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ABSTRACT

We develop an approximate maximum likelihood (ML)
scheme for reconstructing nonnegative sparse signals from
compressive samples. The measurements follow an underde-
termined linear model, where the regression vector is mod-
eled as the sum of an unknown deterministic nonnegative
signal with sparse transform coefficients and a zero-mean
white Gaussian component with an unknown variance. We
first derive an expectation-conditional maximization either
(ECME) algorithm that aims at maximizing the likelihood
function with respect to the unknown parameters and then
employ a difference map iteration to approximate the maxi-
mization (M) step of the ECME iteration. We compare the
proposed and existing large-scale sparse signal reconstruction
methods via numerical simulations and demonstrate that, by
exploiting both the nonnegativity of the underlying image and
the sparsity of its wavelet coefficients, we can reconstruct this
image using a significantly smaller number of measurements
than the existing methods.

Index Terms—Compressive sampling, sparse signal
reconstruction, nonnegative signal, expectation-conditional
maximization either (ECME) algorithm, difference map.

1. INTRODUCTION

Compressive sampling or compressed sensing exploits the
fact that most natural signals are well described by only a
few significant coefficients in some [e.g. discrete wavelet
transform (DWT)] domain, where the number of significant
coefficients is much smaller than the signal size [1–3]. There-
fore, for an m × 1 vector x representing the signal and an
appropriatem × m sparsifying transform matrix Ψ , we have
x = Ψ s, where s is an m × 1 signal transform-coefficient
vector with most elements having negligible magnitudes. The
idea behind compressive sampling is to sense the significant
components of s using a small number of linear measure-
ments: y = Φ x = Φ Ψ s, where y is anN ×1measurement
vector andΦ is a knownN×m sampling matrixwithN ≤ m.
We refer to the composite matrix Φ Ψ as the sensing matrix.
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In [4] and [5], the signal transform coefficients s were as-
sumed to be both nonnegative and sparse. In this paper, we
consider nonnegative signals x = Ψ s with sparse transform
coefficients s. This scenario is of significant practical interest
and has immediate applications in X-ray computed tomogra-
phy (CT) and magnetic resonance imaging (MRI). For exam-
ple, in X-ray CT, the underlying image x corresponds to the
tissue or material attenuation coefficients [6, Ch. 3.2], which
are clearly nonnegative. Many inherently nonnegative sig-
nals are also encountered in spectroscopy, tomography, DNA
microarrays, network monitoring, and hidden Markov mod-
els [5, 7, 8]. However, most such signals are not approxi-
mately sparse in the identity basis Ψ = Im, where Im de-
notes the identity matrix of size m. Therefore, the nonneg-
ative sparse signal model with the general sparsifying trans-
form Ψ is practically more useful and challenging than that
in [4] and [5]: It allows the signal of interest to be non-
negative as well as sparse in the appropriate transform do-
main. In [8], Harmany et al. have recently considered a simi-
lar nonnegative sparse signal model and developed a convex-
relaxation sparse Poisson-intensity reconstruction algorithm
(SPIRAL) that assumes Poisson measurements and nonnega-
tive elements of the sampling matrix. The SPIRAL method
in [8] can be adapted to the standard compressive sampling
scenario by replacing the Poisson measurement model with
the Gaussian signal-plus-noise model. Here, we propose a
probabilistic measurement model and derive a difference map
expectation-conditional maximization either (DM-ECME) al-
gorithm that approximately computes the maximum likeli-
hood (ML) parameter estimates of the unknown parameters.
We apply our algorithm to simulated CT data and demon-
strate that, by exploiting both the nonnegativity of the un-
derlying image and the sparsity of its wavelet coefficients,
we can achieve perfect reconstruction using a significantly
smaller number of measurements than the state-of-art sparse
reconstruction methods that exploit signal sparsity only.

We introduce the notation: N (y ; µ,Σ ) denotes the mul-
tivariate probability density function (pdf) of a real-valued
Gaussian random vector y with mean vector µ and covari-
ance matrix Σ ; ‖ · ‖!p

and “T ” are the !p norm and transpose;
Im and 0m×1 are the identity matrix of sizem and them× 1
vector of zeros; PS(a) = arg mins∈S ‖a − s‖2

!2
denotes

2011 IEEE Statistical Signal Processing Workshop (SSP)

978-1-4577-0570-0/11/$26.00 ©2011 IEEE 561



the minimum-distance projection of a vector a onto the con-
straint set S; the sparse thresholding operator Tr(s) keeps the
r largest-magnitude elements of a vector s intact and sets the
rest to zero; the nonnegative thresholding operator s+ keeps
the nonnegative elements of s intact and sets the rest to zero.

