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Abstract—We propose maximum likelihood (ML) and restricted
maximum likelihood (REML) methods for estimating the mean
and covariance parameters of multi-input multi-output (MIMO)
Ricean and Rayleigh block-fading channels using measurements
from multiple coherent intervals containing both amplitudes and
phases of the received signal. Correlated and independent fading
scenarios with structured and unstructured line-of-sight (LOS)
array response models are considered. Computationally efficient
ML and approximate ML (AML) estimators are proposed for
unitary space-time modulation schemes and orthogonal designs
in correlated fading. We also derive Cramér–Rao bounds (CRBs)
for the unknown parameters, discuss initialization of the proposed
algorithms, and evaluate their performance via numerical simula-
tions under the block- and continuous-fading scenarios.

Index Terms—Cramér–Rao bound, maximum likelihood estima-
tion, multi-input multi-output (MIMO) fading channels, Rayleigh
fading, restricted maximum likelihood estimation, Ricean fading.

I. INTRODUCTION

STATISTICAL modeling of multi-input multi-output
(MIMO) Ricean and Rayleigh fading channels has recently

attracted considerable attention; see [1]–[3] and references
therein. The effects of correlated MIMO Rayleigh and Ricean
fading on capacity and error-probability performance are
discussed in [1]–[9]. However, it is assumed in [1]–[9] that
statistical properties of the fading process are known. In [10], a
method is proposed for consistent estimation of fading channel
correlations in a single-input single-output frequency-selective
Rayleigh fading scenario. In [11], an expectation–maximization
(EM) algorithm is derived for estimating the mean and covari-
ance parameters of a multivariate complex Ricean density from
noiseless measurements and applied to polarimetric synthetic
aperture radar (SAR). Most existing approaches to estimating
fading-channel statistical properties do not account for noise
effects and are based on signal-power measurements only; see,
e.g., [12], [13], and references therein. In this paper (see also
[14]), we present maximum likelihood (ML) and restricted
maximum likelihood (REML) methods for estimating statis-
tical properties of MIMO Ricean and Rayleigh block-fading
channels using complex noisy measurements (containing both
the phases and amplitudes of the received signals) from mul-
tiple coherent intervals. Knowing these properties is beneficial
for (i) performance analysis [1]–[9] and design of wireless
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communication systems [6], [15], [16], (ii) implementation of
space-time transmit precoding schemes that utilize mean and
covariance feedback (see, e.g., [17] and references therein),
(iii) antenna and constellation selection in spatial-multiplexing
MIMO systems [18], (iv) implementation of noncoherent ML
space-time receivers [5], [6], (v) mobile positioning [19], and
(vi) channel estimation and sounding1 [10], [22], [23, ch. 5.3.7].
Furthermore, the estimation methods developed herein are
applicable to sensor array processing for moving arrays (which
shares a similar measurement model; compare, e.g., the models
in [24] and Section II).

We introduce the measurement model in Section II. In Sec-
tion III, expectation-conditional maximization either (ECME)
algorithms2 are developed for computing the ML and REML es-
timates of the mean and covariance parameters of MIMO chan-
nels under correlated and independent block-fading scenarios
(Sections III-A and B, respectively). In Section III-A3, we de-
rive closed-form ML and approximate ML (AML) estimators
for unitary space-time modulation schemes and orthogonal de-
signs in correlated fading. We also derive Cramér–Rao bound
(CRB) expressions for the unknown parameters (Appendix E
and Section III-B1), discuss initialization of the proposed al-
gorithms (Section III-A1), and evaluate their performance via
numerical simulations under both block- and continuous-fading
scenarios (Section IV). Concluding remarks are given in Sec-
tion V.

II. MEASUREMENT MODEL

We adopt a block-fading model where the fading coefficients
are constant within a coherent interval but vary randomly from
one coherent interval to another. Assume that spatiotemporal
measurements from coherent intervals are available. Denote
by an data vector received by an array of an-
tennas at time in the th coherent interval,
where . We consider the following measure-
ment model:

(2.1)

where , and

• is the channel response matrix;

1In particular, the channel mean and covariance parameters can be incorpo-
rated into channel estimation by utilizing the Bayesian linear-model minimum
mean-square error (MMSE) estimator [20, Th. 11.1], [21], which outperforms
the classical least-squares channel estimator [10].

2The ECME algorithms belong to the general class of EM algorithms; see
[25]. The EM algorithms converge monotonically to a local or the global max-
imum of the likelihood function; see, e.g., [25, ch. 3] and [26, ch. 12.4].
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• is an vector of signals transmitted by
transmitter antennas and received by the receiver array at
time ;

• is additive white complex Gaussian noise with

Here, denotes the Kronecker delta symbol, the identity
matrix of size , and “ ” the Hermitian (conjugate) transpose.
We assume that the transmitted symbols are known, i.e., the
coherent intervals contain training or previously detected data.
Stacking all time samples from the th coherent interval into
a single vector and using ([27, (2.11) in ch. 16]), we write (2.1)
as

(2.2a)

where vec is the channel response vector,
is the spa-

tiotemporal data vector, ,
and

(2.2b)

Here, “ ” denotes a transpose, the Kronecker product, and
the vec operator stacks the columns of a matrix one below an-
other into a single column vector3. The matrix in
(2.2b) is the signal matrix in the th coherent interval; we also
define the “augmented” signal matrix of size .
The “vectorized” model (2.2) is used in [5] and [6] to describe
MIMO measurements from a single coherent interval.

