,
, and

; see also (3.2)
and (3.4b). The receiver detects the new symbol by choosing
the that maximizes the concentrated likelihood in (7.11) with
respect to .

We have shown in [40] that the coherent matched-filter
receiver for full-rank unstructured channel is approximately

equivalent to the above concentrated-likelihood receiver, as-
suming long training sequence (i.e., ). In particular,
we have shown that under this assumption

tr

(7.12)

where
, and (which are the ML estimates

of the channel and noise covariance matrices for the full-rank
unstructured channel, computed using the data with known sym-
bols only). The coherent matched-filter decision statistic in (7.1)
follows directly from (7.12). To gain more insight into the pro-
posed concentrated-likelihood receiver, in [40], we also con-
sider the unstructured channel model with negligible delay and
Doppler spreads [i.e., in (2.5)]. Then, the decision
statistic becomes closely related to the sample matrix inversion
(SMI) beamformer [55]; see [40].

1) Noncoherent Concentrated-Likelihood Receiver:Con-
sider now a concentrated-likelihood receiver that utilizes
only the data containing the currently received symbol (i.e.,
no training data is available). The detection statistic for
this noncoherent concentrated-likelihood receiverequals
(7.11), but since training data is not used, we have ,

, ,
, and

. The absence of known data,
however, imposes constraints that are useful for waveform
design. To see which waveforms are desirable, consider the
high-SNR case, and assume that symbolhas been sent. Then,
the generalized likelihood ratio test statistic to decide between
symbols and is

(7.13)

Clearly, we wish to maximize the above expression when .
If we have full control over the choice of (e.g., in the case of
transmit–receive antenna array systems in slow flat-fading envi-
ronment; see Section II-B-1), then we should choose
for to maximize the above expression. In addition, to
have equal separation for each pair of symbols, we may choose

constant for all .
Note that the above two conditions are closely related to the re-
cently proposed unitary space–time codes [56] and are tailored
for the case where the channel is unknown to the receiver. In the
case of a single transmitter and unstructured channel model with
negligible delay and Doppler spreads [i.e., when
in (2.5)], the above conditions simply demand that the symbol
waveforms are mutually orthogonal and have equal energy. Ob-
serve that the waveform design metric in the case of a nonco-
herent receiver should be based on the following matrix (for
codes and ): , unlike the co-
herent case (which is discussed in [30]), where it is based on

. These two matrices are fundamentally
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different, e.g., antipodal signaling (i.e., ) would make
the noncoherent matrix go to zero, implying that it is clearly in-
admissible for noncoherent detection (as expected).

The above detector can be viewed as a multivariate extension
(accounting for multiple receive antennas and spatially corre-
lated noise) of the multiuser detector in [57]. For one basis func-
tion (i.e., ) and one receive antenna (i.e., ), it further
reduces to the standard noncoherent detector (see, for example,
[58, sec. 5.4]).

C. Recursive Implementation

We derive a recursive algorithm for computing the concen-
trated likelihood function for a full-rank unstructured channel in
(5.5), which allows for a fast implementation of concentrated-
likelihood receivers in Section VII-B; see (7.11).

Define the data set and basis-function matrices
and ,

both containing snapshots. We denote by the con-
centrated likelihood in (5.5) computed for and

. We also define ,
, , and

. Then, can be
computed using the following recursive steps (see [40, App.
F]), as shown in (7.14a) and (7.14b) at the bottom of the page,
and the updates of the following quantities prepare for the next
step, as shown in (7.15a)–(7.15d) at the bottom of the page.
An analogous recursive procedure can be derived to compute
the concentrated likelihood function based on (7.11b). It would
essentially reduce to swapping and in the recursion
defined by (7.14) and (7.15).

VIII. C ONCLUDING REMARKS

We developed maximum likelihood methods for space–time
fading channel estimation in spatially correlated noise with
unknown covariance. Several basis-function models were
proposed to account for the multipath and Doppler effects. Two
array response models were used: structured and unstructured.

We computed the Cramér–Rao bound expressions for the
unknown direction-of-arrival and basis-function parameters,
showed that they are uncoupled, and discussed practical impli-
cations of decoupling. We derived coherent matched-filter and
concentrated-likelihood receivers that account for the unknown
spatial noise covariance. We analyzed the effects of time-delay
and Doppler spread discretizations on the performance of the
proposed coherent matched-filter receiver and demonstrated
its superiority over the corresponding receiver that does not
take into account the spatial noise covariance. We also derived
a computationally efficient recursive implementation of the
concentrated-likelihood receiver and discussed methods for
spatial and temporal interference suppression.