2. PROBABILISTIC MEASUREMENT MODEL AND
THE ECME ALGORITHM

We model a N × 1 real-valued measurement vector y as

y = Φ z (1a)

whereΦ is the knownN×m full-rank sampling matrix (N ≤
m) and z is anm × 1 multivariate Gaussian vector with pdf

pz | θ(z |θ) = N (z ; Ψ s,σ2 I) (1b)

Ψ is the knownm×m orthogonal sparsifying transform ma-
trix satisfying Ψ ΨT = ΨT Ψ = Im, s is an unknown m× 1
real-valued sparse signal transform coefficients vector and σ2

is an unknown variance-component parameter. The set of
unknown parameters is θ = (s,σ2) ∈ Θ with the parameter
space Θ = S+

r × [0,+∞) where

S+
r = {s ∈ R

m : ‖s‖!0 ≤ r , Ψ s ' 0m×1} (2)

is the signal parameter space that enforces the signal nonneg-
ativity and sparsity of the signal transform coefficients. We
refer to r as the signal sparsity level and assume that it is
known. The marginal likelihood function of θ is obtained by
integrating z out [see (1)]:

py | θ(y |θ) = N (y ; Φ Ψ s,σ2
Φ Φ

T ). (3)

Finding the exact ML estimate θ̂ML =
(
ŝML, σ̂2

ML

)
=

arg maxθ∈Θ py | θ

(
y |θ

)
involves a combinatorial search

and is therefore intractable in practice. In the following sec-
tion, we present an ECME iteration that aims at maximizing
(3) and is the basis of the DM-ECME algorithm in Section 3.

2.1. ECME Algorithm
We treat z as the missing (unobserved) data, and the ECME
algorithm maximizes either the expected complete-data log-
likelihood function (where the expectation is computed with
respect to the conditional distribution of the unobserved data
given the observed measurements) or the actual observed-
data log-likelihood (see [9, Ch. 5.7]) for estimating the un-
known parameters θ.

Assume that the parameter estimate θ(p) =
(
s(p), (σ2)(p)

)

is available, where p denotes the iteration index. The (p + 1)
iteration of the ECME algorithm proceeds as follows:

• update the estimate of the signal transform coefficients
using the expectation (E) step:

z(p+1) = Ψ s(p)+Φ
T

(
Φ Φ

T )−1 (y−Φ Ψ s(p)) (4a)

followed by the maximization (M) step:

s(p+1) = PS+
r
(ΨT z(p+1)); (4b)

• update the variance component estimate using the con-
ditional M (CM) step: (σ2)(p+1) = (y−Φ Ψ s(p+1))T

(ΦΦT )−1(y−ΦΨs(p+1))/N obtained by maximizing
(3) with respect to σ2 for a fixed s = s(p+1).

To derive the M step (4b), we have used the fact that Ψ is an
orthogonal matrix. The M step requires finding the minimum-
distance projection of the vector ΨT z(p+1) onto the signal
parameter space S+

r , which is the intersection of the sparsity
and nonnegativity constraint sets: S+

r = Sr ∩ S+, where the
sparsity and nonnegativity constraint sets are given by

Sr = {s ∈ R
m : ‖s‖!0 ≤ r } (5a)

S+ = {s ∈ R
m : Ψ s ' 0m×1}. (5b)

The intersection Sr ∩ S+ is not empty because it contains
the zero vector 0m×1 for any sparsity level r ≥ 0. Although
the M step is always well-defined, it is computationally in-
tractable: In the following section, we approximate it via a
difference map iteration.

3. DM-ECME ALGORITHM
We first describe the difference map iteration for approximat-
ing the M step and then summarize the proposed DM-ECME
iteration.