We now decompose the channel response vector into
a sum of the (deterministic) line-of-sight (LOS) component

and (random) scattering component

(2.3)

Let us adopt the following model for the LOS component:

(2.4a)

where

• are matrices;
• is an vector of unknown complex coefficients.

The model (2.4a) is fairly general and can be used to describe
the LOS component when dual-polarized antenna elements are
employed.

When the transmitter and receiver LOS array responses are
not known and the variation of the LOS component from one
coherent interval to another can be described with a simple
Doppler-shift model, we select as

(2.4b)

where is the LOS Doppler shift (in radians) due to the
relative movement between receiver and transmitter.4 We as-
sume that is known, unless specified otherwise (see,
e.g., Figs. 4, 9, and 10 in Section IV). Here, (2.4a) simplifies

3For the definition and properties of the Kronecker product and vec operator,
see [27, ch. 16].

4Note that ! corresponds to the continuous-time LOS Doppler shift

 = ! =�t, where �t is the symbol duration.

to , where is the
unstructured LOS array response vector; hence, in
this case.

If the transmitter and receiver LOS array responses are
known, we utilize the structured LOS array response model
(see [6], [14], [28], and [29]):

(2.4c)

where and are the transmitter and receiver
LOS array response vectors of dimensions and

, respectively. Now, (2.4a) becomes
, where is

the scalar LOS complex amplitude (implying ), and
is an vector.

To describe the channel variation from one coherent interval
to another, we assume that the scattering channel vectors
are zero-mean independent, identically distributed (i.i.d.) com-
plex Gaussian, with an covariance matrix:

(2.5)

In addition, and noise vectors are assumed to be inde-
pendent, i.e., , where .

Our goal is to estimate the unknown parameters in the above
model:

• the LOS coefficient vector ;
• spatial fading covariance matrix ;
• noise variance ;

which are assumed to be constant over the coherent intervals.
This assumption is justified by the fact that the channel mean
and covariance parameters depend on large-scale variations in
the scattering environment, which are typically slow (see also
the discussion in, e.g., [15] and [22]). Define the vector of un-
known parameters:

Re Im (2.6)

where

(2.7)

is the vector of variance components, and describes a
parametrization of the fading covariance matrix . We consider
two models for :

i) unstructured (correlated fading)

Re vech Im vech

where the correlation structure of the fading channel is
completely unknown;

ii) diagonal (independent fading)

diag

and

where the fading-channel coefficients are independent
with nonequal variances.

Here, the vech and vech operators create a single column vector
by stacking elements below the main diagonal columnwise;
vech includes the main diagonal, whereas vech omits it. Note
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that is a valid parametrization only if is a positive semidef-
inite Hermitian matrix.

In the following, we derive ML and REML algorithms for
estimating the unknown parameter vector under the two fading
scenarios described above. We also derive efficient algorithms
for estimating when is a constant or an identity matrix.

III. ML AND REML ESTIMATION

We first outline the ML and REML approaches to estimating
and then present the proposed algorithms.
Under the measurement model in Section II, the spatiotem-

poral data vectors are independent, complex Gaussian with
means and covariances

(3.1a)

cov

(3.1b)

Thus, the log-likelihood function to be maximized is the loga-
rithm of the joint probability density function (pdf) of

(3.2)

where denotes the determinant,
is an matrix of rank , and

is an block-diagonal matrix:

bdiag

The estimate of the LOS coefficient vector that maximizes
(3.2) for any fixed is given by

(3.3)

where

(3.4a)

(3.4b)

vec (3.4c)

and

is the spatiotemporal data matrix in the th coherent interval.
The second equalities in (3.3) and (3.4c) follow by using (A.2)
in Appendix A and [27, (16.2.11)], respectively. Replacing
in (3.2) with its ML estimate in (3.3) yields the concentrated
log-likelihood function:

(3.5)

where

Note that (3.5) is a nonlinear function of the variance-compo-
nent parameters that generally needs to be maximized using
iterative algorithms. Once the ML estimate is computed by
maximizing (3.5), the ML estimate of is obtained by substi-
tuting into (3.3). Interestingly, closed-form solutions for the
ML estimates of exist under the correlated fading scenario
with constant ; see Section III-A3.