Further research will include developing estimation and de-
tection methods that account for temporal noise correlation as
well, analyzing the proposed concentrated-likelihood receiver
(in the multiuser and transmit–receive antenna array scenarios
in particular), and implementing iterative interference cancella-
tion schemes using the results of Section VI.

APPENDIX A
TRANSFORMATIONS OF THECONCENTRATED

LIKELIHOOD FUNCTION

We present herein the derivations of concentrated likelihood
function expressions in (3.5) and (3.3). These derivations are
similar to those in [20] and are given here for completeness of
presentation and because this reference is not easily available.

We start with the following expression for the concentrated
likelihood function.

(A.1)

which easily follows by substituting the estimates ofand
in (3.1) into the likelihood function for model (2.2); see also
Section III. Recall the definition of the matrix
from Section V; then, . Using definitions

(7.14a)

(7.14b)

(7.15a)

(7.15b)

(7.15c)

(7.15d)
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(3.2a) and (3.1b) and the formula for the determinant of a par-
titioned matrix (see [34, property v., p. 8]), we derive the fol-
lowing useful identities.

(A.2a)

(A.2b)

Further, observe that

(A.3)

which easily follows by using the following identity:
[see also (3.2e)]. Then, using (A.2) and

(A.3), the concentrated likelihood (A.1) can be rewritten as

(A.4)

We now apply formula for the determinant of a partitioned ma-
trix [34, property v., p. 8] as

(A.5)

where is defined as

(A.6)

For simplicity of notation, we omit the dependence ofon .
Applying the matrix inversion lemma (see, e.g., [34, p. 8]) to

, gives

(A.7)

Now, using (A.4) and (A.5), we obtain

(A.8)

where the second equality [and (3.5)] follows from (A.7).

To prove (3.3), we rewrite (A.4) as

(A.9)

Applying the matrix inversion lemma [34, p. 8] to (A.6) and
using yields , and

thus, using , we get ,
where was defined in (3.4b). Applying the matrix
inversion lemma to and using

yields

(A.10)

and then, can be simplified as

(A.11)

where the second equality follows by using
. Finally, we apply (A.6), (3.2e), (A.10), (A.11), and the

matrix inversion lemma to simplify

(A.12)

where the last equality follows after using
and the definition of in (3.4a). Then

(A.13)

where we used in the last equality. Substituting
and (A.13) into (A.9), we obtain (3.3).

APPENDIX B
DERIVATION OF UNSTRUCTURED ARRAY

ML ESTIMATION RESULTS

It is easy to show that the columns of defined
in (5.2) are also the (normalized) eigenvectors corre-
sponding to the eigenvalues of , which equal

. Since and
is an increasing function of for , the
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eigenvalues of are sorted in nonincreasing order.

Now, choose , where is an matrix of
full rank . Then, the concentrated likelihood in (3.5) becomes

which is maximized for and equals
exactly the expression in (5.4); see also [23, eq. (35)] and [20,
p. 25]. In general, the above expression is maximized for

, where is an arbitrary matrix of full rank, and
then, .

We now show that although the ML estimateis not unique,
is. Using (3.1a), the channel estimate in (5.6) easily follows

as

(B.1)

which does not depend on . In addition, the ML estimate of
in (5.6d) then follows from

.
Another way to derive (5.6) is by substituting , , and

by , , and ; then, (3.3) becomes

(B.2)

which should be maximized with respect to. Now, choose
, where is an arbitrary matrix of

rank . Then, (B.2) reduces to

which is maximized for and equals the ex-
pression in (5.4). In general, the above expression is maximized
for , where is an arbitrary matrix of full
rank, and then, . Further, (3.1a) gives

and , which is exactly equal to
the channel estimate in (5.6b). Then, the second expression for

in (5.6d) easily follows.

APPENDIX C
PROBABILITY OF ERROR FORCOHERENTRECEIVER

We derive the variance formula (7.4b). Note that var
var Re var , where tr

, and . In addition,
define . Now, using a well-known prop-
erty of the vec operator [34, result iii, p. 12], we have

vec vec (C.1)

and thus

E vec vec

tr (C.2)

In addition, note that E E , which follows
from the fact that E , , which is
a property of circular complex Gaussian distribution. Finally

var var E tr
(C.3)

which proves (7.4b).
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diversity techniques for blind identification and equalization of time-
varying channels,”Proc. IEEE, vol. 86, pp. 1969–1986, Oct. 1998.

[28] W. C. Jakes, Ed.,Microwave Mobile Communications. New York:
Wiley, 1974.