The difference map algorithm, first proposed in [10] to
solve the phase retrieval problem, is an iterative scheme
which, upon convergence, finds a point in the intersection of
two constraint sets A and B, see also [11]. Typically, this
algorithm is applied when the minimum-distance projections
onto A and B individually are simple. Given the q-th iterate
a(q), the (q + 1)-th difference map iteration proceeds as:

a(q+1) = a(q) + β
[
PA

(
fB(a(q))

)
− PB

(
fA(a(q))

)]
(6)

where fA(a(q)) = PA(a(q))−[PA(a(q))−a(q)]/β, fB(a(q)) =
PB(a(q)) + [PB(a(q)) − a(q)]/β, and β is a tuning param-
eter with typical value chosen as 0.6 ≤ |β| ≤ 1. Iter-
ate until convergence to a fixed point a", which satisfies
PA

(
fB(a")

)
= PB

(
fA(a")

)
. If the intersection A ∩ B is

not empty, then PB

(
fA(a")

)
must lie in this intersection

and is reported as the output of the difference map itera-
tion. The difference map iteration is known to be much
more effective than the naı̈ve alternating projection scheme:
a(q+1) = PB

(
PA

(
a(q)

))
. Indeed, the alternating projection

scheme is likely to be trapped in stagnation points, whereas
difference map is capable of escaping such traps [10, Sec.
1], [11, p. 418].

We now apply the above iteration to approximate the M
step in (4b). Assume that z(p+1) is available, computed in
the E step (4a). In our problem (4b), the two constraint sets
are A = Sr and B = S+, see (5a) and (5b). Note that the
projections of an m × 1 vector a to Sr and S+ alone are
simple:

PSr
(a) = Tr(a), PS+(a) = Ψ

T (Ψ a)+ (7)
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Input: y, Φ, Ψ , r, β
Output: parameter estimate θ̂ = (ŝ, σ̂2)
1: s ← 0m×1, σ2 ← yT (Φ ΦT )−1 y/N
2: ŝ ← s, σ̂2 ← σ2

3: repeat
4: z ← Ψ s + ΦT

(
Φ ΦT )−1 (y − Φ Ψ s)

5: a ← ΨT z {Initialize the difference map iteration}
6: repeat
7: fSr

(a) ← PSr
(a) − [PSr

(a) − a]/β
8: fS+(a) ← PS+(a) + [PS+(a) − a]/β
9: a ← a + β

[
PSr

(
fS+(a)

)
− PS+

(
fSr

(a)
)]

10: until two consecutive a do not differ significantly
11: s ← PS+

(
fSr

(a)
)

12: σ2 ← (y − Φ Ψ s)T (Φ ΦT )−1 (y − Φ Ψ s)/N
13: if σ2 < σ̂2 then
14: ŝ ← s, σ̂2 ← σ2

15: end if
16: until two consecutive s do not differ significantly or max

number of iterations is reached

Fig. 1. Pseudo-code describing the DM-ECME algorithm.

where we used the fact that Ψ is an orthogonal matrix. We
use (7) and the initial value a(0) = ΨT z(p+1) to implement
the difference map iteration (6). Upon convergence of this
iteration, we obtain an estimate of the signal transform coef-
ficient vector s(p+1) that, in our experience, is much closer
(in Euclidean distance) to ΨT z(p+1) than the trivial feasible
point 0m×1. [Recall that the exact M step in (4b) seeks the
s(p+1) that is the closest to ΨT z(p+1).]

Fig. 1 summarizes the DM-ECME algorithm in the
pseudo-code format. Since the maximization step (4b) is
only approximated by the difference map iteration, the DM-
ECME iteration does not guarantee monotonic increase of the
marginal likelihood function. Consequently, we introduce the
condition in step 13 to check if the marginal likelihood func-
tion (3) evaluated at the new parameter estimates is higher
than the largest likelihood achieved in the previous steps. If
this condition holds, we update the parameter estimates.

4. NUMERICAL EXAMPLES
Consider the tomographic reconstruction of the Shepp-Logan
phantom of sizem = 2562 in Fig. 2(a). All pixel values of the
phantom image are nonnegative, representing attenuation co-
efficients. The tomographic measurements y were simulated
using the 2-D discrete Fourier transform (DFT) coefficients
of the phantom sampled over a star-shaped domain, as illus-
trated in Fig. 2(b), see also [2, 3]. The sampling matrix Φ is
therefore constructed using selected rows of the DFT matrix
that yield the corresponding DFT coefficients of the phantom
image within the star-shaped domain. Consequently, the rows
of Φ are orthonormal, i.e. Φ ΦT = IN , obviating the need to
compute and store (Φ ΦT )−1. In this example, we select the
inverse Haar (Daubechies-2) DWT matrix to be the orthogo-
nal sparsifying transform matrix Ψ because the Haar wavelet
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Fig. 2. (a) The size-2562 Shepp-Logan phantom and (b) a
typical star-shaped sampling domain in the frequency plane.
transform coefficients of the phantom image in Fig. 2(a) are
sparse, with ‖s‖!0 = 3769 ≈ 0.06m.