We now introduce the REML method for estimating the un-
known variance components. The REML estimate of is ob-
tained by filtering out the deterministic Ricean component from
the received data and applying ML estimation to the error con-
trasts (i.e., filtered data), which corresponds to maximizing the
REML log-likelihood function (see Appendix B)

(3.6)

with respect to , where is the concentrated log
likelihood in (3.5). We can also derive (3.6) by using an inte-
grated-likelihood approach for eliminating nuisance parameters
[30]. Here, we treat as a nuisance parameter vector and inte-
grate it out using a noninformative prior5; see [31, ch. 3.3.3]. The
REML method provides only estimates of the variance compo-
nents ; however, a good estimate of is obtained by substi-
tuting the REML estimate of into (3.3), which we call the
“REML” estimate of (with a slight abuse of terminology).
Since the Ricean component has been filtered out, the REML
estimate of is invariant to the value of , i.e., changing does
not alter the REML estimate of . Finally, the REML estimates
of the variance components have smaller bias than the corre-
sponding ML estimates; see [31] and [32].

In Appendix E, we compute general CRB expressions for the
unknown parameters , assuming an arbitrary parametrization

of the fading covariance matrix. We then specialize
these general results to the independent and correlated fading
scenarios with constant (e.g., equal to the identity ma-
trix); see (3.23) in Section III-B1 and Appendices E-A and E-B.

A. Correlated Fading

We compute the ML and REML estimates of the unknown
parameters under the correlated fading scenario. ECME algo-
rithms for arbitrary are presented in Sections III-A1 and
2. In Section III-A3, we derive an alternating-projection ML al-
gorithm for the case where are independent of .

1) ECME Algorithm for ML Estimation: In Appendix C.A,
we derive an ML ECME algorithm for estimating under the
correlated fading scenario. An ECME algorithm maximizes ei-
ther the expected complete-data log-likelihood function (where

5Choices of a noninformative prior pdf for xxx could be a complex Gaussian
with an arbitrary mean and a covariance matrix whose inverse is a zero matrix,
or Refxxxg; Imfxxxg 2 uniform(�1;1); see [31, p. 84].
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the expectation is computed with respect to the conditional dis-
tribution of the unobserved data given the observed measure-
ments) or the actual observed-data log-likelihood; see [25, ch.
5.7], [33], and [34]. Here, we treat the scattering channel vec-
tors as the unobserved (or missing) data
and derive the following ECME algorithm: Iterate between

(3.7a)

(3.7b)

(3.7c)

for , and

(3.8a)

(3.8b)

where

tr

(3.8c)

The matrices and vectors [de-
fined in (3.4b) and (3.4c)] and (above) do not depend on
the unknown parameters and can therefore be computed before-
hand. In addition, in (3.7c) are the (estimated) Bayesian
linear-model MMSE estimators of the scattering channel vec-
tors , with , and replaced by their th-iteration es-
timates (see also Footnote 1). To derive the second equality in
(3.8c), we have used the property of the vec operator in [27, Th.
16.2.2].

Initialization: The above iteration can be initialized with
, implying that the initial estimate of the

LOS coefficient vector is simply its linear least-squares (LS)
estimate [see also (3.3)]:

(3.9)

After computing , a good initial estimate of is its modi-
fied method-of-moments estimate (similar to [35, p. 244]):

(3.10a)

where is a method-of-moments estimate of :

(3.10b)

which is a good initial estimate of , and is the
smallest generalized eigenvalue of the matrices

and . Note that
can be efficiently computed as

where denotes complex conjugation. The moment es-
timator in (3.10a) follows by pre- and post-multiplying

by , summing
over , taking the expectation of the resulting
expression, and solving for ; the moment estimator in (3.10b)
follows by verifying that its expectation is . To derive (3.10a),
we applied a modification similar to [35, p. 244] to ensure that

is always a valid (i.e., positive semidefinite) covariance
matrix.

2) ECME Algorithm for REML Estimation: In Ap-
pendix C-B, we derive an ECME algorithm for REML
estimation of , which follows by replacing (3.8a) and (3.8b)
with

(3.11a)

(3.11b)

in the iteration (3.7) and (3.8) and keeping the other steps intact.
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The above ML and REML ECME algorithms always con-
verge to estimates that are in the parameter space:
and (i.e., is positive semidefinite) at each itera-
tion step , provided that the initial values are in the parameter
space. This is an important general property of the EM and re-
lated algorithms (such as ECME), see [26, ch. 12.4]. The fact
that in (3.8b) follows from the derivation in Ap-
pendix C; see (C.4) and (C.7), and observe that a sample covari-
ance matrix is always positive semidefinite. A similar argument
applies to the REML case since the ECME REML algorithm is
simply the ECME ML algorithm applied to the error contrasts.
Rayleigh-fading versions of the above algorithms are obtained
by removing the step (3.7b) and setting in (3.7c)
and (3.8a) or (3.11a).