[29] G. J. Foschini, “Layered space-time architecture for wireless commu-
nication in a fading environment when using multi-element antennas,”
Bell Labs. Tech. J., vol. 1, no. 2, pp. 41–59, 1996.

[30] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for
high data rate wireless communication: Performance criterion and code
construction,”IEEE Trans. Inform. Theory, vol. 44, pp. 744–765, Mar.
1998.

[31] D. Chizhik, G. J. Foschini, and R. A. Valenzuela, “Capacities of multi-
element transmit and receive antennas: Correlations and keyholes,”
Electron. Lett., vol. 36, pp. 1099–1100, June 2000.

[32] D. Gesbert, H. Bolcskei, D. A. Gore, and A. J. Paulraj, “MIMO wire-
less channels: Capacity and performance prediction,” inProc. Globecom
Conf., San Francisco, CA, Nov. 2000, pp. 1083–1088.

[33] M. S. Srivastava and C. G. Khatri,An Introduction to Multivariate Sta-
tistics. New York: North-Holland, 1979.

[34] E. F. Vonesh and V. M. Chinchilli,Linear and Nonlinear Models for the
Analysis of Repeated Measurements. New York: Marcel Dekker, 1997.

[35] C. G. Khatri, “A note on a MANOVA model applied to problems
in growth curve,” Ann. Inst. Statist. Math., vol. 18, pp. 75–86,
1966.

[36] L. L. Scharf and J. K. Thomas, “Wiener filters in canonical coordinates
for transform coding, filtering, and quantizing,”IEEE Trans. Signal Pro-
cessing, vol. 46, pp. 647–654, Mar. 1998.

[37] H. L. Van Trees,Detection, Estimation and Modulation Theory. New
York: Wiley, 1968, pt. I.

[38] C. R. Rao, Linear Statistical Inference and Its Applications, 2nd
ed. New York: Wiley, 1973.

[39] D. R. Brillinger, “A maximum likelihood approach to frequency-
wavenumber analysis,”IEEE Trans. Acoust., Speech, Signal Processing,
vol. ASSP-33, pp. 1076–1085, Oct. 1985.
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Dr. Doganďzić received the Distinguished Electrical Engineering M.S. Stu-
dent Award by the Chicago Chapter of the IEEE Communications Society in
1996. He received the Aileen S. Andrew Foundation Graduate Fellowship in
1997 and the UIC University Fellowship in 2000.

Arye Nehorai (S’80–M’83–SM’90–F’94) received
the B.Sc. and M.Sc. degrees in electrical engineering
from the Technion–Israel Institute of Technology,
Haifa, in 1976 and 1979, respectively, and the
Ph.D. degree in electrical engineering from Stanford
University, Stanford, CA, in 1983.

After graduation, he worked as a Research Engi-
neer for Systems Control Technology, Inc., Palo Alto,
CA. From 1985 to 1995, he was with the Depart-
ment of Electrical Engineering, Yale University, New
Haven, CT, where he became an Associate Professor

in 1989. In 1995, he joined the Department of Electrical Engineering and Com-
puter Science, The University of Illinois at Chicago (UIC), as a Full Professor.
From 2000 to 2001, he was Chair of the Department’s Electrical and Computer
Engineering (ECE) Division, which is now a new department. He holds a joint
professorship with the ECE and Bioengineering Departments at UIC. His re-
search interests are in signal processing, communications, and biomedicine.

Dr. Nehorai is Editor-in-Chief of the IEEE TRANSACTIONS ON SIGNAL

PROCESSING. He is also a Member of the Publications Board of the IEEE
Signal Processing Society and on the Editorial Board ofSignal Processing.
He has previously been an Associate Editor of the IEEE TRANSACTIONS ON

ACOUSTICS, SPEECH ANDSIGNAL PROCESSING, the IEEE SIGNAL PROCESSING

LETTERS, the IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, the
IEEE JOURNAL OF OCEANIC ENGINEERING, andCircuits, Systems, and Signal
Processing. He served as Chairman of the Connecticut IEEE Signal Processing
Chapter from 1986 to 1995 and is currently the Chair and a Founding Member
of the IEEE Signal Processing Society’s Technical Committee on Sensor Array
and Multichannel (SAM) Processing. He was the co-General Chair of the First
IEEE SAM Signal Processing Workshop, held in 2000, and will serve in this
position also in 2002. He was co-recipient, with P. Stoica, of the 1989 IEEE
Signal Processing Society’s Senior Award for Best Paper. He received the
Faculty Research Award from UIC College of Engineering in 1999. In 2001,
he was named University Scholar of the University of Illinois. He has been a
Fellow of the Royal Statistical Society since 1996.