Our performance metric is the peak signal-to-noise ratio
(PSNR) of a signal estimate [12, eq. (3.7)]. We compare
the PSNRs of (i) the DM-ECME algorithm in Section 3, with
the difference map parameter set to β = 1 and maximum
number of iterations set to 2000; (ii) the SPIRAL method in
[8] adapted to the Gaussian signal-plus-noise model (termed
SPIRALG), which solves the following optimization prob-
lem: minx

1
2 ‖y−Φ x‖2

!2
+τ ‖ΨT x‖!1 subject tox ' 0m×1,

with the regularization parameter

τ = 10−4 (8)

tuned manually for good performance; (iii) the ECME
method in [13, Sec. II-A] that exploits signal sparsity only
(termed ECMES) and corresponds to the ECME iteration
(4) with PS+

r
(·) replaced by PSr

(·) in the M step (4b); (iv)
the normalized iterative hard thresholding (NIHT) scheme
in [14]; (v) the fixed-point continuation active set convex
relaxation method (labeled FPCAS) in [15], which solves
minx

1
2 ‖y − Φ x‖2

!2
+ τ ‖ΨT x‖!1 , with the regularization

parameter τ in (8); (vi) the standard filtered backprojec-
tion (FBP) that corresponds to setting the unobserved DFT
coefficients to zero and taking the inverse DFT, see [2]. DM-
ECME, ECMES, and NIHT require knowledge of the signal
sparsity level r; in this example, we set r to the true signal
support size: r = 3769. DM-ECME, SPIRALG, ECMES,
and NIHT are initialized by s(0) = 0m×1 and employ the
following convergence criterion:

‖s(p+1) − s(p)‖2
!2

/
m < 10−14. (9)

We apply (9) as the convergence criterion for the difference
map iteration in step 10 of Fig. 1, where s(p+1) and s(p) are
replaced by the difference map iterates a(q+1) and a(q).

We plot in Fig. 3(a) the logarithm of the marginal likeli-
hood (3) of the DM-ECME parameter estimate at each itera-
tion p until convergence for the reconstructions from 38 radial
lines, which corresponds to the subsampling factor N/m =
0.142. This log likelihood increases strictly monotonically as
p grows, which is appealing.

Fig. 3(b) shows the PSNRs of the above methods as we
change the subsampling factor N/m by varying the number
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Fig. 3. (a) The log likelihood achieved by the DM-ECME iteration as a function of the iteration index p for N/m = 0.142 and
(b) the PSNRs achieved by various methods as functions of the subsampling factor N/m.

of radial lines in the star-shaped partial Fourier sampling
pattern. In this example, the hard thresholding methods (DM-
ECME, ECMES, and NIHT) have significantly sharper phase
transitions than the convex methods SPIRALG and FPCAS,
and effectively achieve perfect reconstructions after the phase
transitions. FPCAS, ECMES, and NIHT, which take only
signal sparsity into account, exhibit the phase transitions at
N/m = 0.153 (FPCAS) and N/m = 0.160 (ECMES and
NIHT), where FPCAS does not achieve perfect reconstruction
after the phase transition. In contrast, the DM-ECME ap-
proach achieves an earlier phase transition at N/m = 0.139.
Hence, in this example, exploiting the nonnegativity of the
underlying image leads to 13% saving in the number of mea-
surements required to achieve perfect reconstruction. For
N/m < 0.153, the SPIRALG scheme has a consistently
higher PSNR than the traditional convex FPCAS method by
about 20 dB, which is attributed to its accounting for the
signal nonnegativity. We also observe that, before its phase
transition (i.e. when N/m < 0.139), DM-ECME achieves
noticeably higher PSNRs than the traditional FBP, FPCAS,
ECMES, and NIHT methods.
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