3) ML Estimation for Constant : We now present
computationally efficient estimators for the scenario where

constant (3.12a)

(independent of ), which holds for
many practically important signaling schemes, e.g., uni-
tary space-time codes [36] and space-time block codes based
on orthogonal designs [37], [38]. The above condition implies
that also does not depend on ; hence, we define

(3.12b)

In this case, there exists a closed-form expression for the ML
estimate of (see Appendix D):

tr (3.13)

which coincides with the moment estimator in (3.10b). The
exact ML estimates of and can be computed by iterating
between the following two steps (see Appendix D):

(3.14a)

(3.14b)

vec (3.14c)

for , and

(3.15)

The above iteration increases the log-likelihood function (3.2)
at each cycle but may converge to solutions that are not in the
parameter space; see also the discussion below. It can be shown
that if (3.12) holds, the estimators (3.13) and (3.15) are fixed
points of the ECME iterations (3.8a) and (3.8b).

In Appendix E-A, we derive the CRB expressions for this
scenario.

ML Estimation for Unstructured LOS Array Response
Model: Under the unstructured LOS array response model

vec

(3.16a)

(3.16b)

are the closed-form expressions for the ML estimates of and
, where is the ML estimate of in (3.13), and

vec (3.16c)

for . Here, (3.16a) follows by substituting (2.4b)
into (3.3) [see also (3.4b) and (3.12b)], and (3.16b) is obtained
by substituting into (D.2c); see Appendix D.

If the LOS Doppler shift is unknown, its ML estimate
can be computed by maximizing the following concentrated log-
likelihood function:

(3.17)

where

vec (3.18)

is proportional to the discrete-time Fourier transform (DTFT)
of . The above concentrated log-likelihood
is obtained by replacing , and in (A.3) (see Ap-
pendix A) with , and (respectively), ne-
glecting constant terms, using ([27, Th. 18.1.1, p. 416]), and
applying a monotonic transformation. The classical algorithm
for DTFT-based frequency estimation in [39, ch. 6.4.4] can be
easily extended and applied to maximizing (3.17).

AML Estimation for Structured LOS Array Response
Model: Due to the CRB decoupling between the mean and
variance-component parameters [see (E.1a) in Appendix E],
the ML estimate of for the unstructured LOS array response
model in (3.16b) is asymptotically efficient under the structured
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LOS array response model. Hence, is an AML estimate
of , provided that it is positive semidefinite. Now, we obtain
a closed-form AML estimate of the structured-array complex
LOS amplitude by substituting (2.4c) and and into
(3.3)

(3.19a)

where

(3.19b)

To simplify the notation, we have omitted the dependence of
on in (3.19). The above estimator

is asymptotically efficient. However, it is based on the assump-
tion that and performs poorly when this assumption
does not hold (e.g., when is small, see Figs. 2, 6, and 8 in
Section IV).

ML Estimation for Rayleigh Fading: Under the Rayleigh-
fading scenario, the closed-form expressions for the ML esti-
mates of and are given by (3.13) and

vec vec

(3.20)

The closed-form ML estimates in (3.13), (3.16), and (3.20)
can be used to implement noncoherent ML space-time receivers,
which require fast estimation of the fading parameters.

The estimates of obtained using (3.14) and (3.15) and
closed-form expressions (3.16b) and (3.20) are maximum
likelihood only if they are positive semidefinite; otherwise, we
can apply the ECME algorithm in Section III-A1, which always
converges to solutions within the parameter space. Clearly, a
necessary condition for (3.15), (3.16b), and (3.20) to be positive
semidefinite is . The probability that (3.14)–(3.15),
(3.16b), and (3.20) yield nonpositive semidefinite estimates of

is asymptotically zero as either or . For
the unstructured LOS array response model, we can remove
(3.7b) from the ML and REML ECME iterations and use the
closed-form expression for the ML estimate of in (3.16a).

B. Independent Fading

We develop ECME ML and REML algorithms for estimating
under the independent fading scenario and simplify them in

the case where is an identity matrix. Approximately in-
dependent fading occurs, for example, in virtual channel repre-
sentations; see [22] and references therein. (In [14], we derived
Henderson’s methods [40] for this scenario, which performed
similarly to the algorithms proposed here.)

1) ECME Algorithm for ML Estimation: The ECME ML
algorithm for independent fading follows using arguments sim-
ilar to those in Appendix C-A (where ECME algorithms were
derived for the correlated fading scenario): Iterate between
(3.7a)–(3.7c) for and

(3.21a)

(3.21b)

for , where has been defined in (3.8c),
and

diag

Here, denotes the absolute value, the
element of , and the th ele-

ment of .
: When , (3.7a) and (3.7c) sim-

plify to

diag

(3.22a)

(3.22b)

for , and the conditional maximization
(CM) steps in (3.21a) and (3.21b) simplify accordingly. In this
case, the CRB expressions also simplify (see Appendix E-B):

CRB (3.23a)

CRB CRB

(3.23b)

for . Here, CRB is an increasing
function of both and . As expected, both CRB and
CRB decrease proportionally to as the number of
coherent intervals grows.
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TABLE I
PERCENTAGES OF TRIALS IN WHICH THE ALTERNATING-PROJECTION AND CLOSED-FORM ESTIMATORS FOR THE STRUCTURED AND UNSTRUCTURED LOS ARRAY

RESPONSE MODELS IN (3.15) AND (3.16b) WERE NOT POSITIVE SEMIDEFINITE, AS FUNCTIONS OFK

2) ECME Algorithm for REML Estimation: The ECME
REML algorithm for independent fading follows using ar-
guments similar to those in Appendix C-B: Iterate between
(3.7a)–(3.7c) for , and

(3.24a)

(3.24b)

where . For , we can use
(3.22) to simplify (3.24a) and (3.24b).

As in the correlated fading case, the above ECME algorithms
converge to variance estimates that are always in the parameter
space (i.e., non-negative). They can be initialized using the mo-
ment estimators in (3.10b) and diagonal elements of (3.10a).
For the unstructured LOS array response model, we can re-
move (3.7b) from the ML and REML ECME iterations and
use the closed-form expression for the ML estimate of in
(3.16a). Rayleigh-fading versions of these algorithms follow by
removing (3.7b) and setting in (3.7c) and (3.21a)
or (3.24a).

IV. NUMERICAL EXAMPLES

We evaluate the estimation accuracy and computational
efficiency of the ML and REML methods in Section III. Our
performance metric is the mean-square error (MSE) of an
estimator, calculated using 5000 independent trials. Numerical
simulations were performed using both block- and contin-
uous-fading scenarios. Throughout this section, we employed
the Alamouti transmission scheme for a
MIMO system with quadrature phase-shift keying
(QPSK) symbols per coherent interval (normalized so that

) and generated additive white complex Gaussian
noise with variance .

A. Block-Fading Scenario

In the block-fading case, we generated the simulated data
using the measurement model in Section II. The LOS com-
ponent was generated using (2.4c) with

, and
.

1) Correlated Fading: In the first set of simulations, we con-
sider the correlated block-fading scenario and apply the ML and
REML algorithms in Section III-A using the unstructured and
structured LOS array response models in (2.4b) and (2.4c). The
spatial fading covariance matrix was

(4.1)

In Figs. 1 and 2, we present the MSEs (and corresponding
CRBs) for the ML and REML estimates of selected parame-
ters as functions of the number of coherent intervals . The
ML estimates of were computed using the closed-form ex-
pressions in (3.13) and (3.16) for the unstructured LOS model
and the alternating-projection ML algorithm (3.14) and (3.15)
for the structured LOS model. For , the alternating-pro-
jection algorithm converged in less than five iterations. In the
cases where (3.16b) and (3.15) were not positive semidefinite,
we ran the ECME ML algorithm described in Section III-A1.
In terms of CPU time, the alternating-projection ML algorithm
was five to seven times faster than the ECME ML algorithm. The
REML estimation was performed using the ECME algorithm in
Section III-A2, which converged in less than seven iterations.

In Table I, we show the percentages of trials in which the esti-
mates of in (3.15) and (3.16b) were not positive semidefinite
as functions of . These percentages decay rapidly with ;
however, they are high for small , underlining the importance
of the ECME approach, which handles parameter constraints
automatically.

In Fig. 1, the MSEs and CRBs for the ML and REML
estimates of Re , and sum of all elements
of are shown as functions of for the (left) unstructured
and (right) structured LOS array response models. Due to the
CRB decoupling between the mean and variance-component
parameters [see (E.1a) in Appendix E], the CRBs for the
variance components are the same regardless of the LOS array
response parametrization; the corresponding MSEs are also
approximately equal.
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Fig. 1. Mean-square errors and Cramér–Rao bounds for the ML and REML
estimates of Ref	 g;	 ;	 and sum of all elements of    under the
correlated block-fading scenario and (left) unstructured and (right) structured
LOS array response models, as functions of K .

In Fig. 2, we present the MSEs and CRBs for the (left) ML
and REML estimates of the unstructured LOS array response
vector and (right) ML, REML, AML, and LS estimates of the
structured-array LOS complex amplitude , as functions of .
Here, the linear LS estimate of is computed by substituting
(2.4c) into (3.9). As expected, the MSEs and CRBs are smaller
for the structured LOS model. For larger , the (closed-form)
AML and (iterative) ML and REML estimates of achieve
similar MSE performances. However, the AML estimator per-
forms poorly when is small; see also the discussion in Sec-
tion III-A3. An analytical expression for the MSE of the linear
LS estimate of is given below (for the special case of

and assuming the block-fading scenario):

MSE MSERe MSEIm

(4.2)

The CRBs were computed using the results in Appendix E-A.
Since the MSE performances of the ML and REML estima-

tors are similar, it is of interest to compare their biases as well.
Fig. 3 compares the absolute biases for the ML and REML esti-
mates of the variance components (computed using 5000 in-
dependent trials) under the (left) unstructured and (right) struc-
tured LOS array response models; the biases are shown as func-
tions of . The obtained results confirm the bias-correction
property of REML variance-component estimation; see also the
discussion in Section III. Compared with ML, the REML ap-
proach yields significant bias improvements when the rank
of the deterministic component is large (e.g., unstructured LOS
array model) and for small sample sizes .

Unknown : If the LOS Doppler shift is un-
known, we estimate it using the ML estimator in (3.17) for the

Fig. 2. MSEs and CRBs for the ML and REML estimates of the LOS
coefficients under the correlated block-fading scenario and (left) unstructured
and (right) structured LOS array response models, as functions of K .

Fig. 3. Absolute biases for the ML and REML estimates of the sum of all
elements of   under the correlated block-fading scenario and (left) unstructured
and (right) structured LOS array response models, as functions of K .

unstructured LOS model. Fig. 4 shows the MSE performance of
this estimator as a function of .

2) Independent Fading: Consider the independent
block-fading scenario with the following fading covariance
matrix:

diag diag (4.3)

We have applied the ECME, ML, and REML algorithms in Sec-
tion III-B; their MSE performances are shown in Figs. 5 and
6. For , the ECME algorithms converged in less than
ten iterations. Fig. 5 shows the MSEs and CRBs for the ML
and REML estimates of the fading variances , and
as functions of for the (left) unstructured and (right) struc-
tured LOS array response models. As expected, the CRBs for
these variances are the same regardless of the LOS array re-
sponse parametrization, and the corresponding MSEs are ap-
proximately equal as well. In Fig. 6, we compare the MSEs and
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Fig. 4. MSE for the ML estimate of the LOS Doppler shift in (3.17), as a
function of K .

Fig. 5. MSEs and CRBs for the ML and REML estimates of  ;  ;  , and
 under the independent block-fading scenario and (left) unstructured and
(right) structured LOS array response models, as functions of K .

CRBs for the ML and REML estimates of the (left) unstructured
LOS array response vector and ML, REML, AML, and LS es-
timates of the (right) structured-array LOS complex amplitude

. To compute the CRBs, we used (3.23) and the results in Ap-
pendix E-B.

B. Continuous-Fading Scenario

We now study the performance of the proposed methods in
continuous fading, where the scattering channel coefficients
are temporally correlated according to the Jakes’ model;
see, e.g., [12], [41], and references therein. First, denote
by the scattering channel vector at time in the

th coherent interval. Assuming adjacent coherent intervals,
we model the vector of all scattering coef-
ficients:

Fig. 6. MSEs and CRBs for the ML, REML, AML, and LS estimates
of the LOS coefficients under the independent block-fading scenario and
(left) unstructured and (right) structured LOS array response models, as
functions of K .

as a zero-mean
complex Gaussian vector with covariance matrix (see [41]):

(4.4a)

where is the maximum angular Doppler frequency
(corresponding to the Doppler spread of ), the ele-
ment of the matrix is

(4.4b)

and denotes the zeroth-order Bessel function of the first
kind [12], [41]. We further assume that the LOS component of
the channel response matrix changes with according to the
following model:

(4.4c)

where the LOS angular Doppler shift should
be bounded by the maximum Doppler frequency, i.e.,

. Combining the scattering and LOS channel
components, we obtain the following continuous-fading mea-
surement model:

(4.4d)

for , where and have
been defined in Section II, and vec . The
above model accounts for correlations among the coherent in-
tervals and time variations of the scattering and LOS channel
coefficients within a coherent interval.

In the following examples, we consider the correlated fading
scenario with given in (4.1), maximum Doppler frequency

(consistent with the mobile speed of 100
mi/h for the carrier frequency 1.9 GHz and a symbol rate
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Fig. 7. MSEs and block-fading CRBs for the ML and REML estimates of
Ref	 g;	 ;	 , and sum of all elements of    under the correlated
Ricean continuous-fading scenario and (left) unstructured and (right) structured
LOS array response models, as functions of K .

Fig. 8. MSEs and block-fading CRBs for the ML, REML, AML, and LS
estimates of the LOS coefficients under the correlated continuous-fading
scenario and (left) unstructured and (right) structured LOS array response
models, as functions of K .

of 30 kHz; see also [36]), and the LOS parameters
,

and . We first assume that the LOS
Doppler shift is known, and then consider the case
where is unknown.

Known : We computed the ML and REML esti-
mates of using the methods in Section III-A, where the
coherent-interval length was chosen as . Figs. 7
and 8 show the MSEs for the ML and REML estimates of
Re , sum of all elements of , and the LOS
coefficients, as functions of ; Fig. 8 (right) shows the MSEs
for the AML and LS estimates of the structured-array LOS
complex amplitude . We also compare these MSEs with
the corresponding block-fading CRBs, thus quantifying the

Fig. 9. MSEs and block-fading CRBs for the ML and REML estimates
of Ref	 g;	 ;	 , and sum of all elements of    under the
correlated Ricean continuous-fading scenario with unknown ! and
(left) unstructured and (right) structured LOS array response models, as
functions of K .

Fig. 10. MSEs and block-fading CRBs for the ML, REML, AML, and LS
estimates of the LOS coefficients under the correlated continuous-fading
scenario with unknown ! and (left) unstructured and (right) structured
LOS array response models, as functions of K .

performance loss that each method incurs due to continuous
fading. Interestingly, for small , the MSEs of the ML and
REML estimates are close to the block-fading CRBs. Under
the continuous-fading scenario, the proposed variance-compo-
nent estimates are mostly affected by correlations among the
coherent intervals and time variations of the scattering compo-
nent within a coherent interval, whereas the LOS-coefficient
estimates are mostly affected by time variations of the LOS
component.

Unknown : We now consider the scenario where the
LOS Doppler shift is unknown and estimated by max-
imizing (3.17). Here, we selected the coherent interval length

, as in the previous example. Following the estimated
likelihood approach in, e.g., [26, ch. 10.7], we treat the obtained
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estimate of as a known constant and apply the ML and
REML methods in Section III-A. Figs. 9 and 10 show the MSEs
and block-fading CRBs for the (estimated) ML, REML, AML,
and LS estimates of Re , sum of all elements
of , and LOS coefficients, as functions of . For the unstruc-
tured LOS array response model, the ML estimates of out-
perform the corresponding REML estimates. Interestingly, esti-
mating the LOS Doppler shift does not significantly affect the
performances of the ML and REML estimates of the variance
components (compare Figs. 7 and 9).

V. CONCLUDING REMARKS

We derived ML and REML methods for estimating the mean
and covariance parameters of MIMO fading channels under
correlated and independent block-fading scenarios. CRBs were
computed for the unknown fading-covariance and line-of-sight
parameters. For unitary space-time codes and orthogonal
designs in correlated fading, we obtained closed-form exact
and approximate ML estimates of the unknown parameters.
We evaluated the performance of the proposed methods via
numerical simulations under the block- and continuous-fading
scenarios. Simulation results show that the proposed estimators
are almost efficient under the block-fading scenario, having
mean-square errors close to the corresponding CRBs.

Further research will include incorporating the proposed esti-
mators into the design of space-time receivers and deriving effi-
cient estimation algorithms and CRBs for the continuous-fading
scenario. It is also of interest to develop estimators for the case
where the LOS channel response vector follows the multivariate
complex Ricean model in [11].

APPENDIX A
EXPRESSIONS FOR AND THE

LOG-LIKELIHOOD FUNCTION

We derive expressions for and simplify the log-like-
lihood expression in (3.2). Using the matrix inversion lemma (in
e.g., [27, Th. 18.2.8, p. 424]), we get

(A.1)

which further implies

(A.2)

Now, the log-likelihood (3.2) can be rewritten as

(A.3)

which follows by using (A.1) and the fact that

(A.4)

see (3.1b) and [27, Th. 18.1.1, p. 416].

APPENDIX B
RESTRICTED MAXIMUM LIKELIHOOD

We derive a REML log-likelihood expression for the mea-
surement model in Section II. Define a vector of error con-
trasts , where is a matrix whose columns span the
space orthogonal to the column space of . Then, the REML
log-likelihood is obtained as the log-likelihood function for the
error contrasts. Without loss of generality, we choose

; see [32]. Then, (3.6) follows by using the identities
(see [32], and [42, p. 77])

and neglecting terms that do not depend on . Note that (3.6)
can be further simplified by using (A.3):

(B.1)

where has been defined in (3.3).

APPENDIX C
ECME ALGORITHMS FOR CORRELATED FADING

A. ML Estimation

We derive the ECME ML algorithm in Section III-A1. The
first conditional maximization (CM) step in (3.7b) follows by
substituting the most recent estimate of into (3.3), where (3.3)
is the ML estimate of that maximizes the observed-data likeli-
hood function for fixed . The second CM step in (3.8a) follows
by reparametrizing the variance components using
and (rather than and ), which allows us to find the
closed-form solution for the ML estimate of that maximizes
the observed-data likelihood function for fixed and

(C.1)
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where

(C.2)

Equation (C.1) follows by maximizing the (reparametrized) log-
likelihood function in (A.3) with replaced by

. Then, the second CM step for updating the estimate of
in (3.8a) is obtained by substituting the most recent estimates

of and into (C.1). Finally, we apply the standard
EM algorithm to update by treating as the missing data,
where and are fixed. Consequently

(C.3)

are the observed data. If were known
(forming the complete data together with ),
we could easily find the complete-data ML estimate of as
follows:

(C.4)

where is also the natural complete-data sufficient statistic for
estimating . Then, the third CM step for updating the estimate
of in (3.8b) follows by computing the conditional expectation
of (C.4) given the observed data . We first
find the distribution of the missing data
conditional on the observed data . The joint
distribution of and is complex Gaussian with mean and
covariance

(C.5a)

cov

(C.5b)

and then, [20, result 7, pp. 508 and 509] implies that con-
ditional on are complex Gaussian vectors with means and
covariances equal to

(C.6a)

cov

(C.6b)

where (C.6a) and (C.6b) follow by using (A.1) and (3.4). Now,
(3.7c) follows from (C.6a), and the third CM step in (3.8b) is ob-
tained by substituting the most recent estimates of
and into

(C.7)

B. REML Estimation

We derive the ECME REML algorithm in Section III-A2. The
CM step for updating the fading covariance matrix in (3.11b)

follows by replacing in (C.7) with (see [43, (3.10)]
and [34, Sec. 2.3])

(C.8)

and substituting the most recent estimates of and . To obtain
the right-hand side of (C.8), we used (A.1) and (A.2). The CM
step in (3.11a) follows by reparametrizing the variance compo-
nents using and , which allows us to find the
closed-form solution for the REML estimate of that maxi-
mizes the observed-data restricted likelihood function for fixed

and

(C.9)

where

(C.10)

and has been defined in (C.2). Then, the CM step for
updating the estimate of in (3.11a) is obtained by substituting
the most recent estimates of and into (C.9).

APPENDIX D
ML ESTIMATION FOR CORRELATED

FADING AND CONSTANT

We derive the ML estimation algorithm in Section III-A3 that
is described by (3.13) and iteration (3.14) and (3.15). We esti-
mate by iterating between the following two steps:

i) (LOS component estimation) Fix , and estimate
using (3.3).

ii) (variance-component estimation) Fix , compute
using (C.3), and estimate the vari-

ance-component vector by maximizing the log-likeli-
hood function [see (3.2)]:

(D.1)

Note that the above alternating-projection approach is em-
bedded in all the algorithms discussed in this paper. We show
that for constant and fixed , the ML estimates of
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and [that maximize (D.1)] are their method-of-moments
estimates:

(D.2a)

(D.2b)

(D.2c)

where (D.2b) follows from (D.2a) by using (3.12b) and (A.1).
We now prove that the expressions (D.2) indeed maximize
(D.1). First, simplify (D.1) using and (A.3):

tr

(D.3)

The above log-likelihood function is the logarithm of a multi-
variate complex Gaussian pdf that belongs to the multiparameter
exponential family of distributions; see [44, ch. 1.6.2]. This fact
can be directly verified by inspecting (D.3), which is a linear
function of the following natural sufficient statistics: and

. Then, [44, Th. 2.3.1] im-
plies that the moment estimates of and in (D.2) are also
their ML estimates, provided that in (D.2c) is positive
semidefinite.

APPENDIX E
CRAMÉR–RAO BOUND

We derive the CRB for the vector of unknown parameters
. Using the well-known expression for the Fisher information

matrix in e.g., [20, p. 525], the CRB for is

CRB
CRB

CRB
(E.1a)

where CRB CRB Re Im Re Im

Re Im Re Im

Re (E.1b)

tr

(E.1c)

for , and

Re Im
(E.1d)

Substituting (E.1d) into (E.1b) yields

Re (E.2)

where

(E.3)

It is easy to show that

CRB

Re Im
Im Re

(E.4)

We now use (A.1) to simplify (E.1c). For we have (E.5),
shown at the bottom of the page, whereas for , we have

tr

tr

(E.6)

We partition as

(E.7)

tr tr

tr

tr
(E.5)
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where and are computed using (E.5), and is
computed using (E.6). We adopt the same block partitioning of
CRB . Then

CRB (E.8a)

CRB (E.8b)

which follow by using the formula for the inverse of a parti-
tioned matrix; see, e.g., [27, Th. 8.5.11].

A. CRB for Correlated Fading and Constant

We simplify the above CRB expressions for correlated fading
and constant . In this case

where has been defined in (3.12b). For the unstructured LOS
array response model in (2.4b), (E.4) simplifies to

CRB

Re Im
Im Re

(E.9a)

Under the structured LOS array response model in (2.4c), (E.4)
becomes

CRB

(E.9b)

The equations in (E.5) simplify to

tr

(E.10a)

tr

(E.10b)

and, for

Re

tr
Re

Re (E.11a)

Im

tr
Im

Im (E.11b)

where denotes the element of , for
. In addition, for and , (E.6)

becomes

Re Re

Re Re

tr
Re

Re
Re

(E.12a)

Re Im

Im Re

tr
Re

Im
Im

(E.12b)

Im Im

Im Im

tr
Im

Im
Re

(E.12c)

and, for and

Re

Re

tr
Re

Re (E.13a)

Im

Im

tr
Im

Im

(E.13b)

and, for and

tr

(E.14)
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B. CRB for Independent Fading and

For independent fading and unitary space-time codes
, we have

diag

(E.15)

and the CRB expressions (E.5) and (E.6) simplify to

(E.16a)

(E.16b)

diag

(E.16c)

which yields (3.23) after applying (E.8). The CRB expres-
sions for the LOS coefficients under the unstructured and
structured LOS array response models follow by substituting

diag and (E.15) into
(E.9a) and (E.9b).
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